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ABSTRACT 

 

Efforts of many scientists for more than a half of a century have resulted in substantial 

understanding of the response of Zr-based materials to irradiation. However, the models of 

radiation growth proposed to date have not played decisive role in creating radiation-resistant 

materials and cannot predict strain rates at high irradiation doses.  The main reason for this is the 

common assumption that, regardless of the incident particle mass and energy, the primary 

damage consists of single vacancies and self-interstitial atoms (SIAs), both diffusing three-

dimensionally.  So, the models ignore the distinguishing features of the damage production in 

displacement cascades during fast-particle, e.g. neutron, irradiation; namely, the intra-cascade 

clustering of vacancies and SIAs, and one-dimensional diffusion of SIA clusters.  Over the last 

about twenty years, the Production Bias Model (PBM) has been developed, which accounts for 

these features and explains many observations in cubic crystals.  The cascades in hcp crystals are 

found to be similar to those in cubic crystals; hence one can expect that the PBM will provide a 

realistic framework for the hcp metals as well.  It is shown in this paper that it reproduces all the 

growth stages observed in annealed materials under neutron irradiation, such as the high strain 

rate at low, strain saturation at intermediate and breakaway growth at relatively high doses.  It 

accounts for the striking observations of negative strains in prismatic directions and co-existence 

of vacancy- and interstitial-type prismatic loops, which have never been explained before.  It 

reveals the role of cold work in the radiation growth behavior and the reasons for the alignment 

of basal vacancy-type loops along the basal planes.  The critical parameters determining the 

high-dose behavior are revealed and the maximum growth rate is estimated.  
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1. Introduction 

 

The radiation growth (RG) of Zr-based materials is one of the main concerns for the safe 

operation of thermal nuclear reactors, such as PWA and BWA.  Experiments have demonstrated 

that deformation of these alloys at temperatures below ~300ºC is driven by the evolution of 

dislocation structure, which includes nucleation and growth of dislocation loops on both the 

prismatic and basal planes.  The growth strain in c direction is always negative, and the basal-

plane loops are always of the vacancy type.  The strains in prismatic directions are positive in the 

majority of cases, but may also be negative.  Another striking observation is that the prismatic 

loops of both vacancy and interstitial type may be formed at the same time. 

 

It is commonly accepted that the RG occurs due to asymmetry of the capture efficiencies of a 

and c dislocations and dislocation loops for single vacancy and interstitial atoms.  However, the 

conventional concept of dislocation bias suggests that, in this case, the strains must have opposite 

signs to those generally observed, i.e. positive/expansion in c and negative /contraction in a 

directions. This is because the Burgers vector of c dislocations is larger than that of a 

dislocations, which creates larger bias of c dislocations to self-interstitial atoms (SIAs).  Several 

models have been proposed to resolve this contradiction since the first model by Buckley [1] ~50 

years ago (see, e.g. [2] for a review), all based on the dislocation bias approach, but none has 

resolved the issue. 

 

A qualitatively new step in understanding the RG phenomenon was made by Woo and Gösele [3, 

4] by introducing anisotropic diffusion of SIAs on the hcp lattice. In the diffusion anisotropy 

difference (DAD) model [4], it was suggested that the vacancy diffusion is isotropic, whereas the 

SIAs migrate preferentially along the basal planes.  This allowed explaining the contraction of c 

axes and the crucial role of c loops in developing breakaway stage in annealed Zr crystals.  

 

Nevertheless, the DAD model does not describe correctly the RG in neutron-irradiated materials.  

This is because it assumes that the primary damage consists of point defects, i.e. single vacancies 

and SIAs, only.  Experiments (see e.g. [5]) and molecular dynamics (MD) simulations (see, e.g. a 

recent review [6]) have shown that under neutron irradiation a large, ~20-50%, fraction of the 

defects form clusters.  The SIA clusters migrate one-dimensionally (1-D), which results in the 

mixture of the second (for the point defects) and third (for the SIA clusters) order reaction 

kinetics in neutron-irradiated solids, rather than just second order, as in the DAD model.  Holt 

and Woo [7] generalized the DAD model by accounting for the cascade production of SIA 

clusters, but assumed the clusters to be immobile, which was wrong.  In fact, the MD simulations 

show that in all crystals including Zr [6,8,9] the SIA clusters are highly mobile, diffusing 1-D 

along close-packed directions.  The authors of [7] made another assumption that “…the higher 

reaction cross section with the primary clusters of the a-dislocations than of c-component 

dislocations, due to the higher mobility, by glide, of the former”, which is unphysical, since there 

is no reason for dislocation glide without external stress.  In the calculations presented in [7] the 

DAD bias factor was taken to be equal to 200%, which requires high anisotropy of single SIA 

diffusion,
2

a c/ 10D D  , which is not supported by ab initio calculations [10,11].  

 

One more paper devoted to RG in Zr was published by Christien and Barbu [8], which, however, 

did not provide any new insight into the RG.  The description of the breakaway stage in [8] is the 
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same as in the DAD model.  The only innovation is the assumption that the RG strain at low 

doses is due to accumulation of single vacancies.  The vacancy concentration required to 

reproduce observations is ~10
-4

, i.e. close to the thermal-equilibrium value at the melting 

temperature, and is, thus, unrealistic.  In addition, the mutual recombination of point defects at 

such a vacancy concentration would suppress the damage accumulation, so that the breakaway 

stage would never take place.  Also, single vacancies has to contribute to strains in c as well as a  

directions, while the assumption “that vacancy relaxation is anisotropic and is fully oriented 

along the c-axis” with the reference to papers published in nineteen eighties must be erroneous.  

