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CM4 and its goals

The ”Collaboratory on Mathematics for Mesoscopic Modeling of Materials” (CM4)
is a multi-institution DOE-funded project whose aim is to conduct basic and applied
research in the emerging field of mesoscopic modeling of materials. The mesoscopic
modeling of materials has grown out of the dual realization that the microscopic sim-
ulation of realistic materials in not feasible and that the use of purely macroscopic
models is inadequate to describe all the interesting features of materials. The model-
ing of materials involves a vast range of scales and thus there is fertile ground for the
development of multi scale methods to address the mesoscales which bridge the gap
between the microscopic and the macroscopic. CM4 is a concerted effort combining
the expertise of a diverse array of scientists to attack the problem of modeling materi-
als in all its aspects. In particular, we envision the collaboratory to produce advances
in several fields ranging from novel reduced models to commercially available software
for large scale applications.

Contribution of the Minnesota research activity

The research activity in Minnesota focused on two related and equally important
subjects: i) mesh refinement and ii) model reduction. Mesh refinement is important
since for many problems we may not have enough computational power for a uniform
resolution in the computational domain. Thus, one needs a judicious allocation of
the available resources focusing on the areas that are more important dynamically.
Model reduction is important since there are many problems where even the use of
mesh refinement is not enough and one can quickly run out of resolution. In such
cases, one would like to have access to accurate reduced models which can keep the
salient features of the original problem. In my work I have sought to combine the
two strands of research. In particular, I have advanced the idea that successful model
reduction and mesh refinement rely on the same principle: the accurate estimation of
the transfer of activity from the resolved to the unresolved variables. This opens the
road to use accurate reduced models (if one has them) to construct mesh refinement
algorithms. Also, it allows for the development of new reduced models which can
operate in parameter regimes where traditional model reduction approaches could
fail. The results obtained in both fronts during the first two years of CM4 were
very encouraging. After relocating from Minnesota to the Pacific Northwest National
Laboratory (PNNL) I have continued pursuing these themes and the results will be
presented in more detail in the final report at the conclusion of the CM4 project. The
advances made during my time in Minnesota and PNNL are in accordance with the
goals and objectives outlined at the beginning of the CM4 project.

1 Review of Year 1 research activity in Minnesota

During the first year of the project I have investigated the following topics: i) a
Markovian reformulation of the Mori-Zwanzig (MZ) formalism to deal with cases of
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finite memory, ii) application of this reformulation to the problem of reduced models
for uncertainty quantification (UQ), iii) use of reduced models to construct mesh
refinement schemes in probability space, iv) the scaling law behavior of renormalized
coefficients for MZ reduced models and v) the rigorous proof of convergence of the
solution a special case of renormalized MZ models (called the t-model) to singular
solutions of partial differential equations. All the subjects investigated fall within the
general theme of understanding better the MZ formalism and utilizing its structure
to obtain meaningful reduced models and/or reliable tools for mesh refinement.

1.1 Markovian reformulation of the MZ formalism

Suppose that we are given a system of ordinary differential equations to solve (this
covers also the case of partial differential equations after a suitable discretization).
Many of the systems encountered in real life applications are too large for our present
or foreseeable computational capacity. In addition, even if we are able to simulate
a system on a computer we may need a reduced description for reasons of efficiency.
Thus, out of necessity and/or efficiency we would like to have a formalism that allows
a systematic construction of reduced models. The MZ formalism is such a formalism
since it leads to an exact reformulation of the original system of equations [3, 4].
Then, one can use this reformulation to construct reduced models of various degrees
of sophistication.

The problem inherent in MZ, as well as any other model reduction formalism,
is that the effort required for the construction of an accurate reduced model can be
quite substantial. In particular, the most expensive part of the construction of a
reduced model is the representation of the memory term. The memory term involves
an evolution operator (the orthogonal dynamics operator). This operator obeys an
equation whose solution is prohibitively expensive except for very special cases. The
purpose of the proposed Markovian reformulation of the MZ formalism in [11, 12] is to
bypass the need for an exact solution of the orthogonal dynamics equation. It is based
on the replacement of the calculation of the memory term by a hierarchy of ordinary
differential equations. In principle, this hierarchy is infinite dimensional. However,
under certain assumptions it can be safely truncated. In [11, 12] I have examined
how the Markovian reformulation can be used in the case when the memory has only
finite, but not necessarily short, length. The Markovian reformulation has been used
so far in the construction of reduced models for uncertainty quantification (please see
next section).

