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ABSTRACT

Efforts of many scientists for more than a half of a century have resulted in substantial
understanding of the response of Zr-based materials to irradiation. However, the models of
radiation growth proposed to date have not played decisive role in creating radiation-resistant
materials and cannot predict strain rates at high irradiation doses. The main reason for this is the
common assumption that, regardless of the incident particle mass and energy, the primary
damage consists of single vacancies and self-interstitial atoms (SIAs), both diffusing three-
dimensionally. So, the models ignore the distinguishing features of the damage production in
displacement cascades during fast-particle, e.g. neutron, irradiation; namely, the intra-cascade
clustering of vacancies and SIAs, and one-dimensional diffusion of SIA clusters. Over the last
about twenty years, the Production Bias Model (PBM) has been developed, which accounts for
these features and explains many observations in cubic crystals. The cascades in hcp crystals are
found to be similar to those in cubic crystals; hence one can expect that the PBM will provide a
realistic framework for the hcp metals as well. 1t is shown in this paper that it reproduces all the
growth stages observed in annealed materials under neutron irradiation, such as the high strain
rate at low, strain saturation at intermediate and breakaway growth at relatively high doses. It
accounts for the striking observations of negative strains in prismatic directions and co-existence
of vacancy- and interstitial-type prismatic loops, which have never been explained before. It
reveals the role of cold work in the radiation growth behavior and the reasons for the alignment
of basal vacancy-type loops along the basal planes. The critical parameters determining the
high-dose behavior are revealed and the maximum growth rate is estimated.
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1. Introduction

The radiation growth (RG) of Zr-based materials is one of the main concerns for the safe
operation of thermal nuclear reactors, such as PWA and BWA. Experiments have demonstrated
that deformation of these alloys at temperatures below ~300°C is driven by the evolution of
dislocation structure, which includes nucleation and growth of dislocation loops on both the
prismatic and basal planes. The growth strain in ¢ direction is always negative, and the basal-
plane loops are always of the vacancy type. The strains in prismatic directions are positive in the
majority of cases, but may also be negative. Another striking observation is that the prismatic
loops of both vacancy and interstitial type may be formed at the same time.

It is commonly accepted that the RG occurs due to asymmetry of the capture efficiencies of a
and c dislocations and dislocation loops for single vacancy and interstitial atoms. However, the
conventional concept of dislocation bias suggests that, in this case, the strains must have opposite
signs to those generally observed, i.e. positive/expansion in ¢ and negative /contraction in a
directions. This is because the Burgers vector of ¢ dislocations is larger than that of a
dislocations, which creates larger bias of c dislocations to self-interstitial atoms (SIAs). Several
models have been proposed to resolve this contradiction since the first model by Buckley [1] ~50
years ago (see, e.g. [2] for a review), all based on the dislocation bias approach, but none has
resolved the issue.

A qualitatively new step in understanding the RG phenomenon was made by Woo and Gésele [3,
4] by introducing anisotropic diffusion of SIAs on the hcp lattice. In the diffusion anisotropy
difference (DAD) model [4], it was suggested that the vacancy diffusion is isotropic, whereas the
SIAs migrate preferentially along the basal planes. This allowed explaining the contraction of ¢
axes and the crucial role of ¢ loops in developing breakaway stage in annealed Zr crystals.

Nevertheless, the DAD model does not describe correctly the RG in neutron-irradiated materials.
This is because it assumes that the primary damage consists of point defects, i.e. single vacancies
and SIAs, only. Experiments (see e.g. [5]) and molecular dynamics (MD) simulations (see, e.g. a
recent review [6]) have shown that under neutron irradiation a large, ~20-50%, fraction of the
defects form clusters. The SIA clusters migrate one-dimensionally (1-D), which results in the
mixture of the second (for the point defects) and third (for the SIA clusters) order reaction
Kinetics in neutron-irradiated solids, rather than just second order, as in the DAD model. Holt
and Woo [7] generalized the DAD model by accounting for the cascade production of SIA
clusters, but assumed the clusters to be immobile, which was wrong. In fact, the MD simulations
show that in all crystals including Zr [6,8,9] the SIA clusters are highly mobile, diffusing 1-D
along close-packed directions. The authors of [7] made another assumption that “...the higher
reaction cross section with the primary clusters of the a-dislocations than of c-component
dislocations, due to the higher mobility, by glide, of the former ”, which is unphysical, since there
is no reason for dislocation glide without external stress. In the calculations presented in [7] the
DAD bias factor was taken to be equal to 200%, which requires high anisotropy of single SIA

diffusion, D, / D, ~10%, which is not supported by ab initio calculations [10,11].

One more paper devoted to RG in Zr was published by Christien and Barbu [8], which, however,
did not provide any new insight into the RG. The description of the breakaway stage in [8] is the
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same as in the DAD model. The only innovation is the assumption that the RG strain at low
doses is due to accumulation of single vacancies. The vacancy concentration required to
reproduce observations is ~10™, i.e. close to the thermal-equilibrium value at the melting
temperature, and is, thus, unrealistic. In addition, the mutual recombination of point defects at
such a vacancy concentration would suppress the damage accumulation, so that the breakaway
stage would never take place. Also, single vacancies has to contribute to strains in c as well as a
directions, while the assumption “that vacancy relaxation is anisotropic and is fully oriented
along the c-axis” with the reference to papers published in nineteen eighties must be erroneous.

The negative a strain and coexistence of vacancy- and interstitial-type prismatic loops are the most
intriguing parts of the RG phenomenon. Since the c strain is always negative, the negative a strain
violates the basic property of the growth phenomenon: the volume conservation. The coexistence
of the loops violates the well-known loop property: vacancy- and interstitial-type loops of large
enough size have almost the same efficiencies for absorption of point defects, hence, cannot grow at
the same time. This is the reason why their coexistence is never observed in cubic crystals. One
may conclude that the negative a strains and coexistence of vacancy and interstitial a loops are
fundamental features, specific to hcp crystals.

