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Summary:

Interactions between trees and microorganisms are tremendously complex and
the multispecies networks resulting from these associations have consequences
for plant growth and productivity. However, a more holistic view is needed to
better understand trees as ecosystems and superoorganisms; where many
interacting species contribute to the overall stability of the system. While much
progress has been made on microbial communities associated with individual
tree niches and the molecular interactions between model symbiotic partners,
there is still a lack of knowledge of the multi-component interactions necessary
for holistic ecosystem-level understanding. We review recent studies in Populus
to emphasize the importance of such holistic efforts across the leaf, stem and
rooting zones, and discuss prospects for future research in these important

ecosystems.

Keywords: Microbiome, Populus, Trees, Mycorrhizas, Endophytes, Bacteria,

Fungi
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Introduction

Populus trichocarpa was the first tree species genome sequenced (Tuskan et
al., 2006) and the ability to study genetically tractable Populus trees in
greenhouses and plantation agroecosytems, as well as in natural ecosystem
settings, make Populus spp. a powerful system better understanding of plant-
microbe relationships. Ectomycorrhizas and arbuscular mycorrhizas both occur
within Populus (Karlinski et al., 2010) and Populus host genetic variation may
influence structure and composition of surrounding plants, soils, and overall
ecosystem functions (e.g. Fisher et al. 2007; 2010 & 2014). Recognizing this
importance, a decade ago as the Populus genome neared completion, Martin et
al. (2004) called the community to begin comparable efforts to sequence and
study the Populus symbiont “mesocosm”. They argued for consideration of trees
as ecosystems unto themselves and increased understanding of their symbiotic
interactions at both holistic levels, and as genome-enabled model systems. In
this paper, we discuss the tremendous recent progress and future potential of

such efforts across the Populus ecosystem (Figure 1).

The root endosphere and rhizosphere microbiome:

Diversity, structure and community level perspectives

A variety of recent studies have examined the root mycorrhizal components of
the microbiome in Populus. A general focus of many of these studies has been
contrasting the communities associated with wild-type and transgenic clones.

For example three studies (Kaldorf et al., 2002; Stefani et al., 2009; Danielson
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et al., 2012) have examined both bulk soil and root fungal populations
independently in plantations with different transgenic Populus lines. Each of
these studies finds no effects of the transgene clones on fungal communities but
generally high levels of fungal diversity in association with poplar roots. A few
recent whole-microbiome level investigations in natural populations and variants
of P. deltoides have now included simultaneous examination of both bacteria and
fungi in the same sampled environments and experiments, as well as for both the
rhizosphere and root endosphere habitats (Gottel et al., 2011; Shakya et al.,
2013; Bonito et al., 2014). Such studies have done well to begin elucidating how
these different plant habitats/niches effect microbial membership, and to begin to
disentangle how host, environmental, soil and geographic factors influence each
of these Populus-associated community types (Shakya et al., 2013; Bonito et
al., 2014). Similar results are now being found in a variety of host systems with
the widespread application of pyrosequence-based approaches; and patterns of
host specificity, host fithess effects, geographic substitution and heritability are
now emerging (Bonito et al., 2014; Lundberg et al., 2012; Peiffer et al., 2013;
Talbot et al., 2014; Wagner et al., 2014). These studies in both Populus, as
well as Arabidopsis and Zea systems have demonstrated that within a host
species, habitat (e.g. endosphere vs rhizosphere) and soil type, rather than
within species genetic background, have larger effects on overall structure of the
microbiome (Bonito et al., 2014; Bulgarelli et al., 2012; Lundberg et al., 2012;
Peiffer et al., 2013; Shakya et al., 2013), but the balance of the effects of

genetic and soil factors within host habitats on bacteria and fungi is less clear.
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Evidence from natural systems, soil inoculum assays, and pairwise colonization
assays are suggesting that perhaps due to its often weak ECM nature, root
endophytic organisms may be particularly important for Populus compared to
other ECM trees and result in higher levels of microbiome diversity due to

increased niche space (Bonito et al. 2014; Tschaplinski et al. 2014).