1.2 Dimensional reduction for uncertainty quantification

In many time-dependent problems of practical interest the parameters, the initial
and/or the boundary conditions exhibit uncertainty. One way to address the prob-
lem of how this uncertainty impacts the solution is to expand the solution using
polynomial chaos expansions and obtain a system of differential equations for the
evolution of the expansion coefficients. In [11, 12] I have presented an application of
the MZ formalism to the problem of constructing reduced models of such systems of
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differential equations. In particular, I have constructed reduced models for a subset
of the polynomial chaos expansion coefficients that are needed for a full description
of the uncertainty caused by uncertain parameters or uncertain initial conditions.

The construction of the reduced models was based on the Markovian reformulation
presented in Section 1.1. In some cases [11], the unknown parameters that appear in
the reformulation can be computed without having to solve the full system, while in
others [12], I present a way of computing the necessary parameters on the fly.

1.3 Use of reduced models for probabilistic mesh refinement

There are situations in uncertainty quantification where the expansion of the solution
in polynomial chaos expansions is not enough. The reason is that one needs more
terms in the expansion than our present computational capacity will allow. However,
the need for many terms in the expansion may be the result of the sensitivity of the
solution to only a few values of the uncertain parameter e.g. specific values of the
initial conditions. In such cases, it is advantageous to have a way of dividing the mesh
of values for the uncertain parameters in pieces and then refining the mesh only where
needed [17]. This can allow us to keep the order of the polynomial chaos expansions
low within each piece at the cost of having to solve a larger number of such easier
problems.

In previous work [10] I have found that reduced models can be used not only to
effect a reduction of the dimensionality of a given system but also to decide when it is
time to refine the mesh in physical space. Thus, I have applied this same reasoning to
the construction of an adaptive mesh refinement scheme for probabilistic meshes. The
advantage of the proposed probabilistic mesh refinement method is that it provides
a physically sound refinement criterion which can also be automated. I have already
applied the method, with very good results, to the mesh refinement of the uncertainty
parameter range for the 1D Kraichnan-Orszag (KO) problem. The KO problem is a
system of three ordinary differential equations whose limiting behavior changes from
a fixed point to a limit cycle depending on the value of the initial condition. Thus,
as shown in [17], a naive polynomial chaos expansion is not adequate for long time
uncertainty quantification unless a tremendous amount of terms are kept. On the
other hand, the probabilistic mesh refinement scheme allows accurate quantification
of the uncertainty for long time integration. In current and future work with the
DOE-funded postdoc Dr. Jing Li, we are investigating the application of the method
to more challenging situations of uncertainty quantification.

1.4 Scaling laws and renormalization of MZ models

The construction of reduced models of a system of equations through the MZ (and
any other) formalism, assumes that we have access to solutions of the full system.
However, for several practical applications (from material science to fluid mechanics)
this is not true. The reason is that the full system involves many orders of magnitude
more degrees of freedom than we can hope to simulate in the foreseeable future. The
construction of reduced models for such systems highlights the fact that the present
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reduction formalisms need to be improved. In mathematical terms, we need to find a
way to account for the information that we cannot provide through direct numerical
simulation. In [13], I have presented a way to address this problem in the context of
the MZ formalism. The approach, which I have termed renormalized MZ (rMZ), is
inspired by the Effective Field Theory approach pioneered in high energy physics [6].

