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Ab S trac t Ve ri ﬁC atiO n a nd VahdatiO n Figure 5 shows excellent agreement between Chapra’s analytical solution and SNL-EFDC

simulations for algae and total phosphorus concentration.

Microalgae are a promising source of biofuels but production costs remain high. Models are A Figure 6 shows simulations results without (solid curves) and with (dashed curves) pH limitation
relatively inexpensive tools that can be used to enhance economic competitiveness through system V=X using one of two options for reaeration.
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and operation optimization that minimizes energy and resource (e.g., CO,) consumption and

In reaeration models, itially CO, concentrations increase due to reaeration while algae
maximizes algal oil yield.

Nutrients (PO,, NOs, CO,) Light concentrations are quite low. As biomass increases, CO, concentrations decrease accordingly.
Heat As the algae growth rate decreases to zero, CO, levels increase due to reaeration supplying sufficient
5m 113.6 m / 5m CO, to sustain the algae population at a constant concentration.

: In addition to CO, limitation, by including pH limitation, growth 1s further decreased.

Greenhouse model

* This model simulates growth of Nannochloropsis salina 1n a real pond maintained inside a

Inorganic carbon in water 1s available as free dissolved CO, carbonic acid (H,CO;), bicarbonates
(HCO;"), and as carbonates (CO,?"). For photosynthesis, most algae species use dissolved CO,. pH
1s a function of the chemical equilibrium between the different forms of mnorganic carbon and a high
pH indicates less availability of free dissolved CO,. Hence, pH of the medium affects algae
photosynthesis, their growth, and o1l production rates. There 1s a fine line between too little CO,
starving algae growth and too much yielding an acidic medium that inhibits growth; its addition to
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the system should be optimized. om| | | ;:..E. .......................................................................... greenhouse under known temperature and irradiance conditions.

§ * Schematics of the model 1s similar to the schematic shown in Figure 5 except that there are no
Sandia has developed a model (SNL-EFDC) that uses modified versions of the US EPA’s Inflow cell Fully mixed pond as Outflow cell nutrients added to the system other than CO, and there 1s no flow. A high C:N:P ratio of 430:17:1 (to
Environmental Fluid Dynamics Code (EFDC)!!! in conjunction with the US Army Corp of algae growth medium simulate a nonideal nutrient environment) is assumed.
Engineers’ water-quality code, CE-QUALI?], to couple hydrodynamics and atmospheric-driven e 5 Sehamatic o ihe nondl ueed (o medel cxarmle mlemn 252 fen Cheme’s Suiiee Wi Ot Waddbpe * Pond dimensions: 1.666 m long, 1.5 m wide, 0.211 m deep containing 0.53 m? of growth medium.
thermodynamics to algae-growth kinetics. The model allows manipulating variables associated with . ‘ - ‘ V L * After 52 days, algal growth was inhibited by adding acid to the pond (no fit sought thereafter).

* Center cell 1s a single-layer fully mixed lake (413.6 m long, 141.2 m wide, 10 m deep). Boundary

nutrient availability, temperature, light intensity and pH. Model results demonstrate that growth 1s . : ,
conditions are defined on inflow and outflow cells (5 m long , 141.2 m wide, 10 m deep).

appropriately inhibited when pH and CO2 limitations were added. Simulations can 1dentify optimal

* Other model parameters are listed in Table 1 (notably B,,= 0.1 /day and half-saturation constants).
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CO, concentrations that maximize growth of a specific algae strain. Input flow provides algae (0.933 g/m ),.phosphorus (0.01 g/m’), and water (0.0772 m°/s). . 130 2
* Output flow removes fully mixed constituents at the rate of 0.0772 m?/s. 2 1253
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