A systematic understanding of how overall rhizosphere communities and their
members differ from or complement each other in terms of functioning within the
plant and across plant and tree taxa is still lacking. However, meta-analysis and
synthesis studies that collectively analyze and compare such communities
should now be possible with the widespread adoption of community databasing

and standards in microbiome sequence studies (Yilmaz et al., 2011)

Specific interactions, mechanisms and function

While the basic functions of mycrorrhizas in terms of nutrient and water
acquisition are known, the specific detailed signaling mechanisms involved in the
formation and functioning of both ectomycorrhizal (ECM) and arbuscular
mycorrhizal (AM) symbiosis had remained elusive. Genome-enabled studies
using the Laccaria-Populus system, have led to several insights in this area and
suggest mutual signaling mechanisms allow recognition, initiation and
reorganization of the symbiotic root organ. Particularly surprising has been the
role that small secreted proteins play. Mycorrhizal Induced Small Secreted

Protein-(MiSSPs) - MiSSP7 production in Laccaria, appears to be induced by
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unknown exudates from Populus roots (Plett et al., 2011, Plett and Martin,
2012). MiSSP7 in turn migrates to the plant nuclei and alters the hormonal
balance of the plant defense system, allowing mycorrhizal formation to proceed
(Plett et al., 2014). However these detailed patterns of recognition may be
species specific even within host Populus species. While the above recognition
mechanism is effective in Populus trichocarpa, in Populus deltoides the host
defensive system is not effectively suppressed by Laccaria and ECM formation
does not proceed (Tschaplinski et al., 2014). Future investigations will need to
further explore the phylogenetic distributions of such signaling interactions both
with closely related model species and across diverse host-fungal systems, to
gain insight into the varying patterns of species specificity and generalist
phenomena. The recent completion of the genome sequence of the AM fungus
Rizophagus irregularis (ex Glomus) (Tisserant et al., 2013) may similarly
provide clues necessary to accelerate such research into the functioning of AM
systems. Additionally, the use of Populus as a host for such studies, with its
ability to form both AM and ECM symbioses, should provide insight into the
largely unanswered questions of why and under what conditions Populus forms
both types of symbioses. While there appear to be both genetic and
environmental influences on alternation between the two symbiosis modes in
Populus (Gehring et al., 2006; Karlinski et al., 2010; Lodge, 1989), the
detailed mechanisms and in planta functioning of such dual symbioses are still

unclear.
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Beyond mycrorrhizal symbionts, Populus is also host to a variety of bacterial and
fungal rhizosphere partners and root endophytes. Indeed, several studies have
shown putative mycorrhizal fungal taxa on and within Populus to be outnumbered
by other root endopyhtic fungi such as Atractiella, Phialophora, lllyonectria and
Mortierella spp. (Gottel et al. 2011; Shakya et al. 2013; Bonito et al. 2014).
Therefore, elucidating the full potential of microbiome effects on tree growth,
health and reproduction also depends on understanding these often neglected
plant-microbe interactions. Bacterial endophytes have been shown to have
varying functions in altering root branching/allocation patterns through production
of plant hormone precursors such as Indole Acetic Acid (IAA) (Dimpka et al.,
2012; Weyens et al., 2012), transformation and mobilization of nutrients such as
nitrogen and phosphorus (Brown et al., 2009), enhanced mycorrhizal formation
(e.g. Mycorrhizal Helper Bacteria) (Deveau et al., 2007; Zhao et al., 2014), and
aid in pathogen resistance through competitive exclusion or production of
antibiotics, (Lugtenberg et al., 2001) or priming of plant immune responses
(Weston et al., 2012). None of these effects however seem to be mutually
exclusive, as various isolates of even a single genera or species complex such
as Pseudomonas fluorescens, seem capable of many of these functions, as well

as pathogenic effects (Weston et al., 2012).

