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Application of Conformal
Decomposition Finite Elements to
Colloidal Suspensions
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Nano-Composites

* Nanoparticles can have a profound effect on electrical,
thermo-physical, mechanical and optical properties

* Processing particles into “tailored”, functional products
through fluidization is a promising approach

* Suspensions exhibit complex rheological and dispersion
stability behavior prior to or during processing
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Technical Challenges: rich
physical phenomena
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Goals

* Achieve a stronger scientific understanding of
suspension dispersion stability, rheology,
surface modification/interfacial interactions,
and solvent effects from numerical simulations

* Develop validated "mod-sim” toolset for

nanoparticle suspension and manufacturing
process design and control
— Self-assembly of nanoparticles
Evaporation driven self-assembly
— Rheology of nanoparticle suspensions

Dependence on concentration, particle size, shape, shear
rate



Technical Approach: Integrated Meso-scale

Capability
Molecu_lar nanoseconds
Dynamics 0.1t0 10 nm
g microseconds

Effective potentials 10 t0100 nm

milliseconds

Coupled particle-fluid 100 nm-10 pm ™

Interactions:

DEM-NS, SRD, constitutive Relations
DPD, SD

Micro-structure

Integrated Modeling and Simulation Tool Set
Integrating Tools Across Scales
Experimental Validation
Research (Materials/Numerical methods)
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Coarse Graining to the Meso-

Particle

Integration to Hammaker’s
Equation and equivalent

Solvent

Molecular Dynamics

Grest et al.

scale

s
Osmotic and steric/structural
representation

«Computational standoffs
*Porous constants

*Polymer layer parameters
«Structural constants (polymer
*And hard sphere)

Blobs->SRD/DPD: dual particle

approach




Colloidal Model: First Approach

* Integrated Lennard-Jones potential

0990, represents colloidal particle’
ole
ggoo O% — Hard spheres are poor model
OQQ%OCg)Q since they phase separate for
OOOO . .
C820 disparate sizes

— Hamaker constant A; represents
pairwise interaction strength
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Effective Potential
Development

* Molecular dynamics. How small can we go with continuum mechanics
principles? Determining interparticle potentials for mesoscale?

— Velocity dependent and independent parts
— Various formulations

* Direct force measurement (IFM, Optical Trapping)

specimen
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(Dynamic and Equilibrium)
Accurate effective pair potentials required for simulations
of nanoparticles in suspension



Simulating the Solvent

Computational cost

— Explicit atomistic solvent requires calculation of all
pair-wise solvent-solvent/colloid interactions

typically many orders of magnitude more solvent atoms
than solute particles

light, relatively fast dynamics => short timesteps

— Coarse-grain: Average over fast degrees of freedom

all => Generalized Langevin dynamics of colloids

some => coarse-grained solvent with reduced # of solvent
dof’s, resolving longer length and time scales

Multiple “coarse-grained” methods to capture
hydrodynamics
— Particle-based, coarse-grained, “explicit” solvent

DPD solvent
SRD solvent treated as massive, ideal fluid, point particles

— Continuum-based “implicit” solvent

BD (approximate hydrodynamics — F,, ~ 6zua, Oseen Tensor, Rotne-
Prage Tensor, Fast-Lubrication, etc)

SD/BEM (creeping Stokes equations)
LB

Solve full continuum Navier-Stokes equations numerically
(e.g., FEM)
— MOST GENERAL
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Motivation for FEM Approach

« General toolset parameterized for speed and
accuracy

— Validate computational expedients
» Telescoping of timescales
« Artificial compressibility
» Other approximations to the “physics”

* Numerical infrastructure is general
— Non-Newtonian rheology
— “Multi/Coupled physics”
— Aspherical particles

— Inertial terms (ou/0t and u-grad(u))
« Transient regimes & memory effects
» High shear rates
« Larger particles



Coupling Colloids to Solvent
- CDFEM (talk by D. Noble)

— Sharp interfaces

— Physical models for boundary conditions
* No-slip - Dirichlet

calculate mesh velocity



“Static’” CDFEM: Translational
Friction Coefficient in Stokes
Flow

O

vd Ao

pressure projection

fully coupled

Ladd (1988}

Hasimoto's low density expansion
3x3x3 fully coupled

3x3x3 pressure projection

5x5x5 pressure projection

5x5x3. dx = 0.2 pressure projection
5x5x5. dx = 0.1 pressure projection
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“Static” CDFEM: Lubrication
Forces in Stokes Flow
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“Quasi-static’ CDFEM

 Couple FEM
(Sierra/Aria)
and MD
(LAMMPS)

* Fluid: Stokes
creeping flow
— Dirichlet BCs
- Q1Q1
— PSPP

» Particle
— Velocity Verlet




Quantitative Results

e Fluid:
- ps=0
- u=1.0
o Solid:
- ps=1.0
— dt, =dt.=0.1
« 2D asymptotic
solution
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Close-ups: Mesh and flow field

_V_vec

9.045e+00
6.784e+00
4.523e+00
2.261e+00
0.000e+00




3-D Transient Stokes Flow
Verification




Verification Problem

* Transient motion of a 3-D solid sphere under
a square-force pulse

— Analytic solution Felderhof, B. U. (2007) used as
velocity boundary condition on all domain
boundaries

— Followed motion of particle in accelerating frame
of reference of moving particle

Du du
—+ >=V.T
L5 Dt jor dt




Verification Problem

r. =
ps=1.3
P = 1.3
U =

Box dimensions: 4 x4 x4
Force=1for0<t<1,F=0fort>1

Start simulation att = 0.1, avoid
singularity att=0



Verification results att = 0.15
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Verification results att = 0.15
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Verification results att = 0.15
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Verification results att = 0.15
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Toward Colloidal Dynamics: CDFEM
and Fluctuating Hydro

Coupled Sierra/Aria and E}tﬁ‘ R
LAMMPS via Mezzo m, Aidd A
— Monodisperse disks

- =06

— kgT=1.0

— v =167

Can do 3D, no problem
Parallel, no problem
Currently

— quasi-static fluid (creeping
Stokes)

— Explicit time integration of
colloid dynamics
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# Conclusion

* Nanostructured Materials achieved through

suspension based processing of nanoparticles
requires understanding of

— dispersion stability
— bulk rheology
— induced assembly and structure from volume reduction

« We are advancing a mod/sim platform to meet these
needs which targets a scale that bridges between the
molecular regime and the engineering regime

« CDFEM is playing a significant role

— More validation of Quasi-static and transient problems
forthcoming
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