There were several publications devoted to explaining the coexistence of vacancy and interstitial
prismatic loops (see, e.g. [11-13]), all, however, unsuccessful. The main reason was that the models
considered Frenkel pairs only, thus ignored the true nature of the primary damage in cascades. In
addition, the models [11-13] assumed that both vacancies and SIAs execute 3-D random walk, thus
ignored the DAD. Note also that the assumption in [13] that the vacancy dilatation volume is larger
than that of SIAs, needed to explain the coexistence, is not supported by ab initio calculations (see,

e.g. [14]).

The current status of the theory may be summarized by the following citations from the two
recent reviews: “... reliable mechanistic models to predict the deformation of even a pure Zr
single crystal are not known ... We therefore still rely on a phenomenological approach” [15],
and “... understanding of the basic creep mechanisms in anisotropic materials like zirconium
alloys is still not strong enough to be truly predictive... Today, most models are empirical in
nature ..." [16].

The situation described is similar to what it was in the area of void swelling in the bcc- and fcc
metals ~20 years ago, the time when the research directions of RG in hcp crystals and void
swelling in cubic crystals deviated from each other. Since then, the theory of void swelling has
made significant progress in accounting for observations and getting consistent with the
experiment and modeling results. The main successes of a new model, the Production Bias
Model (PBM), came from including the cascade-production and 1-D migration of the SIA
clusters. The PBM explains many striking observations, e.g. the recoil-energy effect, the grain
boundary and grain size effects in void swelling, and the void lattice formation, which have been
reviewed by Singh et al. [17] already more than a decade ago. A recent review one can find in
[18].

The displacement cascades and properties of the SIA clusters in hcp Zr are found to be similar to
those in cubic materials [19-21]. In addition, the alignment of vacancy loops (see, e.g. [22] and



voids [23,24] along the basal planes observed in irradiated hcp crystals is similar to void ordering
in cubic metals, hence the PBM may provide a realistic framework for the damage accumulation in
the hcp metals, as well. The aim of the present work is to develop such a model for the RG in Zr.

The paper is organized as follows. In Section 2, the problem is characterized in detail. In
Section 3, the model assumptions are listed and the rate equations are formulated. In Section 4,
the model predictions are described. Estimates of the maximum strain rate are made in Section
5. Applications of the model for calculations of dose dependence of RG strain are presented in
Section 6. A summary is given in Section 7.

2. Problem characterization

In annealed Zr crystals, the RG is characterized by expansion along a axes and contraction along
c axis. A typical strain behavior consists of three distinct stages (see, e.g. [2]). Stage | exhibits a
high strain rate and lasts for ~0.1-1.0 dpa (displacements per atom, NRT standard [25]). Stage Il
demonstrates a very low strain rate, often interpreted as strain saturation, and proceeds up to ~3
dpa. At higher doses, during the stage 111, usually referred to as the breakaway growth stage, the
strain rates increase with increasing dose and reach values as high as ~10°dpa™. The dose
dependence of these rates is debated. The transmission electron microscopy (TEM) exanimation
of irradiated samples revealed formation of interstitial-type prismatic loops with the

(1/ 3) <1120 > Burgers vectors during stages | and I1, and vacancy-type c loops during stage III.

In cold-worked materials the strain rates are relatively high from the very beginning and no
strain saturation occurs (see, e.g. Fig. 6 in [26]). In some cases, both a and c strains have been
found to be negative. Moreover, the vacancy- and interstitial-type prismatic loops of similar
densities and sizes may coexist. To our knowledge, these two observations: the negative a
strains and coexistence of the vacancy- and interstitial-type prismatic loops have never been
explained. Generally, no theory has been published, which explains self-consistently all the
observations.

The model presented here gives a self-consistent explanation of the RG phenomenon in Zr single
crystals and provides a framework capable of describing all the observations quantitatively.

3. New model
3.1. Basic framework
The model proposed here is a generalization of the PBM developed for cubic crystals to the hcp

crystals. The framework for the model, preliminary version of which has been formulated by
Golubov et al. in [27], is as follows:
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Initial microstructure consists of prismatic and basal edge dislocations.
The primary radiation damage consists of point defects and SIA clusters.
Single vacancies and SIAs migrate 3-D.

The SIA clusters migrate 1-D along <1120 > close-packed directions.
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+¢ Interactions of SIA clusters with ¢ and a dislocations with the Burgers vectors non-
parallel to that of the clusters are neglected.

% The difference in absorption properties of dislocation loops and edge dislocations for
mobile point defects and SIA clusters is neglected.

%+ The dislocation bias due to interaction of point defects with dislocations/loops and
possible anisotropy of single point defects migration is neglected.

The above framework is essentially the PBM [18] adjusted to the hexagonal symmetry of the crystal
lattice. The only new assumption is neglecting the interactions of SIA clusters with ¢ and a
dislocations with the Burgers vectors non-parallel to that of the cluster. This originates from the
dislocation nature of the interactions, which is qualitatively different from those involving point
defects. The interactions depend on mutual orientation of the cluster and dislocation Burgers
vectors, which are illustrated in Figs. 1-3 for the interaction energies (see Appendix for
calculations). As can be seen from the figures, for basal and prismatic dislocations with non-
parallel Burgers vectors, the interactions are significantly weaker than for a dislocations with
parallel Burgers vectors; while the corresponding trapping zones, associated with the cross-sections
of absorption reactions, are significantly smaller. Note that the assumption in question does not
affect the results for isotropic distribution of prismatic dislocation Burgers vectors. This is due to
symmetry of the cluster production and partitioning in this case: 1/3 part of the SIA clusters are
absorbed by a dislocations of each particular Burgers vector for any interaction scenario. It does
affect the results for non-isotropic distribution of prismatic dislocation Burgers vectors, but the
effect must be small for the above-mentioned reason. Accounting for the ignored interactions is
straightforward but would lead to a loss of clarity due to a more complicated diffusion-reaction
scenario. Note finally that screw dislocations are out of scope of the present model.