The phyllosphere and leaf endosphere:

Diversity, structure and community level perspectives
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The interaction between plants and their associated phyllosphere microbial
communities has received growing attention during the last decade (Vorholt,
2012). Microbial diversity and community structure has been described in several
woody plant species (Jumpponen and Jones, 2009; Redford et al., 2010;
Finkel et al., 2011; Cordier et al., 2012; Coince et al., 2014) but our knowledge
of the structure of both fungal and bacterial communities associated with poplar
leaves remains fragmented. Culture-independent approaches indicate that host
genotype is an important factor structuring both fungal and bacterial communities
in poplar leaves and suggest that phyllosphere microbial community assemblage
is at least partially determined by host genetic variation (Balint et al., 2013,
Ulrich et al., 2008). Consistent with a possible enrichment of infrequent fungal
species in the phyllosphere community of trees (Unterseher et al., 2011), the
poplar leaf fungal community was found to be very diverse and is represented by
few abundant taxa and numerous rare taxa (Balint et al., 2013). Although the
phyllosphere bacterial community of poplar can vary over the growing season
(Redford et al., 2009), the general structure consisting of the dominance of
Proteobacteria, Actinobacteria and Bacteroidetes is not strikingly different from
the pattern detected for other plant species including angiosperms, grasses and
Arabidopsis, suggesting an overall conserved structure that is defined by
relatively few bacterial phyla (Ulrich et al., 2008; Redford et al., 2010;

Bodenhausen et al., 2013; Bulgarelli et al., 2013).
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Integrated approaches are needed to understand processes responsible for
determining the structure and assembly rules of phyllosphere communities. One
approach recently used various Arabidopsis mutants, revealed that cuticular wax
and ethylene can significantly affect community composition of phyllosphere
bacteria (Reisberg et al., 2013; Bodenhausen et al., 2014). In addition, a
comprehensive survey of the topographical distribution of fungi and bacteria
across various organs of individual tree species is still needed to better
understand tissue-type specificity of microbial community assemblages. Finally,
recent studies indicate that in addition to the host plant, synergistic, beneficial
and antagonistic interactions among microbes may have tremendous impacts on
microbial community structure and function in both the phyllosphere and the
rhizosphere (Frey Klett et al., 2011; Kemen et al., 2014). Therefore,
understanding both leaf- and root-associated microbiota structure also rely on the
understanding of more complex interactions, where fungal, oomycetes and
bacterial communities are not considered as separated entities but as active

drivers of microbial community assemblages.

Specific interactions, mechanisms and function:

Although the structure and diversity of bacterial and fungal communities
associated with the leaves of woody plants species have been reported, the
associated functions remain poorly characterized. It has been recently shown
that different fungal endophytes isolated from poplar leaves naturally infected by

the poplar rust fungus Melampsora can dramatically reduce rust symptoms
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severity under laboratory conditions and significantly contribute to quantitative
resistance to the foliar rust pathogen (Raghavendra and Newcombe, 2013).
Interestingly however, some of these same endophytes do not show similar
effects against other Populus pathogens (Busby et al. 2013). Strikingly, root-
associated microbiota members are also known to induce systemic responses in
leaves, resulting in increased resistance to plant pathogens (Kurth et al., 2014;
Weston et al., 2012) and herbivory (Badri et al., 2013). These selected
examples illustrate why a more holistic understanding of plant disease is needed
to better understand beneficial interactions across the plant microbiome (Van der

Putten et al., 2001).

The stem and wood microbiome:

While the rhizosphere and phyllosphere have received considerably more
attention as microbial habitats, there is increasing evidence that microorganisms
inhabiting the heartwood tissues within some woody plants such as Populus may
have high importance that has been to date unfairly neglected (Knoth et al.,
2014). In Populus, many conifers, and other important forest tree species; the
heartwood has no living parenchyma cells and only saturated xylem tissues (e.g.
wetwood) that can lead to anaerobic conditions favoring fermentation or even
methanogenesis (Zeikus and Ward, 1974). Prior reports suggested that
communities associated with both Populus trichocarpa and P. delfoides also
have the potential to fix nitrogen in these niches as evidenced by acetylene

