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Summary: 24 

Interactions between trees and microorganisms are tremendously complex and 25 

the multispecies networks resulting from these associations have consequences 26 

for plant growth and productivity. However, a more holistic view is needed to 27 

better understand trees as ecosystems and superoorganisms; where many 28 

interacting species contribute to the overall stability of the system. While much 29 

progress has been made on microbial communities associated with individual 30 

tree niches and the molecular interactions between model symbiotic partners, 31 

there is still a lack of knowledge of the multi-component interactions necessary 32 

for holistic ecosystem-level understanding. We review recent studies in Populus 33 

to emphasize the importance of such holistic efforts across the leaf, stem and 34 

rooting zones, and discuss prospects for future research in these important 35 

ecosystems.  36 

 37 
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Introduction 41 

Populus trichocarpa was the first tree species genome sequenced (Tuskan et 42 

al., 2006) and the ability to study genetically tractable Populus trees in 43 

greenhouses and plantation agroecosytems, as well as in natural ecosystem 44 

settings, make Populus spp. a powerful system better understanding of plant-45 

microbe relationships. Ectomycorrhizas and arbuscular mycorrhizas both occur 46 

within Populus (Karlinski et al., 2010) and Populus host genetic variation may 47 

influence structure and composition of surrounding plants, soils, and overall 48 

ecosystem functions (e.g. Fisher et al. 2007; 2010 & 2014). Recognizing this 49 

importance, a decade ago as the Populus genome neared completion, Martin et 50 

al. (2004) called the community to begin comparable efforts to sequence and 51 

study the Populus symbiont “mesocosm”. They argued for consideration of trees 52 

as ecosystems unto themselves and increased understanding of their symbiotic 53 

interactions at both holistic levels, and as genome-enabled model systems. In 54 

this paper, we discuss the tremendous recent progress and future potential of 55 

such efforts across the Populus ecosystem (Figure 1). 56 

 57 

The root endosphere and rhizosphere microbiome: 58 

Diversity, structure and community level perspectives 59 

A variety of recent studies have examined the root mycorrhizal components of 60 

the microbiome in Populus.  A general focus of many of these studies has been 61 

contrasting the communities associated with wild-type and transgenic clones.  62 

For example three studies (Kaldorf et al., 2002; Stefani et al., 2009; Danielson 63 
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et al., 2012) have examined both bulk soil and root fungal populations  64 

independently in plantations with different transgenic Populus lines. Each of 65 

these studies finds no effects of the transgene clones on fungal communities but 66 

generally high levels of fungal diversity in association with poplar roots. A few 67 

recent whole-microbiome level investigations in natural populations and variants 68 

of P. deltoides have now included simultaneous examination of both bacteria and 69 

fungi in the same sampled environments and experiments, as well as for both the 70 

rhizosphere and root endosphere habitats (Gottel et al., 2011; Shakya et al., 71 

2013; Bonito et al., 2014). Such studies have done well to begin elucidating how 72 

these different plant habitats/niches effect microbial membership, and to begin to 73 

disentangle how host, environmental, soil and geographic factors influence each 74 

of these Populus-associated community types (Shakya et al., 2013; Bonito et 75 

al., 2014).  Similar results are now being found in a variety of host systems with 76 

the widespread application of pyrosequence-based approaches; and patterns of 77 

host specificity, host fitness effects, geographic substitution and heritability are 78 

now emerging (Bonito et al., 2014; Lundberg et al., 2012; Peiffer et al., 2013; 79 

Talbot et al., 2014; Wagner et al., 2014).  These studies in both Populus, as 80 

well as Arabidopsis and Zea systems have demonstrated that within a host 81 

species, habitat (e.g. endosphere vs rhizosphere) and soil type, rather than 82 

within species genetic background, have larger effects on overall structure of the 83 

microbiome (Bonito et al., 2014; Bulgarelli et al., 2012; Lundberg et al., 2012; 84 

Peiffer et al., 2013; Shakya et al., 2013), but the balance of the effects of 85 

genetic and soil factors within host habitats on bacteria and fungi is less clear.  86 
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Evidence from natural systems, soil inoculum assays, and pairwise colonization 87 

assays are suggesting that perhaps due to its often weak ECM nature, root 88 

endophytic organisms may be particularly important for Populus compared to 89 

other ECM trees and result in higher levels of microbiome diversity due to 90 

increased niche space (Bonito et al. 2014; Tschaplinski et al. 2014).   91 

 92 

A systematic understanding of how overall rhizosphere communities and their 93 

members differ from or complement each other in terms of functioning within the 94 

plant and across plant and tree taxa is still lacking. However, meta-analysis and 95 