 

The negative a strain and coexistence of vacancy- and interstitial-type prismatic loops are the most 

intriguing parts of the RG phenomenon.  Since the c strain is always negative, the negative a strain 

violates the basic property of the growth phenomenon: the volume conservation.  The coexistence 

of the loops violates the well-known loop property: vacancy- and interstitial-type loops of large 

enough size have almost the same efficiencies for absorption of point defects, hence, cannot grow at 

the same time.  This is the reason why their coexistence is never observed in cubic crystals.  One 

may conclude that the negative a strains and coexistence of vacancy and interstitial a loops are 

fundamental features, specific to hcp crystals. 

 

There were several publications devoted to explaining the coexistence of vacancy and interstitial 

prismatic loops (see, e.g. [11-13]), all, however, unsuccessful.  The main reason was that the models 

considered Frenkel pairs only, thus ignored the true nature of the primary damage in cascades.  In 

addition, the models [11-13] assumed that both vacancies and SIAs execute 3-D random walk, thus 

ignored the DAD.  Note also that the assumption in [13] that the vacancy dilatation volume is larger 

than that of SIAs, needed to explain the coexistence, is not supported by ab initio calculations (see, 

e.g. [14]). 

 

The current status of the theory may be summarized by the following citations from the two 

recent reviews: “... reliable mechanistic models to predict the deformation of even a pure Zr 

single crystal are not known … We therefore still rely on a phenomenological approach” [15], 

and “… understanding of the basic creep mechanisms in anisotropic materials like zirconium 

alloys is still not strong enough to be truly predictive… Today, most models are empirical in 

nature …” [16]. 

 

The situation described is similar to what it was in the area of void swelling in the bcc- and fcc 

metals ~20 years ago, the time when the research directions of RG in hcp crystals and void 

swelling in cubic crystals deviated from each other.  Since then, the theory of void swelling has 

made significant progress in accounting for observations and getting consistent with the 

experiment and modeling results.  The main successes of a new model, the Production Bias 

Model (PBM), came from including the cascade-production and 1-D migration of the SIA 

clusters.  The PBM explains many striking observations, e.g. the recoil-energy effect, the grain 

boundary and grain size effects in void swelling, and the void lattice formation, which have been 

reviewed by Singh et al. [17] already more than a decade ago.  A recent review one can find in 

[18]. 

 

The displacement cascades and properties of the SIA clusters in hcp Zr are found to be similar to 

those in cubic materials [19-21].  In addition, the alignment of vacancy loops (see, e.g. [22] and 
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voids [23,24] along the basal planes observed in irradiated hcp crystals is similar to void ordering 

in cubic metals, hence the PBM may provide a realistic framework for the damage accumulation in 

the hcp metals, as well.  The aim of the present work is to develop such a model for the RG in Zr.  

 

The paper is organized as follows.  In Section 2, the problem is characterized in detail.  In 

Section 3, the model assumptions are listed and the rate equations are formulated.  In Section 4, 

the model predictions are described.  Estimates of the maximum strain rate are made in Section 

5. Applications of the model for calculations of dose dependence of RG strain are presented in 

Section 6. A summary is given in Section 7.  

 

2. Problem characterization 

 

In annealed Zr crystals, the RG is characterized by expansion along a axes and contraction along 

c axis.  A typical strain behavior consists of three distinct stages (see, e.g. [2]).  Stage I exhibits a 

high strain rate and lasts for ~0.1-1.0 dpa (displacements per atom, NRT standard [25]).  Stage II 

demonstrates a very low strain rate, often interpreted as strain saturation, and proceeds up to ~3 

dpa.  At higher doses, during the stage III, usually referred to as the breakaway growth stage, the 

strain rates increase with increasing dose and reach values as high as ~10
-3

dpa
-1

.  The dose 

dependence of these rates is debated.  The transmission electron microscopy (TEM) exanimation 

of irradiated samples revealed formation of interstitial-type prismatic loops with the 

 1/ 3 1120 
 
Burgers vectors during stages I and II, and vacancy-type c loops during stage III.  

 

In cold-worked materials the strain rates are relatively high from the very beginning and no 

strain saturation occurs (see, e.g. Fig. 6 in [26]).  In some cases, both a and c strains have been 

found to be negative.  Moreover, the vacancy- and interstitial-type prismatic loops of similar 

densities and sizes may coexist.  To our knowledge, these two observations: the negative a 

strains and coexistence of the vacancy- and interstitial-type prismatic loops have never been 

explained.  Generally, no theory has been published, which explains self-consistently all the 

observations. 

 

The model presented here gives a self-consistent explanation of the RG phenomenon in Zr single 

crystals and provides a framework capable of describing all the observations quantitatively. 

 

3. New model 

 

3.1. Basic framework 

 

The model proposed here is a generalization of the PBM developed for cubic crystals to the hcp 

crystals.  The framework for the model, preliminary version of which has been formulated by 

Golubov et al. in [27], is as follows: 

 

 Initial microstructure consists of prismatic and basal edge dislocations. 

 The primary radiation damage consists of point defects and SIA clusters.  

 Single vacancies and SIAs migrate 3-D. 

 The SIA clusters migrate 1-D along 1120   close-packed directions. 
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 Interactions of SIA clusters with c and a dislocations with the Burgers vectors non-

parallel to that of the clusters are neglected. 

 The difference in absorption properties of dislocation loops and edge dislocations for 

mobile point defects and SIA clusters is neglected. 

 The dislocation bias due to interaction of point defects with dislocations/loops and 

possible anisotropy of single point defects migration is neglected. 