3.2. Main equations

The equations for concentrations of mobile defects, single vacancies (subscript v), single SIAs (i)
and SIA clusters (cl) in the framework of the model are as follows

dC :
==Gyl-5)-D,C, Y p; (i=2,2,2,0) M
i
dC, g .
E:GNRT(l_gr)(l_gi )_Dicizpjl (J=a,a,,85C) (2)
j
dCy 1-¢)& m
d'[I = Grer % - D,Cq kri, (m=a,,a,,3,), @)

where G, is the NRT standard value for the defect production rate; &, is the fraction of defects

recombining during the cooling-down phase of a cascade; ¢’ and n are the fraction of SIAs
survived intra-cascade recombination in the form of clusters and the mean number of SIAs in a
cluster, respectively, D,; and D, are the diffusion coefficients of point defects and SIA clusters,
respectively; p; are the densities of prismatic dislocations with the Burgers vectors along
a,,a,,a, , and basal dislocations with the Burgers vector along ¢ direction; k2 is the sink strength

for the SIA clusters migrating along m direction. The factor 1/3 on the right-hand side (RHS) of Eq.
(3) accounts for the equality of SIA cluster production rates in a,, a, and a, directions. The first
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terms on the RHSs of Egs. (1)-(3) stand for the production of defects, while the second terms for
their loss at dislocations. The sink strength k> in Eq. (3) is given by (see, e.g. in [18])

72_2',.2 2
kri:%"m, (M=a,,a,,3,), (@)

where r;, is the cluster capture radius of prismatic dislocations with the Burgers vectors parallel to
that of SIA clusters.

Note that the 3-D migrating point defects are described by the second-order reaction kinetics, so
that the sink strengths in Egs. (1)-(2) are proportional to the total dislocation density, p = Zpi .
i

In contrast, the 1-D migrating SIA clusters are described by the third-order reaction kinetics,
where the sink strength, k?, is proportional to the square of dislocation density. In addition, the

sink strength for SIA clusters with a given Burgers vector direction, either a,, a, or a,, depends
on the density of dislocations of the same Burgers vector only. As a result, if the density of a,
dislocations is, e.g., larger than that of a, and a,, the absorption rate of a, dislocations for point

defects will be larger. In contrast, the absorption rates of a,, a, and a, dislocations for SIA

clusters remain the same for any distribution of prismatic dislocations, namely 1/3 of the clusters
generated is captured by each type of prismatic dislocations. This is the key difference between 3-D
(or preferentially 2-D) diffusing point defects and 1-D diffusing SIA clusters. All the predictions of
the model described below follow from this difference.

The steady-state defect fluxes are found by equating the time derivatives in Egs. (1)-(3) to zero:
DC — Cyer (1-¢)

: ®)
yo)
DiCi = GNRT (1_gr)(1_8lg) 1 (6)
Yo
n 2 Guer(l—g)é&]
D.Cq :3_n NR;_(zrzpz) , M=2a;,38,,385, (7)
0/m

where p = Zj p; s the total dislocation density. Note that the cluster flux to c dislocations is
equal to zero.

The dislocation climb velocities, V;, are defined through the net fluxes of vacancies, single SIAs and
SIA clusters to dislocations as
n D,CJki D,C,-DC, :
E p - b ) Jzal’aZ’a?:’
Vj — J J J (8)
1 .
—b—(DVCV—DiCi), j=c,
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where b; is the Burgers vector of j-type dislocations. The strain rate in a particular prismatic
direction a, deg,/dg, due to the climb of prismatic dislocations is calculated by summing
contributions from dislocations with different Burgers vectors (m=a,,a,,a,):
de, D Py, €OS* @, =
0|
=Y"[nD,Cik? - p,(D,C,~DC;) |cos’ g,

where ¢, is the angle between the vectors @ and b, . The strain rate in c direction is given by
de,

(9)

e -pV.,b, =—p.(D,C, -DC,). (10)
By substituting Egs. (5)-(7) into Egs. (9) and (10), one finally obtains
de 1 p )
4= ——=1cos” @, 11
10 Z;( 3, ] Pn (11)
de yo)
—_ ¢ _Z_C’ (12)
d¢ P
where ¢ =Gt is the irradiation dose and
X= (1_ gr)gig (13)

is the fraction of SIAs at the end of the cooling-down phase of cascades in the clustered form.
Note that y =0 for non-cascade conditions, e.g. for irradiation with ~1 MeV electrons, since the
model neglects dislocation bias for point defects.

In a Cartesian coordinate system where x axis is along a,, y along a, —a,, and z along C, Egs.
(11) and (12) take the following form

de 1 p
B S =t S 14
dg ZLZ pj 9
de 1 p
i A e 15
dg 1(2 pJ o
de yo)
d¢ p
where
Py = Ps, +(,0a2 + 0, )COS2 (7[/3), a7
p, = (,oa2 + P, )cos2 (716), (18)
pz:pc’ (19)
P=PtPy+ P, =Py + P TP P (20)
Note that Egs. (14)-(16) can be presented by a diagonal matrix equation as
de . 1 P ..
—d =yl =(1-6,)-=6 |, (1,j=12,3), 21



where the indexes 1, 2 and 3 stand for x, y and z, respectively, and &, ; is the Kronecker delta. The
equations above satisfy the volume conservation
d
ds, 95 95 4 22)
d¢ dg d¢
as it has to be in the absence of swelling.

Eqgs. (14)-(16) describe the RG rates as a function of the effective densities of prismatic and basal
edge dislocations (including loops), p,,p,,p,, and the parameter y, which is the fraction of

SIAs produced in cascades in the form of 1-D migrating SIA clusters.
4. Model predictions

As can be seen from Egs. (14)-(16), the strain rates are determined by the fractions of a and ¢
dislocation densities, p, / p, p,/p and p,/p, rather than by their absolute values. This

explains similar strain rates observed in annealed at low irradiation doses and cold-worked
materials. In accordance with Eq. (16) the strain rate in c direction is always negative. In contrast,
the strain rates in a directions may be both positive or negative, depending on the distribution of the
prismatic dislocation Burgers vectors. The strain rates in prismatic directions are positive for
isotropic distribution of prismatic dislocations, i.e. when p, = p, . In contrast, the strain rate in x
direction is negative when p, / p>1/2 (see Egs. (14)), i.e. when the distribution of a dislocation
Burgers vectors is non-isotropic: the inequality is only valid for p, /p,>1 at non-zero c
dislocation density. The a strain rates as a function of p, / p, are shown in Fig. 4 for the case
p, ! p, =115. As can be seen, the prismatic strain rates, de, /d¢ ,de, /dg, are positive and equal
to each other for isotropic distribution, when p, / p, =1, whereas the x strain rate is equal to zero at

px ! p,=1.25 and is negative, of the same order as for c direction, at p, / p, ~2. Thus, the a

strain rates are sensitive even to small deviations from isotropic distribution of a dislocation Burgers
vectors. The analysis suggests that the conventional description of the RG in Zr as an expansion
along a directions and contraction along c direction should be changed to an expansion along at
least one of a directions and contraction along c direction. Note also that it follows from Fig. 4

that the absolute values of a strain rates increase strongly with increasing p, / p, ratio, while the c

strain depends only weakly on it. More details on the role of non-uniform distribution of
prismatic dislocations on RG are given in Section 4.5.