synthesis studies that collectively analyze and compare such communities 96 

should now be possible with the widespread adoption of community databasing 97 

and standards in microbiome sequence studies (Yilmaz et al., 2011) 98 

 99 

Specific interactions, mechanisms and function 100 

While the basic functions of mycrorrhizas in terms of nutrient and water 101 

acquisition are known, the specific detailed signaling mechanisms involved in the 102 

formation and functioning of both ectomycorrhizal (ECM) and arbuscular 103 

mycorrhizal (AM) symbiosis had remained elusive. Genome-enabled studies 104 

using the Laccaria-Populus system, have led to several insights in this area and 105 

suggest mutual signaling mechanisms allow recognition, initiation and 106 

reorganization of the symbiotic root organ.  Particularly surprising has been the 107 

role that small secreted proteins play.  Mycorrhizal Induced Small Secreted 108 

Protein-(MiSSPs) - MiSSP7 production in Laccaria, appears to be induced by 109 
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unknown exudates from Populus roots (Plett et al., 2011, Plett and Martin, 110 

2012).  MiSSP7 in turn migrates to the plant nuclei and alters the hormonal 111 

balance of the plant defense system, allowing mycorrhizal formation to proceed 112 

(Plett et al., 2014). However these detailed patterns of recognition may be 113 

species specific even within host Populus species. While the above recognition 114 

mechanism is effective in Populus trichocarpa, in Populus deltoides the host 115 

defensive system is not effectively suppressed by Laccaria and ECM formation 116 

does not proceed (Tschaplinski et al., 2014).   Future investigations will need to 117 

further explore the phylogenetic distributions of such signaling interactions both 118 

with closely related model species and across diverse host-fungal systems, to 119 

gain insight into the varying patterns of species specificity and generalist 120 

phenomena.  The recent completion of the genome sequence of the AM fungus 121 

Rizophagus irregularis (ex Glomus) (Tisserant et al., 2013) may similarly 122 

provide clues necessary to accelerate such research into the functioning of AM 123 

systems. Additionally, the use of Populus as a host for such studies, with its 124 

ability to form both AM and ECM symbioses, should provide insight into the 125 

largely unanswered questions of why and under what conditions Populus forms 126 

both types of symbioses. While there appear to be both genetic and 127 

environmental influences on alternation between the two symbiosis modes in 128 

Populus (Gehring et al., 2006; Karlinski et al., 2010; Lodge, 1989), the 129 

detailed mechanisms and in planta functioning of such dual symbioses are still 130 

unclear.  131 

 132 



 7 

Beyond mycrorrhizal symbionts, Populus is also host to a variety of bacterial and 133 

fungal rhizosphere partners and root endophytes. Indeed, several studies have 134 

shown putative mycorrhizal fungal taxa on and within Populus to be outnumbered 135 

by other root endopyhtic fungi such as Atractiella, Phialophora, Illyonectria and 136 

Mortierella spp. (Gottel et al. 2011; Shakya et al. 2013; Bonito et al. 2014). 137 

Therefore, elucidating the full potential of microbiome effects on tree growth, 138 

health and reproduction also depends on understanding these often neglected 139 

plant-microbe interactions.  Bacterial endophytes have been shown to have 140 

varying functions in altering root branching/allocation patterns through production 141 

of plant hormone precursors such as Indole Acetic Acid (IAA) (Dimpka et al., 142 

2012; Weyens et al., 2012), transformation and mobilization of nutrients such as 143 

nitrogen and phosphorus (Brown et al., 2009), enhanced mycorrhizal formation 144 

(e.g. Mycorrhizal Helper Bacteria) (Deveau et al., 2007; Zhao et al., 2014), and 145 

aid in pathogen resistance through competitive exclusion or production of 146 

antibiotics, (Lugtenberg et al., 2001) or priming of plant immune responses 147 

(Weston et al., 2012).  None of these effects however seem to be mutually 148 

exclusive, as various isolates of even a single genera or species complex such 149 

as Pseudomonas fluorescens, seem capable of many of these functions, as well 150 

as pathogenic effects (Weston et al., 2012). 151 

 152 

The phyllosphere and leaf endosphere: 153 

Diversity, structure and community level perspectives 154 



 8 

The interaction between plants and their associated phyllosphere microbial 155 

communities has received growing attention during the last decade (Vorholt, 156 

2012). Microbial diversity and community structure has been described in several 157 

woody plant species (Jumpponen and Jones, 2009; Redford et al., 2010; 158 

Finkel et al., 2011; Cordier et al., 2012; Coince et al., 2014) but our knowledge 159 

of the structure of both fungal and bacterial communities associated with poplar 160 

leaves remains fragmented. Culture-independent approaches indicate that host 161 

genotype is an important factor structuring both fungal and bacterial communities 162 

in poplar leaves and suggest that phyllosphere microbial community assemblage 163 

is at least partially determined by host genetic variation (Bálint et al., 2013, 164 