 

The above framework is essentially the PBM [18] adjusted to the hexagonal symmetry of the crystal 

lattice.  The only new assumption is neglecting the interactions of SIA clusters with c and a 

dislocations with the Burgers vectors non-parallel to that of the cluster.  This originates from the 

dislocation nature of the interactions, which is qualitatively different from those involving point 

defects.  The interactions depend on mutual orientation of the cluster and dislocation Burgers 

vectors, which are illustrated in Figs. 1-3 for the interaction energies (see Appendix for 

calculations).  As can be seen from the figures, for basal and prismatic dislocations with non-

parallel Burgers vectors, the interactions are significantly weaker than for a dislocations with 

parallel Burgers vectors; while the corresponding trapping zones, associated with the cross-sections 

of absorption reactions, are significantly smaller.  Note that the assumption in question does not 

affect the results for isotropic distribution of prismatic dislocation Burgers vectors.  This is due to 

symmetry of the cluster production and partitioning in this case: 1/3 part of the SIA clusters are 

absorbed by a dislocations of each particular Burgers vector for any interaction scenario.  It does 

affect the results for non-isotropic distribution of prismatic dislocation Burgers vectors, but the 

effect must be small for the above-mentioned reason.  Accounting for the ignored interactions is 

straightforward but would lead to a loss of clarity due to a more complicated diffusion-reaction 

scenario.  Note finally that screw dislocations are out of scope of the present model. 

 

3.2. Main equations 

 

The equations for concentrations of mobile defects, single vacancies (subscript v), single SIAs (i) 

and SIA clusters (cl) in the framework of the model are as follows  

 v
NRT r v v 1 2 3(1 ) , ( a ,a ,a ,c)j

j

dC
G D C j

dt
      (1) 

 
gi

NRT r i i i 1 2 3(1 )(1 ) , ( a ,a ,a ,c)j

j

dC
G DC j

dt
        (2) 

 

g
2cl r i

NRT cl cl 1 2 3

(1 )
, ( a ,a ,a ),

3

m
m

m

dC
G D C k m

dt n

 
    (3) 

where NRTG  is the NRT standard value for the defect production rate; r  is the fraction of defects 

recombining during the cooling-down phase of a cascade; 
g

i  
and n are the fraction of SIAs 

survived intra-cascade recombination in the form of clusters and the mean number of SIAs in a 

cluster, respectively; v,i cl and D D
 
are the diffusion coefficients of point defects and SIA clusters, 

respectively;  j  
are the densities of prismatic dislocations with the Burgers vectors along 

, ,
1 2 3

a a a  , and basal dislocations with the Burgers vector along c  direction; 
2

mk  is the sink strength 

for the SIA clusters migrating along m direction.  The factor 1/3 on the right-hand side (RHS) of Eq. 

(3) accounts for the equality of SIA cluster production rates in 1
a , 2

a
 
and 3

a  directions.  The first 
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terms on the RHSs of Eqs. (1)-(3) stand for the production of defects, while the second terms for 

their loss at dislocations.  The sink strength 
2

mk  in Eq. (3) is given by (see, e.g. in [18]) 

 
2 2 2

2 0
1 2 3, ( a ,a ,a ),

2

m
m

r
k m

 
   (4) 

where 0r  is the cluster capture radius of prismatic dislocations with the Burgers vectors parallel to 

that of  SIA clusters. 

 

Note that the 3-D migrating point defects are described by the second-order reaction kinetics, so 

that the sink strengths in Eqs. (1)-(2) are proportional to the total dislocation density, j

j

  .  

In contrast, the 1-D migrating SIA clusters are described by the third-order reaction kinetics, 

where the sink strength, 
2

mk , is proportional to the square of dislocation density.  In addition, the 

sink strength for SIA clusters with a given Burgers vector direction, either 1
a , 2

a
 
or 3

a , depends 

on the density of dislocations of the same Burgers vector only.   As a result, if the density of 1
a

dislocations is, e.g., larger than that of 2
a

 
and 3

a , the absorption rate of 1
a  dislocations for point 

defects will be larger.  In contrast, the absorption rates of 1
a , 2

a
 
and 3

a dislocations for SIA 

clusters remain the same for any distribution of prismatic dislocations, namely 1/3 of the clusters 

generated is captured by each type of prismatic dislocations.  This is the key difference between 3-D 

(or preferentially 2-D) diffusing point defects and 1-D diffusing SIA clusters.  All the predictions of 

the model described below follow from this difference. 

 

The steady-state defect fluxes are found by equating the time derivatives in Eqs. (1)-(3) to zero: 

 
 NRT r

v v

1
,

G
D C






  (5) 

 
  g

NRT r i

i i

1 1
,

G
DC

 



 
  (6) 

 
  g

NRT r i

cl cl 1 2 32 2 2

0

12
, a ,a ,a ,

3

m

m

G
D C m

n r

 

 


   (7) 

where jj
   is the total dislocation density.  Note that the cluster flux to c dislocations is 

equal to zero. 

 

The dislocation climb velocities, Vj, are defined through the net fluxes of vacancies, single SIAs and 

SIA clusters to dislocations as  

 

 

2

cl cl v v i i
1 2 3

v v i i

, a ,a ,a ,

1
, c,

j

j

j j j

j

j

D C kn D C D C
j

b b
V

D C D C j
b



 
 


 
  



 (8) 
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where jb  is the Burgers vector of j-type dislocations.  The strain rate in a particular prismatic 

direction a , /d d 
a

, due to the climb of prismatic dislocations is calculated by summing 

contributions from dislocations with different Burgers vectors 1 2 3( , , )m  a a a : 

 

 

2

2 2

cl cl v v i i

cos

cos ,

m m m m

m

m

m m m

m

d
V b

dt

nD C k D C D C


 

 

 

    





a

 (9) 

where m  is the angle between the vectors a  and mb .  The strain rate in c direction is given by  

  v v i i .c c c

d
V b D C DC

dt


     c

c  (10) 

By substituting Eqs. (5)-(7) into Eqs. (9) and (10), one finally obtains 

 
21

cos ,
3

m
m

m

d

d

 
 

 

 
  

 
a  (11) 

 ,
d

d

 


 
 c c  (12) 

where NRTG t   is the irradiation dose and 

 
g

r i  (1 )     (13) 

is the fraction of SIAs at the end of the cooling-down phase of cascades in the clustered form.  