The upper-bounds of the strain rates are fully determined by the parameter y, the fraction of
SIAs produced in cascades in the clustered form, as described further below in the Section 5.

4.1. Stage I: Initial growth in pre-annealed materials

If the initial densities of a dislocations are low, of the order of 102 m? or less, and the distribution
of their Burges vectors is isotropic: p = p;, then p=2p]+p; ~2p;, since the density of ¢



dislocation is normally 5-10 times smaller than that of prismatic dislocations. In this case, it follows
from Egs. (14)-(16) that the initial strain rates are

de, do _ (1 o) |_zpo 23)
dg  dg 2 2p0+p)) 4p

d

T‘Z:-%%. (24)

For p?/p?~0.2, the strain rate in prismatic direction is equal to » /20. To make numerical

estimates of the parameter y for Zr, one needs values for ¢, and ¢, , which are not available due

to the lack of systematic studies of cascades in Zr. Since the cascade damage is not drastically
sensitive to the type of the lattice, in the following we use the data for neutron-irradiated fcc copper:

£,=0.9 and £° =0.2 [28], for which y =2x10% With this value, the strain rates in a directions are

equal to 10° dpa™, which is in a good agreement with observations. Indeed, at this strain rate, the
saturation strain, which is found to be of the order 10 (see, e.g. Fig 3b in [29]), is reached at a dose
of ~0.1 dpa, which is close to experiments.

4.2. Stage Il: Strain saturation in pre-annealed materials

To understand the reasons for the strain saturation, one needs to take into account that the total
density of a dislocations is increased with increasing irradiation dose, due to nucleation and
growth of a-dislocation loops:

Py = pf’y +27R N (25)

Xy VXY !

where R, and N,  are the radius and number density of corresponding loops. Assuming the

y

distribution of a-dislocation loops to be isotropic: R, R, N, =N, one can find from Egs. (23)

and (24) that the strain rates decrease strongly with the development of loop population. When

27R, N, >> pfvy,

Xy Xy
dgx _ d&‘y ~£ pg (26)
d¢ dgp 8zRN, '
de, __x P} . 27)
d¢ 4z RN,

For values typically observed at the saturation stage: R, =5 nmand N, =10%m*, the sink

strength of dislocation loops is equal to 3x10 m™. Thus, for p? =10" m?, the strain rates

given by Egs. (26) and (27) drop down by about 300 times, as compared to those in the beginning
of irradiation. With such low strain rates, this stage can be considered as strain saturation, which
continues up to ~3 dpa, until the ¢ loops start nucleating. In other words, the saturation stage
corresponds to a very small but nonzero strain rate.

4.3. Stage I11: Breakaway growth



The nucleation and growth of ¢ loops leads to an increase of the total sink strength of c
dislocations:

p, =P +21RN, | (28)

hence to an increase of the p, / p, ratio, hence the strain rates. In the case when 2zR N, >> p?,
the strain rates start to increase as

%NE_LPSJFZ”RzNleRzNZ (29)
d¢ dg¢ 8r RN, 4RN, "
0
%:_lpz—i_Z”RZNZz_lRZNZ. (30)
d¢ 4z RN, 2 RN,

Thus, the breakaway strain rates are determined by the ratio R,N, /R N, , which increases with
increasing density and size of ¢ loops, in agreement with observations (see, e.g. Figs. 4 in [29]).

4.4. The effect of cold work

The initial dislocation density in cold-worked materials is high, so that the nucleation and growth
of a loops may not affect the strain rates as strongly as in annealed materials. In the case when

py, are significantly smaller than ~10** m? , the saturation stage may still be identified but less

pronounced, because an increase of the total sink strength of a dislocations due to nucleation and
growth of a loops is moderate. At higher dislocation densities, oy, >10*m™, an increase of the

total sink strength of a dislocations due to a loops becomes so small that saturation of strain does
not take place: the initial high strain rate will be maintained, in agreement with observations [29].

4.5. Negative a strains and coexistence of vacancy- and interstitial-type a loops

The models proposed so far all based on the Frenkel-pair production, hence, second-order reaction
kinetics, and assume isotropic distributions of a-dislocation Burgers vectors. In such models, the
driving force for radiation growth is the difference in the efficiencies of vacancy and SIA absorption
by a and c dislocations. The net defect fluxes to a and c dislocations depend on their total densities
and independent on the distribution of a-dislocation (and a-loop) Burgers vectors. So, if a Frenkel-
pair-based model was generalized to account for anisotropy of the distribution, it would give
different but nevertheless positive values of a strains in different prismatic directions. If an a strain
were negative in such a model, it would be negative for all a directions; then negative c strain
would violate the volume conservation. In our view, the basic assumption in these models, that the
Frenkel pairs are only produced by irradiation, prevented understanding the origin of the negative a
strain phenomenon. For the same reason, the coexistence of vacancy- and interstitial-type prismatic
loops cannot be explained by such models.

The model proposed here predicts negative a strain for non-isotropic distribution of a-type edge
dislocations. To explain the mechanism, let us consider a limiting case, when the density of a
dislocations with the Burgers vectors along one of the prismatic directions, say x, is much larger

than the others: p, >> p,, and the density of ¢ dislocations is much smaller than a dislocations,
P, << py, P, - Inthis case, the partitioning of vacancy- and interstitial-type defects is as follows.
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The SIA clusters are absorbed equally by both x and y dislocations; whereas the majority of point
defects by x dislocations since p,>>p, . Because of significant clustering of SlAs, the

production rate of single vacancies is higher than single SIAs. As a result, the point defects
produce an excess vacancy flux to all dislocations, with the vacancy flux to x dislocations larger
than to y dislocations. Due to equality of SIA cluster absorption by x and y dislocations, the net
vacancy flux is positive to x and negative to y dislocations, resulting in positive and negative
strains in y and x directions, respectively.

