

An Algae-Growth CFD Model Including the Effects of CO₂ Concentration and pH

Scott C. James

Sandia National Laboratories, Thermal/Fluid Science & Engineering, Livermore, CA
scjames@sandia.gov

Vijay Janardhanam

University of New Mexico, Physics and Astronomy, Albuquerque, NM
vijayj@unm.edu

Abstract

Microalgae are a promising source of biofuels but production costs remain high. Models are relatively inexpensive tools that can be used to enhance economic competitiveness through system and operation optimization that minimizes energy and resource (e.g., CO₂) consumption and maximizes algal oil yield.

Inorganic carbon in water is available as free dissolved CO₂, carbonic acid (H₂CO₃), bicarbonates (HCO₃⁻), and as carbonates (CO₃²⁻). For photosynthesis, most algae species use dissolved CO₂. pH is a function of the chemical equilibrium between the different forms of inorganic carbon and a high pH indicates less availability of free dissolved CO₂. Hence, pH of the medium affects algae photosynthesis, their growth, and oil production rates. There is a fine line between too little CO₂ starving algae growth and too much yielding an acidic medium that inhibits growth; its addition to the system should be optimized.

Sandia has developed a model (SNL-EFDC) that uses modified versions of the US EPA's Environmental Fluid Dynamics Code (EFDC)^[1] in conjunction with the US Army Corp of Engineers' water-quality code, CE-QUAL^[2], to couple hydrodynamics and atmospheric-driven thermodynamics to algae-growth kinetics. The model allows manipulating variables associated with nutrient availability, temperature, light intensity and pH. Model results demonstrate that growth is appropriately inhibited when pH and CO₂ limitations were added. Simulations can identify optimal CO₂ concentrations that maximize growth of a specific algae strain.

Growth Model

$$\frac{\partial B}{\partial t} = (P - B_M - P_R)B + \frac{\partial}{\partial z}(w_s B) + \frac{B_L}{V} \quad \text{Governing equation for algae growth}$$

B (g/m³) - biomass, t (days) - time, P (day⁻¹) - production (growth) rate, B_M (day⁻¹) - basal metabolic rate, P_R (day⁻¹) - predation rate, w_s (m/day) - settling velocity, B_L (g/day) - external loads such as deposition or sources, V (m³) - model cell volume

$$P = P_M f(n)g(I)h(T)i(pH) \quad \text{Decoupled growth equation}$$

P_M (day⁻¹) - maximum production rate under optimal conditions, $f(n)$ - effect of non-optimal nutrients (includes CO₂ limitation) ($0 \leq f(n) \leq 1$), $g(I)$ - effect of non-optimal illumination ($0 \leq g(I) \leq 1$), $h(T)$ - effect of non-optimal temperature ($0 \leq h(T) \leq 1$), and $i(pH)$ - effect of non-optimal pH ($0 \leq i(pH) \leq 1$).