Note that  =0 for non-cascade conditions, e.g. for irradiation with ~1 MeV electrons, since the 

model neglects dislocation bias for point defects. 

  

In a Cartesian coordinate system where x axis is along 1a , y along 2 3a a , and z along c , Eqs. 

(11) and (12) take the following form  

 x x1
,

2

d

d

 


 

 
  

 
 (14) 

 y y1
,

2

d

d

 


 

 
  

 
 (15) 

 z z ,
d

d

 


 
   (16) 

where 

    2

x cos / 3 ,      
1 2 3a a a  (17) 

    2

y cos / 6 ,    
2 3a a  (18) 

 z , 
c  (19) 

 x y z .             
1 2 3a a a c  (20) 

Note that Eqs. (14)-(16) can be presented by a diagonal matrix equation as  

  ,

,3 ,

1
1 , ( , 1,2,3) ,

2

i j i
i i j

d
i j

d

 
  

 

 
    

 
 (21) 
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where the indexes 1, 2 and 3 stand for x, y and z , respectively, and ,i j is the Kronecker delta.  The 

equations above satisfy the volume conservation 

 
yx z 0 ,

dd d

d d d

 

  
    (22) 

as it has to be in the absence of swelling. 

 

Eqs. (14)-(16) describe the RG rates as a function of the effective densities of prismatic and basal 

edge dislocations (including loops), x y z, ,   , and the parameter  , which is the fraction of 

SIAs produced in cascades in the form of 1-D migrating SIA clusters. 

 

4. Model predictions 

 

As can be seen from Eqs. (14)-(16), the strain rates are determined by the fractions of a and c 

dislocation densities, x /  , y / 
 
and z /  , rather than by their absolute values.  This 

explains similar strain rates observed in annealed at low irradiation doses and cold-worked 

materials.  In accordance with Eq. (16) the strain rate in c direction is always negative.  In contrast, 

the strain rates in a directions may be both positive or negative, depending on the distribution of the 

prismatic dislocation Burgers vectors. The strain rates in prismatic directions are positive for 

isotropic distribution of prismatic dislocations, i.e. when x y  .  In contrast, the strain rate in x 

direction is negative when x / 1/ 2    (see Eqs. (14)), i.e. when the distribution of a dislocation 

Burgers vectors is non-isotropic: the inequality is only valid for x y/ 1    at non-zero c 

dislocation density.  The a strain rates as a function of x y/   are shown in Fig. 4 for the case 

z x/ 1/ 5   .  As can be seen, the prismatic strain rates, x y/ , /d d d d    , are positive and equal 

to each other for isotropic distribution, when x y/ 1   , whereas the x strain rate is equal to zero at 

x y/ 1.25    and is negative, of the same order as for c direction, at x y/ 2   .  Thus, the a 

strain rates are sensitive even to small deviations from isotropic distribution of a dislocation Burgers 

vectors. The analysis suggests that the conventional description of the RG in Zr as an expansion 

along a directions and contraction along c direction should be changed to an expansion along at 

least one of a directions and contraction along c direction.  Note also that it follows from Fig. 4 

that the absolute values of a strain rates increase strongly with increasing x y/   ratio, while the c 

strain depends only weakly on it.  More details on the role of non-uniform distribution of 

prismatic dislocations on RG are given in Section 4.5. 

 

The upper-bounds of the strain rates are fully determined by the parameter  , the fraction of 

SIAs produced in cascades in the clustered form, as described further below in the Section 5. 

 

4.1. Stage I: Initial growth in pre-annealed materials 

 

If the initial densities of a dislocations are low, of the order of 10
12

 m
-2

 or less, and the distribution 

of their Burges vectors is isotropic: 0 0

x y  , then 0 0 0

x z x2 2      , since the density of c 
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dislocation is normally 5-10 times smaller than that of prismatic dislocations.  In this case, it follows 

from Eqs. (14)-(16) that the initial strain rates are  

 
0 0

yx x z

0 0 0

x z x

1
,

2 2 4

dd

d d

   


    

 
    

 
 (23) 

 z z

0

x

.
2

d

d

  

 
   (24) 

For 
0 0

z x/ 0.2   , the strain rate in prismatic direction is equal to / 20 .  To make numerical 

estimates of the parameter   for Zr, one needs values for r  
and i , which are not available due 

to the lack of systematic studies of cascades in Zr.  Since the cascade damage is not drastically 

sensitive to the type of the lattice, in the following we use the data for neutron-irradiated fcc copper: 

r =0.9 and 
g

i =0.2 [28], for which  =2×10
-2

.  With this value, the strain rates in a directions are 

equal to 10
-3

 dpa
-1

, which is in a good agreement with observations.  Indeed, at this strain rate, the 

saturation strain, which is found to be of the order 10
-4

 (see, e.g. Fig 3b in [29]), is reached at a dose 

of ~0.1 dpa, which is close to experiments. 

 

4.2. Stage II: Strain saturation in pre-annealed materials 

 

To understand the reasons for the strain saturation, one needs to take into account that the total 

density of a dislocations is increased with increasing irradiation dose, due to nucleation and 

growth of a-dislocation loops: 

 0

x,y x,y x,y x,y2 ,R N     (25)  

where x,yR  and x,yN  are the radius and number density of corresponding loops.  Assuming the 

distribution of a-dislocation loops to be isotropic: x y x y,R R N N  , one can find from Eqs. (23) 

and (24) that the strain rates decrease strongly with the development of loop population.  When

0

x,y x,y x,y2 R N  , 

 
0

yx z

x x

,
8

dd

d d R N

  

  
   (26) 

 
0

z z

x x

.
4

d

d R N

  

 
   (27) 

For values typically observed at the saturation stage: x,yR = 5 nm and
 

22 3

x,y 10 mN  , the sink 

strength of dislocation loops is equal to 3×10
14

 m
-2

.  Thus, for 0

z  10
12

 m
-2

, the strain rates 

given by Eqs. (26) and (27) drop down by about 300 times, as compared to those in the beginning 

of irradiation.  With such low strain rates, this stage can be considered as strain saturation, which 

continues up to ~3 dpa, until the c loops start nucleating.  In other words, the saturation stage 

corresponds to a very small but nonzero strain rate.  