The coexistence of vacancy- and interstitial-type a loops occurs for the same reason as the
negative a strain. This is because the loop absorption properties are similar to those of
dislocations, and, as can be seen from Egs. (25) and (28), the loop nucleation and growth just
increase the effective dislocation density. The net vacancy or SIA flux to dislocations, including
loops, is equivalent to existence of a super-saturation of corresponding defects that causes
nucleation and growth of the corresponding type loops. In the example considered above, the net
vacancy flux to x dislocations causes nucleation and growth of x vacancy loops, while the net
SIA flux to y dislocations causes nucleation and growth of y interstitial loops. Thus, the vacancy-
type x and interstitial-type y loops coexist because they have non-parallel Burgers vectors. Their
contributions to strains are not additive for the same reason. This explains why the contraction in ¢
direction takes place even when the size and density of vacancy loops are similar to or even
larger than those of interstitial loops: the negative strains in one of a directions and c direction
are compensated by corresponding positive strain in another a direction.

Note that, due to hexagonal symmetry, different orientations of the vacancy and interstitial loops
should not be obvious from an ordinary examination of the microstructure, since TEM
observation of arbitrarily-orientated sample would show both vacancy- and interstitial-type loops
at the same time. These may be revealed for special orientations of the sample; if, e.g., vacancy
loop Burgers vectors are all parallel to a; direction, they will be invisible for orientations
perpendicular to a;.

It should be emphasized that the explanation of the negative a strain proposed is based on non-
isotropic distribution of edge a dislocations, the significance of which has never been
emphasized before, and which has never been subjected to measurements. For example, in the
paper by Zee et al. [26], where the negative a strain was observed in a single Zr crystal pre-
strained along an axis close to one of a directions, the total density of dislocations was reported
only. Moreover, the fractions of edge and screw dislocations are unknown. So, a comparison of
the model with the experiment is not possible.

The dislocation structure in deformed Zr crystals has proved to be complicated (see, e.g. [30]),
and the information needed may hardly be predicted. For example, estimations of the Schmidt
factors for experimental conditions in [26] show that most favorable slip planes for prismatic
dislocations will be in the directions non-parallel to the loading direction. This does not favor
the production of dislocations with the Burgers vector parallel to the loading direction required in
the present model. However, such an analysis does not take into account evolution of screw
dislocation structure during tensile straining and their effect on the distribution of edge
dislocations. In addition, the dislocation density after deformation measured in [26] is as low as
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2x10™ m, which is of the same order as in a non-deformed crystal. This makes it difficult to
speculate on the real structure of edge a dislocations after deformation.

4.6. Alignment of vacancy-type defects

A planar alignment of the vacancy-type loops and voids in ¢ planes observed in neutron-
irradiated hcp metals [22] is analogous to void ordering in cubic metals and must have the same
origin, which is due to interaction of voids and loops with the SIA clusters diffusing 1-D along
close-packed crystallographic directions (see refs. in [17]). At a high temperature corresponding
to the void-swelling regime, the void alignment in hcp metals must be driven by the SIA cluster-
void interactions. At low temperature, the alignment of c-type vacancy loops must also be due to
interaction with the SIA clusters, but the exact ordering mechanism is not yet clear. There are, at
least, two possibilities: (a) via complete annihilation of unaligned loops, or (b) by the loop
repulsion by moving SIA clusters. Modeling by MD may clarify the issue.

Note that the planar alignment of the vacancy-type defects was also found in Zr under 1 MeV
electron irradiation [24], i.e. in an absence of displacement cascades. It seems reasonable to
associate it with the preferential migration of single SIAs in the basal plane, as in the DAD
model.  However, anisotropic vacancy diffusion revealed in ab initio calculations [14]
jeopardizes this explanation. The 1-D diffusion of small, containing few SIAs, clusters formed
kinetically may be another possibility. Detailed analysis of this case, however, is out of scope of
the present study. Multi-scale simulations are required to clarify the issue.

5. Estimates of strain rates
5.1. Absolute maximum

It follows from Egs. (14)-(16) that one of the limiting cases for the strain rates may be achieved
when the density of ¢ dislocations is very high: p,/ p—1and p,, /o — 0. In this case

(dng z(&j zl, (31)
d¢ max d¢ max 2

de, .
{ d¢ jmax ) Z . (32)

High rates may also be realized in the opposite case, when the density of ¢ dislocations is relatively
small: p, << p,,p,,but p_and p, are very different, e.g. p, >> p, . Inthis case

(dng z—(%j zl, (33)
d ¢ max d ¢ max 2

de, | _
[d¢j~0- 9

As can be seen from Egs. (31)-(34), in both cases the a-strain rates are fully determined by the
properties of cascades. Taking the value of y equal to 2x107%(see Section 4.1 for explanation),
one may estimate the a-strain rate to be of the order of 10 dpa™ (1%/dpa), which is the same as the
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maximum swelling rate in fcc metals and austenitic stainless steels. Such a coincidence could not
be accidental, but must reflect similarity of the cascades in metallic material, particularly with fcc
and hcp structures, and mechanisms operating under cascade damage conditions.

Note, however, that the first case considered above is not realistic in Zr-based materials, because the
density of c¢ dislocations is normally significantly smaller than that of a dislocations. The second
case is more realistic but, to our knowledge, such a high strain rate has not been reported yet.

5.2. Isotropic distribution of dislocations

For isotropic distribution of dislocation Burgers vectors: p, = p, = p, , Egs. (14)-(16) give

de, | _ de, 4 35)
d¢ d¢ ) 6°

de, _ X

(d¢]‘ 3 %)

The strain rates are three times smaller than the maximum values given by Egs. (31) and (32), but
still about three times higher than ~10 dpa™ observed. The realistic strain rates are predicted by
the model when the difference between densities of ¢ and a dislocations is taken into consideration:
P, < Py, P, Which, according to Eq. (16) , reduces the ¢ and a strains. For example, in the case

when p, =(px + py)/5 and p, = p, , which is usual in Zr materials, the a-strain rates are ~10°
dpa™ which fit well the observations.