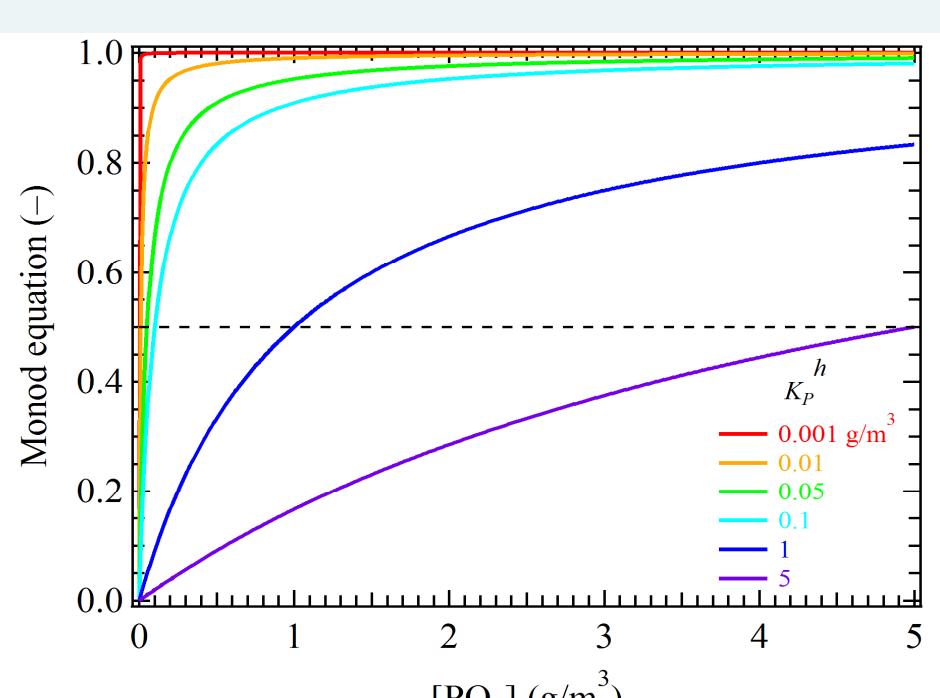
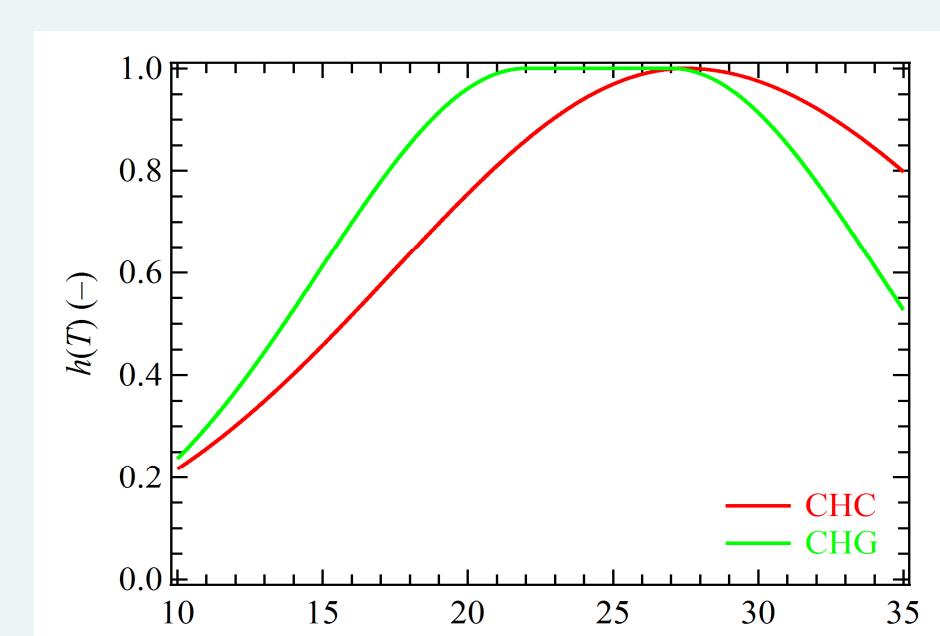



Figure 1: Limiting nutrient availability for phosphate

$$\text{Monod equation for nutrient availability } f(n) = \frac{n}{K_p^h + n}$$

Figure 3: Limitation due to non-optimal temperature^[6]

$$h(T) = \begin{cases} \exp \frac{E}{RT} KTG_{1x} (T - TM_{1x})^{\frac{3}{4}} & \text{for } TM_{1x} \leq T \leq TM_{2x} \\ 1 & \text{for } TM_{2x} \leq T \leq TM_{2x} \\ \exp \frac{E}{RT} KTG_{2x} (TM_{2x} - T)^{\frac{3}{4}} & \text{for } T > TM_{2x} \end{cases}$$