 

4.3. Stage III: Breakaway growth 
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The nucleation and growth of c loops leads to an increase of the total sink strength of c 

dislocations: 

 0

z z z z2 ,R N     (28) 

hence to an increase of the z / x   ratio, hence the strain rates.  In the case when 0

z z z2 R N  , 

the strain rates start to increase as 

 
0

yx z z z z z

x x x x

2
,

8 4

dd R N R N

d d R N R N

    

  


    (29) 

 
0

z z z z z

x x x x

2
.

4 2

zd R N R N

d R N R N

    

 


     (30) 

Thus, the breakaway strain rates are determined by the ratio z z x x/R N R N , which increases with 

increasing density and size of c loops, in agreement with observations (see, e.g. Figs. 4 in [29]). 

 

4.4. The effect of cold work 

 

The initial dislocation density in cold-worked materials is high, so that the nucleation and growth 

of a loops may not affect the strain rates as strongly as in annealed materials.  In the case when 
0

x,y
 
are significantly smaller than ~10

14
 m

-2
 , the saturation stage may still be identified but less 

pronounced, because an increase of  the total sink strength of a dislocations due to nucleation and 

growth of a loops is moderate.  At higher dislocation densities, 0 14 2

x,y 10 m  , an increase of  the 

total sink strength of a dislocations due to a loops becomes so small that saturation of strain does 

not take place: the initial high strain rate will be maintained, in agreement with observations [29]. 

 

4.5. Negative a strains and coexistence of vacancy- and interstitial-type a loops 

 

The models proposed so far all based on the Frenkel-pair production, hence, second-order reaction 

kinetics, and assume isotropic distributions of a-dislocation Burgers vectors.  In such models, the 

driving force for radiation growth is the difference in the efficiencies of vacancy and SIA absorption 

by a and c dislocations.  The net defect fluxes to a and c dislocations depend on their total densities 

and independent on the distribution of a-dislocation (and a-loop) Burgers vectors.  So, if a Frenkel-

pair-based model was generalized to account for anisotropy of the distribution, it would give 

different but nevertheless positive values of a strains in different prismatic directions.  If an a strain 

were negative in such a model, it would be negative for all a directions; then negative c strain 

would violate the volume conservation.  In our view, the basic assumption in these models, that the 

Frenkel pairs are only produced by irradiation, prevented understanding the origin of the negative a 

strain phenomenon.  For the same reason, the coexistence of vacancy- and interstitial-type prismatic 

loops cannot be explained by such models.  

 

The model proposed here predicts negative a strain for non-isotropic distribution of a-type edge 

dislocations.  To explain the mechanism, let us consider a limiting case, when the density of a 

dislocations with the Burgers vectors along one of the prismatic directions, say x, is much larger 

than the others: x y  , and the density of c dislocations is much smaller than a dislocations, 

,z x y   .  In this case, the partitioning of vacancy- and interstitial-type defects is as follows.  
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The SIA clusters are absorbed equally by both x and y dislocations; whereas the majority of point 

defects by x dislocations since x y  .  Because of significant clustering of SIAs, the 

production rate of single vacancies is higher than single SIAs.  As a result, the point defects 

produce an excess vacancy flux to all dislocations, with the vacancy flux to x dislocations larger 

than to y dislocations.  Due to equality of SIA cluster absorption by x and y dislocations, the net 

vacancy flux is positive to x and negative to y dislocations, resulting in positive and negative 

strains in y and x directions, respectively. 

 

The coexistence of vacancy- and interstitial-type a loops occurs for the same reason as the 

negative a strain.  This is because the loop absorption properties are similar to those of 

dislocations, and, as can be seen from Eqs. (25) and (28), the loop nucleation and growth just 

increase the effective dislocation density.  The net vacancy or SIA flux to dislocations, including 

loops, is equivalent to existence of a super-saturation of corresponding defects that causes 

nucleation and growth of the corresponding type loops.  In the example considered above, the net 

vacancy flux to x dislocations causes nucleation and growth of x vacancy loops, while the net 

SIA flux to y dislocations causes nucleation and growth of y interstitial loops.  Thus, the vacancy-

type x and interstitial-type y loops coexist because they have non-parallel Burgers vectors.  Their 

contributions to strains are not additive for the same reason.  This explains why the contraction in c 

direction takes place even when the size and density of vacancy loops are similar to or even 

larger than those of interstitial loops: the negative strains in one of a directions and c direction 

are compensated by corresponding positive strain in another a direction. 

  

Note that, due to hexagonal symmetry, different orientations of the vacancy and interstitial loops 

should not be obvious from an ordinary examination of the microstructure, since TEM 

observation of arbitrarily-orientated sample would show both vacancy- and interstitial-type loops 

at the same time.  These may be revealed for special orientations of the sample; if, e.g., vacancy 

loop Burgers vectors are all parallel to a1 direction, they will be invisible for orientations 

perpendicular to a1. 

 

It should be emphasized that the explanation of the negative a strain proposed is based on non-

isotropic distribution of edge a dislocations, the significance of which has never been 

emphasized before, and which has never been subjected to measurements.  For example, in the 

paper by Zee et al. [26], where the negative a strain was observed in a single Zr crystal pre-

strained along an axis close to one of a directions, the total density of dislocations was reported 

only.  Moreover, the fractions of edge and screw dislocations are unknown.  So, a comparison of 

the model with the experiment is not possible.  