6. Dose dependence of growth strains

The analysis presented in the previous two sections is based on Egs. (14) and (16) for the
instantaneous strain rates in a crystal with given dislocation structure. With increasing dose, the
total dislocation densities change due to nucleation and growth of dislocation loops:

px,y,z (¢) = p)?,y,z + 272-Rx,y,z (¢) Nx,y,z (¢) ’ (37)

where p° are the initial dislocation densities, and R and N are the radii and densities of a and ¢

loops. To calculate the dose dependence of strains, one needs to know the dose dependences of the
loop radii and densities.

The loop radii are described by equations similar to Eqgs. (8) for dislocation climb velocities. For
loops with particular Burgers vectors:

dRT _ 1 DC|CCj|kJ'2 _ Dva — DiCi

) j:al,az,a3,
d b . b.
dRC 1] pl J (38)
= —(DVCV - DiCi).
d b

C

The equations for the effective radiuses of a loops in the Cartesian coordinate system, R, (#), can

be obtained from Eg. (38) by using equations similar to Egs. (17) and (18), which connect the
effective dislocation densities with those in particular crystallographic directions.
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The situation with the nucleation of loops is more difficult because not much is known. Available
experimental data can be summarized as follows: (a) a loops nucleate from the very beginning of
irradiation and reach the density of ~10%* m™ after several dpa, (b) ¢ loops start nucleating at a dose
of ~3 dpa and reach an order of magnitude smaller density, ~10 “ m™ . The nucleation mechanisms
of a and c loops are out of scope of the present work. In this paper, we use the loop nucleation
scenario shown in Fig. 5, which has been derived from observations (see the next section). By
using Egs. (38), the dose dependence of the growth strain has been calculated by a computer code
RIMD-ZR.V1 (Radiation-Induced Microstructure and Deformation of Zr, Version 1) developed
by the authors (see details in [31]). Selected calculations are presented below.

6.1. Radiation growth in annealed materials

As a first step, we fit the nucleation scenario (Fig. 6) to the experimental data from [29] for low-
dose neutron irradiation of annealed Zr crystals, using » =2x102 and 10%? m™ for the initial
densities of a dislocations of all three prismatic directions, and two times smaller value for c
dislocation. The best-fit results together with the experimental data are presented in Fig. 6, and
demonstrate excellent agreement. Then, the calculations have been continued to larger doses, for
which the results are shown on Fig. 7. As can be seen, the calculations reproduce all the three
stages observed: fast initial growth, strain saturation and the breakaway growth.

6.2. Effect of cold work

The effect of cold work has been investigated by changing the initial dislocation density by three

orders of magnitude: from 3x10% to 3x10® m™, with the description of the loop nucleation
shown on Fig. 5. The results are presented in Fig. 8. As can be seen, an increase of dislocation
density leads to a qualitative change in the strain behavior: now, a high strain rate ~10 dpa™ is
maintained from the very beginning of irradiation. This is in a good agreement with experiments
(see, e.g. [29]).

6.3. RG at high doses

The results shown in Figs. 7 and 8 have been obtained for relatively low doses, < 10 dpa, which
allows comparing with observations available. A more practically important issue is the dose
dependence on the breakaway stage, at doses beyond existing databases. An analytical study
[31] predicts constant strain rates at high irradiation doses, determined by the number densities
of a and c loops. The calculations for up to 100 dpa are presented in Fig. 9. As can be seen, the
results reproduce analytical predictions, and demonstrate the sensitivity to the ratio of the a- and
c-loop densities: the higher the ratio the smaller the strain rate, which is proportional to

(N / Nia)m. It follows from the model that the growth strain at high doses can be predicted
from the microstructure at end of the loop nucleation period.

6.4. Coexistence of vacancy and interstitial a loops
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The calculation results presented above have been obtained for isotropic distribution of a-
dislocation Burgers vectors. In this case, the RG exhibit usual behavior, i.e. expansion in a
directions and contraction in c direction. The results presented in Fig. 10 have been obtained for
the case when the distribution of a dislocations is not isotropic, namely the density of
dislocations with the Burgers vectors parallel to a; is five times higher than those with the
Burgers vectors along a, and as. The nucleation of a loops is described using a commonly
accepted scheme, where the vacancy loops are nucleated for positive and interstitial loops for
negative net vacancy flux to the loop embryos. As can be seen from the figure, the strain rate in
x direction (parallel to a;) is negative, i.e. in the direction of the highest dislocation density, in
accordance with the discussion in Section 4.5. The negative a strain takes place until ~4 dpa,
making distribution of a-dislocation Burgers vectors more isotropic, and the strain becomes
positive. The change of the negative a strain to positive with increasing dose has been observed
[2], so that our calculations agree with experimental observations. Finally, we note that negative
a strains have to be quite common within certain dose range, because the probability of isotropic
distribution of a-dislocation Burgers vectors in cold-worked samples is quite small.

7. Summary

A model of radiation growth of Zr single crystals under neutron irradiation has been developed,
which takes into account the true nature of the primary damage in cascades of atomic
displacements, and the diffusion properties of SIA clusters. The model contains one parameter
only, that is, the fraction of SIAs produced in cascades in the form of clusters, which has been
estimated from MD results and experiments. The model explains all the major observations in
Zr including strain saturation, breakaway growth, the effect of cold work, negative a strain and
coexistence of vacancy and interstitial prismatic loops.

The main model predictions can be summarized as follows:

e The strains in prismatic directions are positive for isotropic distribution of prismatic
dislocation Burgers vectors.

e The maximum strain rate in this case is estimated to be ~10 dpa™, in accordance with
experiment.

e For the first time, the linear dose dependence of the growth strain in the breakaway stage
is predicted at high doses. The corresponding rate can be calculated from the
microstructure at intermediate doses.

e It has been shown for the first time that the anisotropy of distribution of prismatic
dislocations is an important factor determining strain behavior.

e Observations of negative a strain and co-existence of vacancy and interstitial prismatic
loops are both explained for the first time. It is shown that both these phenomena
originate from anisotropy of prismatic dislocation Burgers vectors.

e The absolute maximum of the strain rate is estimated to be ~102 dpa™. In particular, it
may be realized at significant anisotropy of prismatic dislocation Burgers vectors and
relatively small density of ¢ dislocations.