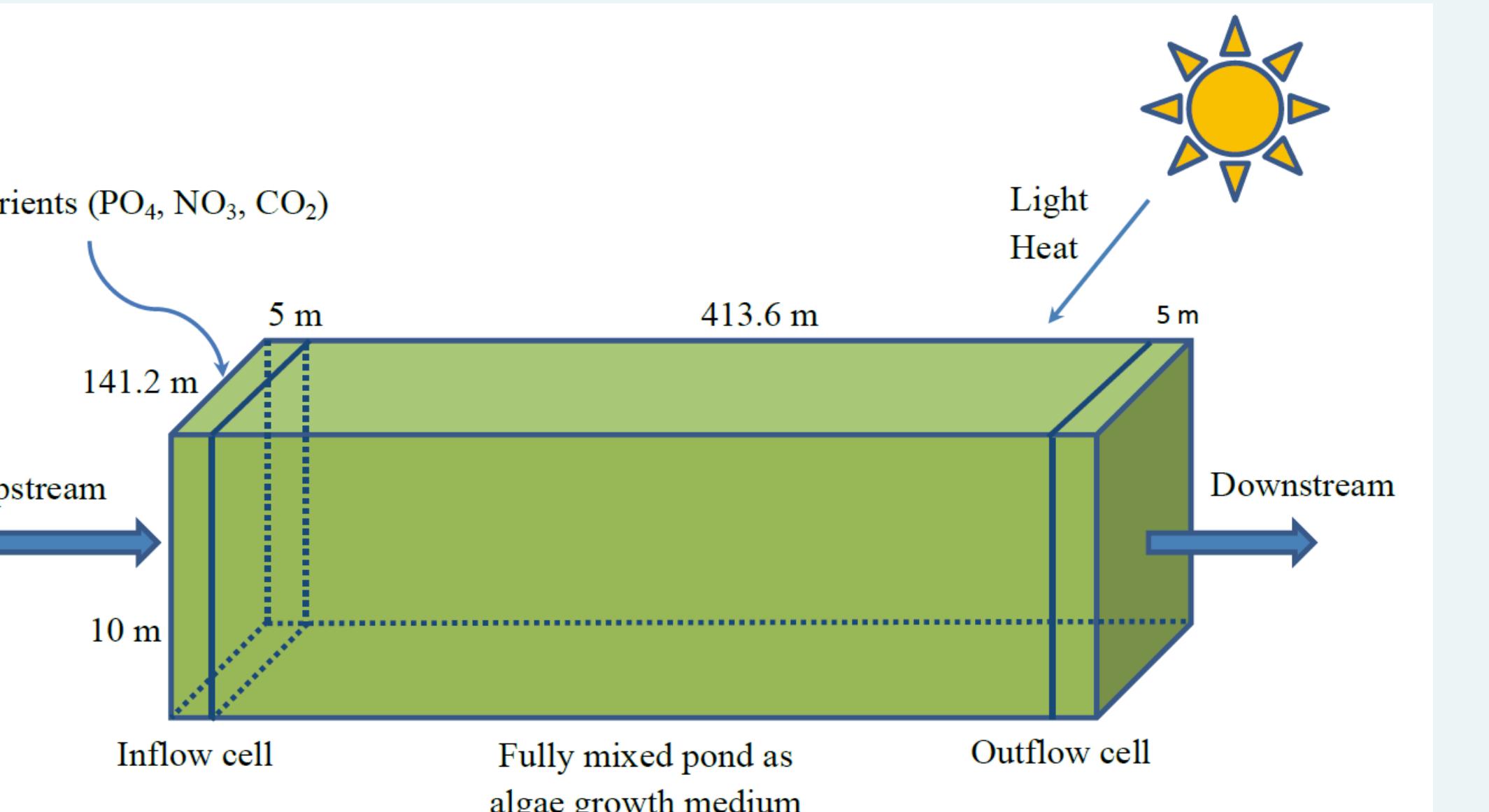
$$i([H^+]) = \frac{[H^+]}{[H^+] + k_{OH}(T) + [H^+]^2/k_{H}(T)}$$

$$pH = -\frac{1}{2} \log_{10} (k_w + k_{H} [CO_2])$$

Figure 2: Limitation due to non-optimal illumination

$$\text{Steele's equation for light limitation}^{[4]} \quad g(I) = \frac{I(z)}{I_s} \exp \left[\frac{a}{z} - \frac{I(z)}{I_s} \right]$$

$$\text{Riley's light extinction}^{[5]} \quad K_e = k_B + 0.0088B + 0.054B^{2/3}$$