Ulrich et al., 2008). Consistent with a possible enrichment of infrequent fungal 165 

species in the phyllosphere community of trees (Unterseher et al., 2011), the 166 

poplar leaf fungal community was found to be very diverse and is represented by 167 

few abundant taxa and numerous rare taxa (Bálint et al., 2013). Although the 168 

phyllosphere bacterial community of poplar can vary over the growing season 169 

(Redford et al., 2009), the general structure consisting of the dominance of 170 

Proteobacteria, Actinobacteria and Bacteroidetes is not strikingly different from 171 

the pattern detected for other plant species including angiosperms, grasses and 172 

Arabidopsis, suggesting an overall conserved structure that is defined by 173 

relatively few bacterial phyla (Ulrich et al., 2008; Redford et al., 2010; 174 

Bodenhausen et al., 2013; Bulgarelli et al., 2013). 175 

  176 
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Integrated approaches are needed to understand processes responsible for 177 

determining the structure and assembly rules of phyllosphere communities. One 178 

approach recently used various Arabidopsis mutants, revealed that cuticular wax 179 

and ethylene can significantly affect community composition of phyllosphere 180 

bacteria (Reisberg et al., 2013; Bodenhausen et al., 2014). In addition, a 181 

comprehensive survey of the topographical distribution of fungi and bacteria 182 

across various organs of individual tree species is still needed to better 183 

understand tissue-type specificity of microbial community assemblages. Finally, 184 

recent studies indicate that in addition to the host plant, synergistic, beneficial 185 

and antagonistic interactions among microbes may have tremendous impacts on 186 

microbial community structure and function in both the phyllosphere and the 187 

rhizosphere (Frey Klett et al., 2011; Kemen et al., 2014). Therefore, 188 

understanding both leaf- and root-associated microbiota structure also rely on the 189 

understanding of more complex interactions, where fungal, oomycetes and 190 

bacterial communities are not considered as separated entities but as active 191 

drivers of microbial community assemblages.    192 

 193 

Specific interactions, mechanisms and function: 194 

Although the structure and diversity of bacterial and fungal communities 195 

associated with the leaves of woody plants species have been reported, the 196 

associated functions remain poorly characterized. It has been recently shown 197 

that different fungal endophytes isolated from poplar leaves naturally infected by 198 

the poplar rust fungus Melampsora can dramatically reduce rust symptoms 199 
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severity under laboratory conditions and significantly contribute to quantitative 200 

resistance to the foliar rust pathogen (Raghavendra and Newcombe, 2013). 201 

Interestingly however, some of these same endophytes do not show similar 202 

effects against other Populus pathogens (Busby et al. 2013). Strikingly, root-203 

associated microbiota members are also known to induce systemic responses in 204 

leaves, resulting in increased resistance to plant pathogens (Kurth et al., 2014; 205 

Weston et al., 2012) and herbivory (Badri et al., 2013). These selected 206 

examples illustrate why a more holistic understanding of plant disease is needed 207 

to better understand beneficial interactions across the plant microbiome (Van der 208 

Putten et al., 2001).   209 

 210 

The stem and wood microbiome:  211 

While the rhizosphere and phyllosphere have received considerably more 212 

attention as microbial habitats, there is increasing evidence that microorganisms 213 

inhabiting the heartwood tissues within some woody plants such as Populus may 214 

have high importance that has been to date unfairly neglected (Knoth et al., 215 

2014). In Populus, many conifers, and other important forest tree species; the 216 

heartwood has no living parenchyma cells and only saturated xylem tissues (e.g. 217 

wetwood) that can lead to anaerobic conditions favoring fermentation or even 218 

methanogenesis (Zeikus and Ward, 1974). Prior reports suggested that 219 

communities associated with both Populus trichocarpa and P. deltoides also 220 

have the potential to fix nitrogen in these niches as evidenced by acetylene 221 

reduction assays (Schink et al., 1981; Kamp, 1986).  Numerous diazotrophic 222 
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bacteria have been isolated from such habitats. Cross inoculation experiments 223 

have shown broad growth promoting effects of these organisms on other plant 224 

species, including non-woody plants such as rice and maize (Govindarajan et 225 

al., 2008; Knoth et al., 2013) and imply bacterial genera including Burkholderia, 226 