It should be mentioned that the absolute maximum growth strain rate predicted by the model
is of the same order as the maximum swelling rate observed in cubic metals and predicted by
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the PBM (see refs. in [18]). This indicates that the mechanisms governing damage
accumulation in cubic and hcp crystals are similar. Thus, the PBM, developed initially for

cubic metals, provides, in fact, general framework for the description of radiation effects in
metallic materials.

Acknowledgements

This research was supported by the Consortium for Advanced Simulation of Light Water
Reactors (http://www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for

Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No.
DE-AC05-000R2272.

16



References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

S.N. Buckley, Properties of Reactor Materials and Effects of Radiation Damage, ed. W.J.
Littler (Butterworths, London, 1962), p. 413.

R.A. Holt, Mechanisms of irradiation growth of alpha-zirconium alloys, J. Nucl. Mater.
159 (1988) 310.

C.H. Woo, U.M. Gosele, Dislocation bias in an anisotropic diffusive medium and
irradiation growth, J. Nucl. Mater. 119 (1983) 219.

C.H. Woo, Theory of irradiation deformation in non-cubic metals: effects of anisotropic
diffusion, J. Nucl. Mater. 159 (1988) 237.

B. von Guerard, J. Peisl, Agglomeration of point defects in copper after neutron
irradiation at 4-6 K, J. Appl. Cryst. 8 (1975) 161.

R.E. Stoller, Primary radiation damage formation (2012), In: Konings R.J.M. (ed.)
Comprehensive Nuclear Materials V. 1, pp. 293-332, Amsterdam: Elsevier.

R.A. Holt, C.H. Woo, C.K. Chow, Production bias - A potential driving force for
irradiation growth, J. Nucl. Mater. 205 (1993) 293.

F. Christien, A. Barbu, Cluster Dynamics modeling of irradiation growth of zirconium
single crystals, J. Nucl. Mater. 393 (2009) 153.

W.G. Wolfer, A. Si-Ahmed, The effect of nonlinear elasticity on the capture efficiency of
dislocation loops, Phys. Lett. 76A (1980) 341.

G. Samolyuk, Y.N. Osetsky, S.l. Golubov, R. Stoller, SIA in hcp Zr. Formation energies,
barriers, MRS-fall meeting, Boston, November 2012 (in preparation).

M. Christensen, W. Wolf, C. Freeman, E. Wimmer, R.B. Adamson, L. Hallstadius, P.
Cantonwine, E. V. Mader, Effect of hydrogen on dimensional changes of zirconium and
the influence of alloying elements: first-principles and classical simulations of point
defects, dislocation loops, and hydrides, ASTM conference proceedings of 17th
International Symposium on Zirconium in the Nuclear Industry, Hyderabad, India (in
preparation).

C.H. Woo, Intrinsic bias differential between vacancy loops and interstitial loops, J. Nucl.
Mater. 107 (1982) 20.

V.1. Dubinko, A.S. Abyzov, A.A. Turkin, Numerical evaluation of the dislocation loop
bias, J. Nucl. Mater. 336 (2005) 11.

G. Vérité, F. Willaime, C.C. Fu, Anisotropy of the vacancy migration in Ti, Zr and Hf
hexagonal close-packed metals from first principals, Solid State Phenomena 129 (2007)
75.

R.A. Holt, In-reactor deformation of cold-worked Zr-2.5Nb pressure tubes, J. Nucl.
Mater. 372 (2008) 182.

R. Adamson, F. Garzarolli, C. Patterson, In-reactor creep of Zirconium Alloys, Advance
Nuclear Technology International (2009), Krongjutarvagen 2C, SE-730 50 Skultuna
Sweden.

B.N. Singh, H. Trinkaus, S.I. Golubov, “Radiation Damage Theory”, Encycl. of Mater.:
Science and Techn. ISBN: 0-08-0431526 (2001) 7957.

S.1. Golubov, A.V. Barashev, R.E. Stoller, Radiation damage theory. In: Konings R.J.M.,
(ed.) Comprehensive Nuclear Materials, volume 1, pp. 357-391, Amsterdam, 2012:
Elsevier.

S.J. Wooding, L.M. Howe, F. Gao, A.F. Calder, D.J. Bacon, A molecular dynamics study

17


http://www.sciencedirect.com/science/article/pii/0375960180905137
http://www.sciencedirect.com/science/article/pii/0375960180905137

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

of high-energy displacement cascades in a-Zirconium, J. Nucl. Mater. 254 (1998) 191.

N. De Diego, Y.N. Osetsky, D.J. Bacon, Mobility of interstitial clusters in HCP
Zirconium, In: Proceedings of MRS Fall Meeting; Boston, MA; USA,; (2000) p. 200.

N. De Diego, Y.N. Osetsky, D.J. Bacon, Structure and properties of vacancy and
interstitial clusters in a-Zirconium, J. Nucl. Mater. 374 (2008) 87.

M. Griffiths, R.A. Holt, A. Rogerson, Microstructural aspects of accelerated deformation
of Zircaloy nuclear reactor components during service, J. Nucl. Mater. 225 (1995) 245.

R. Risbet, V. Levy, Ordre de cavites dans le magagnesium et 1’aluminium irradies aux
neutrons rapides, J. Nucl. Mater. 50 (1974) 116.

Y. de Carlan, C. Regnard, M. Griffiths, D. Gilbon, C. Lemaignan, Influence of iron in the
nucleation of <c> component dislocation loops in irradiated Zircaloy-4, ASTM STP 1295
(1996) 638.

M.J. Norgett, M.T. Robinson, .M. Torrens, A proposed method of calculating
displacement dose rates, Nucl. Eng. Des. 33 (1975) 50.

R.H. Zee, G.J.C. Carpenter, A. Rogerson, J.F. Walters, Irradiation growth in deformed
zirconium, J. Nucl. Mater. 150 (1987) 319.

S.l. Golubov, A.V. Barashev, R.E. Stoller, On the origin of radiation growth of hcp
crystals, ORNL/TM-2011/473.