 

The dislocation structure in deformed Zr crystals has proved to be complicated (see, e.g. [30]), 

and the information needed may hardly be predicted.  For example, estimations of the Schmidt 

factors for experimental conditions in [26] show that most favorable slip planes for prismatic 

dislocations will be in the directions non-parallel to the loading direction.  This does not favor 

the production of dislocations with the Burgers vector parallel to the loading direction required in 

the present model.  However, such an analysis does not take into account evolution of screw 

dislocation structure during tensile straining and their effect on the distribution of edge 

dislocations.  In addition, the dislocation density after deformation measured in [26] is as low as 
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2x10
12

 m
-2

, which is of the same order as in a non-deformed crystal.   This makes it difficult to 

speculate on the real structure of edge a dislocations after deformation. 

 

4.6. Alignment of vacancy-type defects 

 

A planar alignment of the vacancy-type loops and voids in c planes observed in neutron-

irradiated hcp metals [22] is analogous to void ordering in cubic metals and must have the same 

origin, which is due to interaction of voids and loops with the SIA clusters diffusing 1-D along 

close-packed crystallographic directions (see refs. in [17]).  At a high temperature corresponding 

to the void-swelling regime, the void alignment in hcp metals must be driven by the SIA cluster-

void interactions.  At low temperature, the alignment of c-type vacancy loops must also be due to 

interaction with the SIA clusters, but the exact ordering mechanism is not yet clear.  There are, at 

least, two possibilities: (a) via complete annihilation of unaligned loops, or (b) by the loop 

repulsion by moving SIA clusters.  Modeling by MD may clarify the issue. 

 

Note that the planar alignment of the vacancy-type defects was also found in Zr under 1 MeV 

electron irradiation [24], i.e. in an absence of displacement cascades.  It seems reasonable to 

associate it with the preferential migration of single SIAs in the basal plane, as in the DAD 

model.  However, anisotropic vacancy diffusion revealed in ab initio calculations [14] 

jeopardizes this explanation.  The 1-D diffusion of small, containing few SIAs, clusters formed 

kinetically may be another possibility.  Detailed analysis of this case, however, is out of scope of 

the present study.  Multi-scale simulations are required to clarify the issue. 

 

5. Estimates of strain rates 
 

5.1. Absolute maximum 

 

It follows from Eqs. (14)-(16) that one of the limiting cases for the strain rates may be achieved 

when the density of c dislocations is very high: z / 1    and 
x,y / 0   . In this case 

 
yx

max max

,
2

dd

d d

 

 

  
   

   
 (31) 

 z

max

.
d

d






 
  

 
 (32) 

High rates may also be realized in the opposite case, when the density of c dislocations is relatively 

small: z x y,   , but x y and    are very different, e.g. x y  .  In this case 

 
yx

max max

,
2

dd

d d

 

 

  
    

   
 (33) 

 z 0 .
d

d





 
 

 
 (34) 

As can be seen from Eqs. (31)-(34), in both cases the a-strain rates are fully determined by the 

properties of cascades.  Taking the value of   equal to 
22 10 (see Section 4.1 for explanation), 

one may estimate the a-strain rate to be of the order of 10
-2

 dpa
-1

 (1%/dpa), which is the same as the 



13 

 

maximum swelling rate in fcc metals and austenitic stainless steels.  Such a coincidence could not 

be accidental, but must reflect similarity of the cascades in metallic material, particularly with fcc 

and hcp structures, and mechanisms operating under cascade damage conditions. 

 

Note, however, that the first case considered above is not realistic in Zr-based materials, because the 

density of c dislocations is normally significantly smaller than that of a dislocations.  The second 

case is more realistic but, to our knowledge, such a high strain rate has not been reported yet. 

 

5.2. Isotropic distribution of dislocations 

 

For isotropic distribution of dislocation Burgers vectors:
 x y z    , Eqs. (14)-(16) give 

 
yx ,

6

dd

d d

 

 

  
   

   
 (35) 

 z .
3

d

d

 



 
  

 
 (36) 

The strain rates are three times smaller than the maximum values given by Eqs. (31) and (32), but 

still about three times higher than ~10
-3

 dpa
-1

 observed.  The realistic strain rates are predicted by 

the model when the difference between densities of c and a dislocations is taken into consideration: 

z x y,   , which, according to Eq. (16) , reduces the c and a strains.  For example, in the case 

when  z x y x/ 5 and y       , which is usual in Zr materials, the a-strain rates are ~10
-3

 

dpa
-1

 which fit well the observations. 

 

6. Dose dependence of growth strains 

 

The analysis presented in the previous two sections is based on Eqs. (14) and (16) for the 

instantaneous strain rates in a crystal with given dislocation structure.  With increasing dose, the 

total dislocation densities change due to nucleation and growth of dislocation loops: 

 0

x,y,z x,y,z x,y,z x,y,z( ) 2 ( ) ( ) ,R N        (37) 

where 0
 
are the initial dislocation densities, and and R N

 
are the radii and densities of a and c 

loops.  To calculate the dose dependence of strains, one needs to know the dose dependences of the 

loop radii and densities.   

 

The loop radii are described by equations similar to Eqs. (8) for dislocation climb velocities.  For 

loops with particular Burgers vectors: 

 

 

a 2

cl cl v v i i
1 2 3

c

v v i i

c

, a ,a ,a ,

1
.

j

j j

j j j

dR D C kn D C D C
j

dt b b

dR
D C D C

dt b




  

 

 (38) 

The equations for the effective radiuses of a loops in the Cartesian coordinate system, x,y( )R  , can 

be obtained from Eq. (38) by using equations similar to Eqs. (17) and (18), which connect the 

effective dislocation densities with those in particular crystallographic directions.   
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The situation with the nucleation of loops is more difficult because not much is known.  Available 

experimental data can be summarized as follows: (a) a loops nucleate from the very beginning of 

irradiation and reach the density of ~10
22 

m
-3

 after several dpa, (b) c loops start nucleating at a dose 

of ~3 dpa and reach an order of magnitude smaller density, ~10 
21 

m
-3

 . The nucleation mechanisms 

of a and c loops are out of scope of the present work.  In this paper, we use the loop nucleation 

scenario shown in Fig. 5, which has been derived from observations (see the next section).  By 

using Eqs. (38), the dose dependence of the growth strain has been calculated by a computer code 

RIMD-ZR.V1 (Radiation-Induced Microstructure and Deformation of Zr, Version 1) developed 

by the authors (see details in [31]).  Selected calculations are presented below. 