Rhizobium, Enterobacter, and Paenibacillus (Doty et al., 2009; Scherling et al., 227 

2009) and isolates often show the ability to reduce N2 in pure cultures outside the 228 

host.  Isotopic studies from 15N in P. trichocarpa inoculated with consortia of 229 

bacteria species, show signatures indicative of active  fixation and that wetwood 230 

may account for up to 65% of the N in leaf tissues (Knoth et al., 2014).  231 

Culturable fungal endophytes have also recently been examined within the 232 

woody tissues of branches of P. angustifolia (Lamit et al., 2014).  While 233 

functional aspects have not been examined, it is clear from this first work that 234 

even the simple communities within woody tissues can be influenced by tree 235 

genotype.  Additionally, many of the fungal genera identified seem to overlap with 236 

those commonly found within leaf and root endophyte habitats. 237 

 238 

Despite indications of the high importance of heartwood habitat, all knowledge to 239 

date comes from studies of individual bacterial and fungal isolates, and a few 240 

studies of defined consortia. Interestingly there is some indication that these 241 

mixed consortia of organisms show differing effects and sometimes more robust 242 

growth promotion (Knoth et al., 2014, Knoth et al., 2013) and speculated to be 243 

due to increased niche colonization.  However microbiome, metagenome, or 244 

even Sanger sequencing-based surveys of microbial populations within woody 245 
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habitats are lacking. In planta localization of N-fixing bacteria has yet to be 246 

visualized via FISH or other methods.  The use of combinations of advanced 247 

microscopy and isotopically resolved mass spectroscopy techniques, such as 248 

NanoSIMS, could potentially be very useful (Pett-Ridge and Weber, 2012).  249 

Given these tantalizing results, and the potential importance of alternative 250 

mechanisms of N fixation, microbiome studies of heartwood should be prioritized.   251 

 252 

Toward understanding microbiome functions in a community context 253 

Interactions between trees and their associated microbial communities are 254 

tremendously complex and the resulting multiorganismal networks have central 255 

roles for plant growth and productivity (Bonfante and Anca, 2009). A more 256 

holistic view of plant health and disease is needed to better understand these 257 

“superorganisms”, in which interacting species are thought to play a role in the 258 

overall stability of the system. Similar to the human microbiota, disruption of the 259 

homeostasis between plants and their associated fungal and bacterial 260 

communities may alter the stability of the system, with potential impacts on host 261 

fitness (Frey-Klett et al., 2011). Although culture-independent methods have 262 

tremendously contributed to our understanding of tree-associated fungal and 263 

bacterial community structures, the study of microbiota functions in a community 264 

context remains challenging because of the inherent noise of plant-associated 265 

microbial communities seen in nature. One reductionist approach to overcome 266 

this limitation is the use of reciprocal transplantation experiments, where plants 267 

are moved from one environment to another environment or grown with the same 268 
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soil inoculum under controlled conditions. Such an approach has been recently 269 

used to decipher the role of soil biota in plant adaptation, revealing that plants 270 

are not limited to adapt or migrate, but perhaps utilize microbial consortia to 271 

adapt to a novel or disturbed environment (Lau and Lennon, 2012; Gundale et 272 

al., 2014). Alternatively, extraction of presumably intact communities from 273 

different soil types has also been used to test how distinct environmental 274 

microbiomes can alter plant flowering phenology and represents a promising way 275 

to search for microbial consortia that alter biological characteristics of interest 276 

(Wagner et al., 2014). Finally, extensive reference culture collections of plant-277 

associated fungal and bacterial stains isolated from model plant species are 278 

currently being established and will provide in the near future an inestimable 279 

resource for assembling taxonomically defined microbial communities with 280 

increasing complexity (Brown et al., 2012; Lebeis et al., 2012, De Roy et al., 281 

2013). The modularity of synthetic communities has already provided new 282 

insights into the structure and the function of plant-associated microbiota (Rolli 283 

et al., 2014; Bodenhausen et al., 2014; Knoth et al., 2014). The assembly of 284 

more complex defined microcosms that better mimic environmental microbiomes 285 

will aid in 1) understanding the dynamics of host colonization by complex root- 286 

and leaf-associated microbial communities, 2) deciphering the contribution of 287 

plant-microbe and microbe-microbe interactions in the structuring of microbial 288 

consortia and 3) identifying complex microcosms that promote host fitness when 289 

exposed to biotic or abiotic stressors.  While studies in Populus have been 290 

informative in their own right, they will become of increasing interest as a 291 
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comparison for new models such as Eucalyptus, Pine, and others come online 292 

now and in the future.  293 
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