S.I. Golubov, B.N. Singh, H. Trinkaus, On recoil-energy-dependent defect accumulation
in pure Copper. Part 11. Theoretical treatment, Phil. Mag. A81 (2001) 2533.

G.J.C. Carpenter, A. Rogerson, R.H. Zee, Irradiation growth of zirconium single crystals:
A review, J. Nucl. Mater. 159 (1988) 86.

A. Akhtar, A. Teghtsoonian, Plastic deformation of zirconium single crystals, Acta
Metallurgica 19 (1971) 655.

A.V. Barashev, S.I. Golubov, R.E. Stoller, Theoretical investigation of microstructure
evolution and deformation of zirconium under cascade damage conditions, ORNL
Report: ORNL/TM -2012/225 (2012).

M.J. Makin, The long-range forces between dislocation loops and dislocations, Phil.
Mag. 106 (1964) 695.

18



Appendix

The interaction between a dislocation loop and an edge dislocation depends strongly on their
mutual orientation. This was analyzed by Makin [32] using infinitesimal loop approximation in
the framework of the isotropic elasticity theory. The corresponding interaction energy can

readily be obtained with the aid of Egs. (1) in [32] for the components of the stress tensor, o, as

E=AY obn;, (A1)
where b, is the component of the cluster Burgers vector on i direction and An; is the area of the
loop resolved onto a plane perpendicular to the j direction. The result is as follows.

Consider a Cartesian coordinate system with X3, X, and x3 axes and a straight edge dislocation
with its line along x3 direction (line sense) and the Burgers vector along x;, and distinguish two
cases. The first case represents an a-type dislocation with the Burgers vector b,; the SIA cluster
moves in the plane perpendicular to X3 direction, hence containing x; and X, vectors and its
Burgers vector is at an angle « to the dislocation Burgers vector and x;. The interaction energy
in this case is defined by the following equation:

E, :inz[_xz (3x¢ + G )cos” a+2x, (X =X )cosarsina +x, (X —x; )sin® a} L (A2)

(4 +%)
where E,=Q/27x(1—-v); u is the shear modulus, v is the Poisson ratio, Q is the atomic
volume, and n is the number of SIAs in the loop, which enters via the relationship Ab=Qn.

When the Burgers vectors of an SIA cluster and an a dislocation are parallel to each other, Eq.
(A2) is reduced to the following equation:

X, (3x% + x?
E4a=®=—ammi%ﬁjél
(4 +x)

In this case, the Burgers vectors of an SIA cluster and an a dislocation are non-parallel, a=x/3,
Eq. (A2) is reduced to

E, (a = Zj - Eo—ban{—ﬁ(?,xf + x§)+§[xl +§X2J<X12 — Xf)} . (A9

3 (xf +x§)2 4

(A3)

The second case corresponds to the c-type dislocation with the Burgers vector be. In this case,
the SIA cluster moves in the plane perpendicular to x; direction, hence containing x; and X
vectors, and its Burgers vector is at an angle S to the dislocation line and x3. The interaction
energy in this case is given by
Ec:inz[xz(xf—x§)sin2,3—2vx2(xf+x§)coszﬂ]. (A5)
(< +)

In the case when cluster Burgers vector is perpendicular to that of the dislocation line, f=7/2,
Eq. (A5) is reduced to the following equation:
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Ec(ﬂzg)z e (A6)

04 +x)°

Egs. (A3), (A4) and (A6) allow calculating the cluster-dislocation interaction energy, E, and
corresponding trapping zones: areas with the binding energy (-E) higher than the thermal energy,
kT, where kg is the Boltzmann constant and T the absolute temperature. Figs. 1 to 3 show the
interaction energy between an edge dislocation and a 10-SIA cluster in Zr at 573K for three
cases: (1) an a dislocation with the Burgers vector parallel to that of the cluster, (2) an a
dislocation with the Burgers vector at 2z/3 angle to that of the cluster, and (3) a ¢ dislocation
with the Burgers vector perpendicular to that of the cluster. Each figure shows three regions: the
capture zone (grey) where E <—k,T, the repulsion zone (dark) where E>k,T, and an

intermediate region where E ~0 (bright gray). The calculations were performed with x = 66
GPa, v=0.34, Q= 2.33x10"%° m*, for which E,= 2.01 eV. As can be seen from the figures, the

cross-section of the capture zone (perpendicular to the cluster motion direction along its Burgers
vector) in the first case (parallel Burgers vectors of the cluster and dislocation) is the largest,
~250b. The other two cases are characterized by significantly smaller the interaction cross-
sections and weaker interaction. This is the reason for the simplifying assumption in the model,
which ignores relatively weak interactions of the clusters and a dislocations with non-parallel
Burgers vectors and c dislocations.
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Figure captions

Figure 1. Interaction energy between an a dislocation with the Burgers vector parallel to that of
a 10-SIA cluster in Zr at 573K. The dislocation line is at the coordinate origin and perpendicular
to the (x1,X2) plane. x; is the distance from dislocation extra plane, along the dislocation Burgers
vector (shown in the figure). x, is the distance from the dislocation line, along the direction
perpendicular to the dislocation Burgers vector. The cluster Burgers vector is shown in the
figure as bq.

Figure 2. Same as in Fig. 1 but for a dislocation with the Burgers vector at 2z/3 angle to that of
the cluster.

Figure 3. Same as in Fig. 1 but for c dislocation with the Burgers vector perpendicular to that of
the cluster.

Figure 4. Effect of non-uniform distribution of a dislocation Burgers vectors on strain rates in
the case when density of c dislocations is five times smaller than a dislocations. Note that x
strain becomes negative at p,/p, >1.25 and reaches the strain rate of c dislocations at

ol p,=25.

Figure 5. Vacancy and interstitial loop nucleation scenario.

Figure 6. Best-fit calculations and experimental measurements from [29].
Figure 7. Growth strain in a wider dose range.

Figure 8. Effect of cold work on growth strain behavior.

Figure 9. Growth strain behavior at very high doses.

Figure 10. Growth strain behavior for anisotropic distribution of a-dislocation Burgers vectors.
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure 9
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Figure 10
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