reduction assays (Schink et al., 1981; Kamp, 1986). Numerous diazotrophic
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bacteria have been isolated from such habitats. Cross inoculation experiments
have shown broad growth promoting effects of these organisms on other plant
species, including non-woody plants such as rice and maize (Govindarajan et
al., 2008; Knoth et al., 2013) and imply bacterial genera including Burkholderia,
Rhizobium, Enterobacter, and Paenibacillus (Doty et al., 2009; Scherling et al.,
2009) and isolates often show the ability to reduce Nz in pure cultures outside the
host. Isotopic studies from N in P. trichocarpa inoculated with consortia of
bacteria species, show signatures indicative of active fixation and that wetwood
may account for up to 65% of the N in leaf tissues (Knoth et al., 2014).
Culturable fungal endophytes have also recently been examined within the
woody tissues of branches of P. angustifolia (Lamit et al., 2014). While
functional aspects have not been examined, it is clear from this first work that
even the simple communities within woody tissues can be influenced by tree
genotype. Additionally, many of the fungal genera identified seem to overlap with

those commonly found within leaf and root endophyte habitats.

Despite indications of the high importance of heartwood habitat, all knowledge to
date comes from studies of individual bacterial and fungal isolates, and a few
studies of defined consortia. Interestingly there is some indication that these
mixed consortia of organisms show differing effects and sometimes more robust
growth promotion (Knoth et al., 2014, Knoth et al., 2013) and speculated to be
due to increased niche colonization. However microbiome, metagenome, or

even Sanger sequencing-based surveys of microbial populations within woody

11
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habitats are lacking. /In planta localization of N-fixing bacteria has yet to be
visualized via FISH or other methods. The use of combinations of advanced
microscopy and isotopically resolved mass spectroscopy techniques, such as
NanoSIMS, could potentially be very useful (Pett-Ridge and Weber, 2012).
Given these tantalizing results, and the potential importance of alternative

mechanisms of N fixation, microbiome studies of heartwood should be prioritized.

Toward understanding microbiome functions in a community context
Interactions between trees and their associated microbial communities are
tremendously complex and the resulting multiorganismal networks have central
roles for plant growth and productivity (Bonfante and Anca, 2009). A more
holistic view of plant health and disease is needed to better understand these
“superorganisms”, in which interacting species are thought to play a role in the
overall stability of the system. Similar to the human microbiota, disruption of the
homeostasis between plants and their associated fungal and bacterial
communities may alter the stability of the system, with potential impacts on host
fitness (Frey-Klett et al., 2011). Although culture-independent methods have
tremendously contributed to our understanding of tree-associated fungal and
bacterial community structures, the study of microbiota functions in a community
context remains challenging because of the inherent noise of plant-associated
microbial communities seen in nature. One reductionist approach to overcome
this limitation is the use of reciprocal transplantation experiments, where plants

are moved from one environment to another environment or grown with the same
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soil inoculum under controlled conditions. Such an approach has been recently
used to decipher the role of soil biota in plant adaptation, revealing that plants
are not limited to adapt or migrate, but perhaps utilize microbial consortia to
adapt to a novel or disturbed environment (Lau and Lennon, 2012; Gundale et
al., 2014). Alternatively, extraction of presumably intact communities from
different soil types has also been used to test how distinct environmental
microbiomes can alter plant flowering phenology and represents a promising way
to search for microbial consortia that alter biological characteristics of interest
(Wagner et al., 2014). Finally, extensive reference culture collections of plant-
associated fungal and bacterial stains isolated from model plant species are
currently being established and will provide in the near future an inestimable
resource for assembling taxonomically defined microbial communities with
increasing complexity (Brown et al., 2012; Lebeis et al., 2012, De Roy et al.,
2013). The modularity of synthetic communities has already provided new
insights into the structure and the function of plant-associated microbiota (Rolli
et al., 2014; Bodenhausen et al., 2014; Knoth et al., 2014). The assembly of
more complex defined microcosms that better mimic environmental microbiomes
will aid in 1) understanding the dynamics of host colonization by complex root-
and leaf-associated microbial communities, 2) deciphering the contribution of
plant-microbe and microbe-microbe interactions in the structuring of microbial
consortia and 3) identifying complex microcosms that promote host fithess when
exposed to biotic or abiotic stressors. While studies in Populus have been

informative in their own right, they will become of increasing interest as a
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