 

6.1. Radiation growth in annealed materials 

 

As a first step, we fit the nucleation scenario (Fig. 6) to the experimental data from [29] for low-

dose neutron irradiation of annealed Zr crystals, using  = 22 10  and 10
12 

m
-2 

for the initial 

densities of a dislocations of all three prismatic directions, and two times smaller value for c 

dislocation.  The best-fit results together with the experimental data are presented in Fig. 6, and 

demonstrate excellent agreement.  Then, the calculations have been continued to larger doses, for 

which the results are shown on Fig. 7.  As can be seen, the calculations reproduce all the three 

stages observed: fast initial growth, strain saturation and the breakaway growth.  

 

6.2. Effect of cold work 

 

The effect of cold work has been investigated by changing the initial dislocation density by three 

orders of magnitude: from 
123 10  to 

153 10  m
-2

, with the description of the loop nucleation 

shown on Fig. 5.  The results are presented in Fig. 8.  As can be seen, an increase of dislocation 

density leads to a qualitative change in the strain behavior: now, a high strain rate ~10
-3

 dpa
-1

 is 

maintained from the very beginning of irradiation.  This is in a good agreement with experiments 

(see, e.g. [29]). 

 

6.3. RG at high doses 

 

The results shown in Figs. 7 and 8 have been obtained for relatively low doses, < 10 dpa, which 

allows comparing with observations available.  A more practically important issue is the dose 

dependence on the breakaway stage, at doses beyond existing databases.  An analytical study 

[31] predicts constant strain rates at high irradiation doses, determined by the number densities 

of a and c loops.  The calculations for up to 100 dpa are presented in Fig. 9.  As can be seen, the 

results reproduce analytical predictions, and demonstrate the sensitivity to the ratio of the a- and 

c-loop densities: the higher the ratio the smaller the strain rate, which is proportional to 

 
1/2

ic ia/  N N .  It follows from the model that the growth strain at high doses can be predicted 

from the microstructure at end of the loop nucleation period. 

 

6.4. Coexistence of vacancy and interstitial a loops  
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The calculation results presented above have been obtained for isotropic distribution of a-

dislocation Burgers vectors.  In this case, the RG exhibit usual behavior, i.e. expansion in a 

directions and contraction in c direction.  The results presented in Fig. 10 have been obtained for 

the case when the distribution of a dislocations is not isotropic, namely the density of 

dislocations with the Burgers vectors parallel to a1 is five times higher than those with the 

Burgers vectors along a2 and a3.  The nucleation of a loops is described using a commonly 

accepted scheme, where the vacancy loops are nucleated for positive and interstitial loops for 

negative net vacancy flux to the loop embryos.  As can be seen from the figure, the strain rate in 

x direction (parallel to a1) is negative, i.e. in the direction of the highest dislocation density, in 

accordance with the discussion in Section 4.5.  The negative a strain takes place until ~4 dpa, 

making distribution of a-dislocation Burgers vectors more isotropic, and the strain becomes 

positive.  The change of the negative a strain to positive with increasing dose has been observed 

[2], so that our calculations agree with experimental observations.  Finally, we note that negative 

a strains have to be quite common within certain dose range, because the probability of isotropic 

distribution of a-dislocation Burgers vectors in cold-worked samples is quite small. 

 

7. Summary 

 

A model of radiation growth of Zr single crystals under neutron irradiation has been developed, 

which takes into account the true nature of the primary damage in cascades of atomic 

displacements, and the diffusion properties of SIA clusters.  The model contains one parameter 

only, that is, the fraction of SIAs produced in cascades in the form of clusters, which has been 

estimated from MD results and experiments.  The model explains all the major observations in 

Zr including strain saturation, breakaway growth, the effect of cold work, negative a strain and 

coexistence of vacancy and interstitial prismatic loops.  

 

The main model predictions can be summarized as follows: 

 

 The strains in prismatic directions are positive for isotropic distribution of prismatic 

dislocation Burgers vectors. 

 The maximum strain rate in this case is estimated to be ~10
-3

 dpa
-1

, in accordance with 

experiment.  

 For the first time, the linear dose dependence of the growth strain in the breakaway stage 

is predicted at high doses.  The corresponding rate can be calculated from the 

microstructure at intermediate doses. 

 It has been shown for the first time that the anisotropy of distribution of prismatic 

dislocations is an important factor determining strain behavior. 

 Observations of negative a strain and co-existence of vacancy and interstitial prismatic 

loops are both explained for the first time.  It is shown that both these phenomena 

originate from anisotropy of prismatic dislocation Burgers vectors. 

 The absolute maximum of the strain rate is estimated to be ~10
-2

 dpa
-1

.  In particular, it 

may be realized at significant anisotropy of prismatic dislocation Burgers vectors and 

relatively small density of c dislocations.  