In particular, we begin by embedding the reduced model we have at hand in a
larger family of reduced models that involve terms of the same functional form but
with arbitrary coefficients. These coefficients need to be estimated. We know that
the largest system of equations that we can simulate will become under-resolved af-
ter some time. However, before this system becomes under-resolved we can use it
to estimate (on the fly) the coefficients that appear in front of the reduced model
terms. In essence, we renormalize the coefficients, hence the name, so that the re-
duced model reproduces certain features of the original system while the latter is
still well-resolved. I have applied this approach successfully in the construction of
reduced models for the inviscid 1D Burgers equation and the 3D Euler equations of
incompressible flow. Based on dimensional analysis arguments I had expected the
renormalized coefficients to follow scaling laws. While the calculations have proven
rather delicate I have evidence that the renormalized coefficients depend on the ra-
tio of the highest active Fourier mode in the initial condition to the highest Fourier
mode allowed by the reduced model. This dependence does indeed take the form of
a scaling law. In current, as well as future work, this dependence will be investigated
further to establish its robustness and if possible deduce its mathematical origin.

1.5 Convergence proof of the renormalized t-model

The renormalized t-model is the simplest of the renormalized MZ models presented
in [13]. Based on previous work [7] it can be shown that the renormalized t-model
solution converges to the solution of the inviscid Burgers and 3D Euler equations as
long as these solutions remain smooth. However, it was not known if the renormalized
t-model converges to the unique entropy solution of inviscid Burgers after a shock
has formed. In recent work I have undertaken the task of proving this fact using the
method of compensated compactness [9, 15]. The proof is divided into two steps: i)
proof that the solution of the renormalized t-model converges to a weak solution of
Burgers and ii) proof that the solution it converges to is the unique entropy solution.
In future work, I will investigate what an analogous proof (if it exists) could mean
for the, as yet unresolved, problem of formation of singularities for the 3D Euler
equations.

2 Review of Year 2 research activity in Minnesota

During the second year of the project I have investigated the following topics: i)
mesh refinement schemes inspired by model reduction, ii) the scaling law behavior of
renormalized coefficients for Mori-Zwanzig (MZ) reduced models and iii) the choice of
“proper” coarse-grained variables. All the subjects investigated continue work that
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was started during Year 1 of CM4. The underlying theme is to obtain a suite of
techniques/algorithms which will facilitate the tracking of the evolution of complex
systems.

2.1 Mesh refinement schemes inspired by model reduction

At first sight putting together the concepts of mesh refinement and model reduction
may appear counterintuitive. On the one hand, mesh refinement is concerned with
the judicious allocation of computational power to allow focusing on the important
characteristics of a solution. On the other hand, model reduction is concerned with
the best way to approximate the effect of the unresolved scales of a simulation to
the resolved ones. The element that connects these two subjects is the observation
set forth in [10] that successful mesh refinement relies on the accurate monitoring
of transfer of activity to the unresolved scales which is exactly the objective a good
reduced model. Thus, if one possesses a good reduced model, it can be utilized to
decide when and where to perform mesh refinement.

In my previous work [10] a reduced model was used to refine a mesh in physical
space. In work that originated during Year 1 of CM4, Dr. J. Li and I have applied
this idea to the construction of an adaptive mesh refinement scheme for probabilistic
meshes [8]. The associated question is whether the proposed approach has a sound
mathematical basis, i.e. whether it can be proved rigorously that it constitutes a safe
way of controlling the transfer of activity to smaller scales. In [8] we provide such a
proof in the case of probabilistic mesh refinement, while in [14] we provide a similar
proof for physical mesh refinement.

What is needed to define a mesh refinement algorithm is a criterion to determine
whether it is time to perform mesh refinement. In [10], this criterion was based on
monitoring the rate of change of the L2 norm of the solution at the resolved scales
as computed by the reduced model (note that the L2 norm corresponds to the mass
or energy in many physical contexts). When this rate of change exceeds a prescribed
tolerance the algorithm performs mesh refinement. In [8, 14] we show rigorously that
this is a good refinement criterion. In particular, we show that the expression for the
rate of change of the L2 norm for the resolved scales has the same functional form as
the expression for the rate of change of the L2 error of the reduced model. Thus, by
keeping, through mesh refinement, the rate of change of the L2 norm for the resolved
scales under a prescribed tolerance, we can keep the error of the calculation under
control.