 

It should be mentioned that the absolute maximum growth strain rate predicted by the model 

is of the same order as the maximum swelling rate observed in cubic metals and predicted by 
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the PBM (see refs. in [18]).  This indicates that the mechanisms governing damage 

accumulation in cubic and hcp crystals are similar.  Thus, the PBM, developed initially for 

cubic metals, provides, in fact, general framework for the description of radiation effects in 

metallic materials. 
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Appendix  

 

The interaction between a dislocation loop and an edge dislocation depends strongly on their 

mutual orientation.  This was analyzed by Makin [32] using infinitesimal loop approximation in 

the framework of the isotropic elasticity theory.  The corresponding interaction energy can 

readily be obtained with the aid of Eqs. (1) in [32] for the components of the stress tensor, 
ij , as  

 
,

,ij i ji j
E A b n   (A1) 

where ib  is the component of the cluster Burgers vector on i direction and 
jAn  is the area of the 

loop resolved onto a plane perpendicular to the j direction.  The result is as follows. 

 

Consider a Cartesian coordinate system with x1, x2 and x3 axes and a straight edge dislocation 

with its line along x3 direction (line sense) and the Burgers vector along x1, and distinguish two 

cases.  The first case represents an a-type dislocation with the Burgers vector ba; the SIA cluster 

moves in the plane perpendicular to x3 direction, hence containing  x1 and x2 vectors and its 

Burgers vector is at an angle   to the dislocation Burgers vector and x1.  The interaction energy 

in this case is defined by the following equation: 

 

 
     2 2 2 2 2 2 2 20 a

a 2 1 2 1 1 2 2 1 22
2 2

1 2

3 cos 2 cos sin sin ,
E b n

E x x x x x x x x x
x x

          
 


(A2) 

where 0 / 2 (1 )E      ; 



  is the shear modulus,



   is the Poisson ratio, Ω is the atomic 

volume, and n is the number of SIAs in the loop, which enters via the relationship Ab n .  

 

When the Burgers vectors of an SIA cluster and an a dislocation are parallel to each other, Eq. 

(A2) is reduced to the following equation: 

  
 

 

2 2

2 1 2

a 0 a 2
2 2

1 2

3
0 .

x x x
E E b n

x x



  


       (A3) 

In this case, the Burgers vectors of an SIA cluster and an a dislocation are non-parallel, =π/3, 

Eq. (A2) is reduced to  

 

 
   2 2 2 20 a 2

a 1 2 1 2 1 22
2 2

1 2

3 3
3 .

3 4 2 2

E b n x
E x x x x x x

x x




   
         

      

    (A4) 

 

The second case corresponds to the c-type dislocation with the Burgers vector bc.  In this case, 

the SIA cluster moves in the plane perpendicular to x1 direction, hence containing x3 and x2 

vectors, and its Burgers vector is at an angle   to the dislocation line and x3.  The interaction 

energy in this case is given by 

 

 
   2 2 2 2 2 20 c

c 2 1 2 2 1 22
2 2

1 2

sin 2 cos .
E b n

E x x x x x x
x x

      
 


        (A5)  

In the case when cluster Burgers vector is perpendicular to that of the dislocation line, / 2  , 

Eq. (A5) is reduced to the following equation: 
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 2 2

2 1 2

c 0 c 2 2 2

1 2

.
2 ( )

x x x
E E b n

x x




 
  

 
   (A6) 

 

Eqs. (A3), (A4) and (A6) allow calculating the cluster-dislocation interaction energy, E, and 

corresponding trapping zones: areas with the binding energy (-E) higher than the thermal energy, 

kBT, where kB is the Boltzmann constant and T the absolute temperature.  Figs. 1 to 3 show the 

interaction energy between an edge dislocation and a 10-SIA cluster in Zr at 573K for three 

cases: (1) an a dislocation with the Burgers vector parallel to that of the cluster, (2) an a 

dislocation with the Burgers vector at 2π/3 angle to that of the cluster, and (3) a c dislocation 

with the Burgers vector perpendicular to that of the cluster.  Each figure shows three regions: the 

capture zone (grey) where TBE k  , the repulsion zone (dark) where  TBE k , and an 

intermediate region where 0E   (bright gray).  The calculations were performed with 



 = 66 

GPa, ν=0.34, Ω= 2.33x10
-29

 m
-3

, for which 
0E = 2.01 eV.  As can be seen from the figures, the 

cross-section of the capture zone (perpendicular to the cluster motion direction along its Burgers 

vector) in the first case (parallel Burgers vectors of the cluster and dislocation) is the largest, 

~250b.  The other two cases are characterized by significantly smaller the interaction cross-

sections and weaker interaction.  This is the reason for the simplifying assumption in the model, 

which ignores relatively weak interactions of the clusters and a dislocations with non-parallel 

Burgers vectors and c dislocations.  
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Figure captions 

 

Figure 1. Interaction energy between an a dislocation with the Burgers vector parallel to that of 

a 10-SIA cluster in Zr at 573K.  The dislocation line is at the coordinate origin and perpendicular 

to the (x1,x2) plane.  x1 is the distance from dislocation extra plane, along the dislocation Burgers 

vector (shown in the figure).  x2 is the distance from the dislocation line, along the direction 

perpendicular to the dislocation Burgers vector.  The cluster Burgers vector is shown in the 

figure as bcl. 

 

Figure 2. Same as in Fig. 1 but for a dislocation with the Burgers vector at 2π/3 angle to that of 

the cluster. 

 

Figure 3. Same as in Fig. 1 but for c dislocation with the Burgers vector perpendicular to that of 

the cluster. 

 

Figure 4.  Effect of non-uniform distribution of a dislocation Burgers vectors on strain rates in 

the case when density of c dislocations is five times smaller than a dislocations.  Note that x 

strain becomes negative at / 1.25x y    and reaches the strain rate of c dislocations at 

/ 2.5x y   . 

 

Figure 5. Vacancy and interstitial loop nucleation scenario. 

 

Figure 6. Best-fit calculations and experimental measurements from [29]. 

 

Figure 7. Growth strain in a wider dose range. 

 

Figure 8. Effect of cold work on growth strain behavior. 

 

Figure 9. Growth strain behavior at very high doses. 

 

Figure 10. Growth strain behavior for anisotropic distribution of a-dislocation Burgers vectors.  
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