Although the construction of mesh refinement schemes that utilize reduced models
was shown to be theoretically sound, it hinges on the existence of an accurate reduced
model. For real world problems this is not always the case. Even though an accurate
reduced model can be constructed in principle (e.g. through the MZ formalism),
writing down the reduced model and computing all the necessary parameters may be
very expensive. Motivated by this, we have found a way to implement the main idea
of mesh refinement presented in [8, 14] without the need to write down the reduced
model explicitly. In particular, we have found a way to monitor indirectly the rate
of transfer of activity to the unresolved scales. This has allowed us to keep the
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good features of our mesh refinement scheme while making it much more generally
applicable. We have applied the modified version to problems of mesh refinement in
physical and probability space with excellent results. The fact that we are able to unify
the physical and probability space mesh refinement in a common framework (which
is also non-intrusive), is very helpful because it allows the simultaneous approach to
the problem of uncertainty quantification and interface tracking. This unifies two of
the subtasks that PI Stinis is involved with.

2.2 Scaling laws and renormalization of MZ models

During Year 1 of CM4, I investigated the application of ideas from renormalization
and effective field theory to the problem of model reduction [13]. The rationale behind
such an approach is similar to the one in high-energy and condensed matter physics
where these concepts were initially developed. We are faced with systems whose
size is far larger than anything we will be able to simulate in the foreseeable future.
This highlights the need to improve on current model reduction formalisms. In other
words, current formalisms assume that one has access to the simulation of the system
one tries to reduce. If that is not possible, then there is information missing which is
needed in the construction of the model. In physics such information is provided by
laboratory experiments which allow the determination of the unknown parameters of
the model [6]. In my work I opted for a situation which is slightly different. While
the true system of interest is too expensive for a brute force simulation, I begin with
the largest affordable system. Of course, the predictions of this system will become
unreliable after some time. But, until this happens, the evolution of this system can
provide us with meaningful information for the dynamics. This information can be
used to estimate the parameters of a reduced model for a subsystem. The situation
I have opted for is actually very informative. In particular, I have realized that
the magnitude of the (renormalized) coefficients for the reduced model follow scaling
laws. These scaling laws are delicate to determine but they point towards a new
understanding of the coarse-graining process.

During Year 2, I have looked more closely at the origin of these scaling laws. My
first attempt was to apply the technique of perturbative renormalization [5] to see
if the scaling laws can be determined order by order. The idea behind perturbative
renormalization is that although one needs extra information in order to make a
predictive model, this information can be encoded in the coefficients in a succinct
form. In particular, the coefficients can all be expressed as integer powers of a small
quantity which appears naturally in the problem. Moreover, the determination of the
coefficients can be obtained order by order in the expansion in terms of the small
quantity. In the problems I examined there was a naturally occurring small quantity
which is related to the smoothness of the initial condition. It turns out that, at least
for the problems that I examined, the determination of the renormalized coefficients
cannot be obtained order by order. Also, the exponents of the scaling laws are not
integers. Instead, the exponents need to be determined all at once by using the
dynamics of the system. This is reminiscent of problems exhibiting self-similarity of
the second kind [1]. This situation refers to problems exhibiting self-similar behavior
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(expressed through scaling laws) which however cannot be determined by simple
dimensional analysis arguments. The subject will be investigated further during Year
3.

2.3 “Proper” coarse-grained variables

The work reported in Section 2.2 has implications for another subtask that PI Stinis
is involved with, namely that of determining “proper” variables for which to perform
reduction. The adjective “proper” refers to the choice of variables that can facilitate
the construction of reduced models and also make their implementation more efficient
(e.g. by having shorter memory). As mentioned above, the small parameter that plays
a crucial role in the renormalization of the MZ models is related to the smoothness
of the initial condition. In particular, to the number of active modes (e.g. Fourier
modes) compared to the number of variables in the reduced model. The smoother the
initial condition, the fewer the significant terms in the renormalized expansion. This
insight can be exploited in conjunction with methods for sparse representation or basis
adaptation [2, 16]. Such methods allow to identify a good set of variables for which the
initial condition would have a sparse representation and exhibit smoothness. Then,
we can rotate the initial vector of variables and apply the ideas from Section 2.2.
So, we approach the problem of “proper” coarse-grained variables as one of deciding
the variables that will result in fewer significant terms in the renormalized expansion.
This is a first step in building a renormalization theory for general complex systems
outside of the realm of high-energy and condensed matter physics.
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