Figure 4: Limitation due to non-optimal pH^[7]

$$[H^+] = 10^{(-pH)}$$

$$i([H^+]) = \frac{[H^+]}{[H^+] + k_{OH}(T) + [H^+]^2/k_{H}(T)}$$

$$pH = -\frac{1}{2} \log_{10} (k_w + k_{H} [CO_2])$$

Verification and Validation

Figure 5: Schematic of the pond used to model example problem 33-2 from Chapra's *Surface Water Quality Modeling*^[8]

- Center cell is a single-layer fully mixed lake (413.6 m long, 141.2 m wide, 10 m deep). Boundary conditions are defined on inflow and outflow cells (5 m long, 141.2 m wide, 10 m deep).
- Input flow provides algae (0.033 g/m³), phosphorus (0.01 g/m³), and water (0.0772 m³/s).
- Output flow removes fully mixed constituents at the rate of 0.0772 m³/s.

Table 1: System parameters for Chapra's example and Greenhouse model

Parameters	Chapra example 33-2	Greenhouse model
Initial concentration of chlorophyll/algae	0.5 mg Chl-a/m ³	40.6278 g/m ³
Maximum growth rate under optimal conditions	1 /day	4.25 /day
Loss due to combined respiration and excretion	0.1 /day	0.1 /day
Predation rate	0 /day	0 /day
Initial phosphorus concentration	9.5 mg P/m ³	3.1 g P/m ³
Input flux of phosphorus concentration	10 mg P/m ³	0 mg P/m ²
Half-saturation constant for phosphorus	2 mg P/m ³	2 mg P/m ³
Initial nitrate concentration	In excess	54.72 g/m ³
C:N ratio	6	25.3
C:P ratio	43.3	430
Initial CO ₂ concentration	NA	0.902 g/m ³
Half-saturation constant for CO ₂	NA	0.02772 g/m ³ ^[9]
Average light over daylight hours	400 ly/day	Variable
Background light extinction	0.1 /m	0.45 /m ^[10]
Optimal light intensity	250 ly/day	173 ly/day ^[11]
Photo period (fraction of day)	0.5	Variable
Minimum optimal temperature	20°C	18°C
Minimum suboptimum temperature effect coefficient	0 °C ⁻²	0.69°C ⁻²
Maximum optimal temperature	20°C	22°C
Maximum suboptimum temperature effect coefficient	0 °C ⁻²	0.007°C ⁻²
Water depth	10 m	0.211 m
-No benthic flux. -Constant reaeration. -No wind forcing. -No settling velocity.. -Riley's total light extinction.		

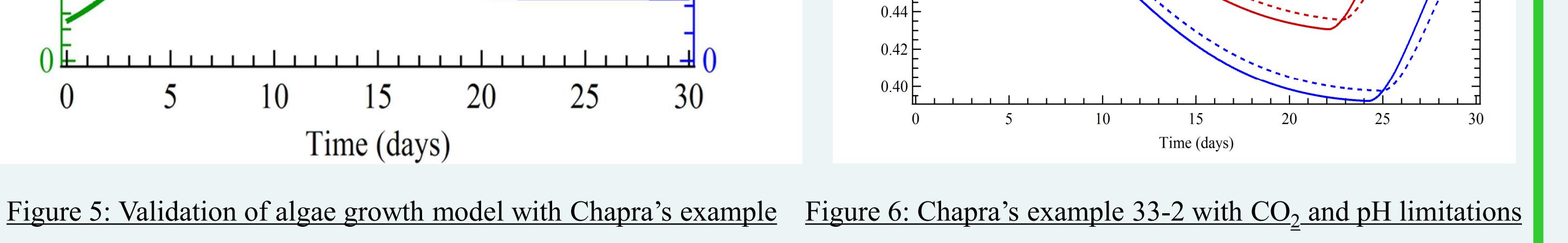
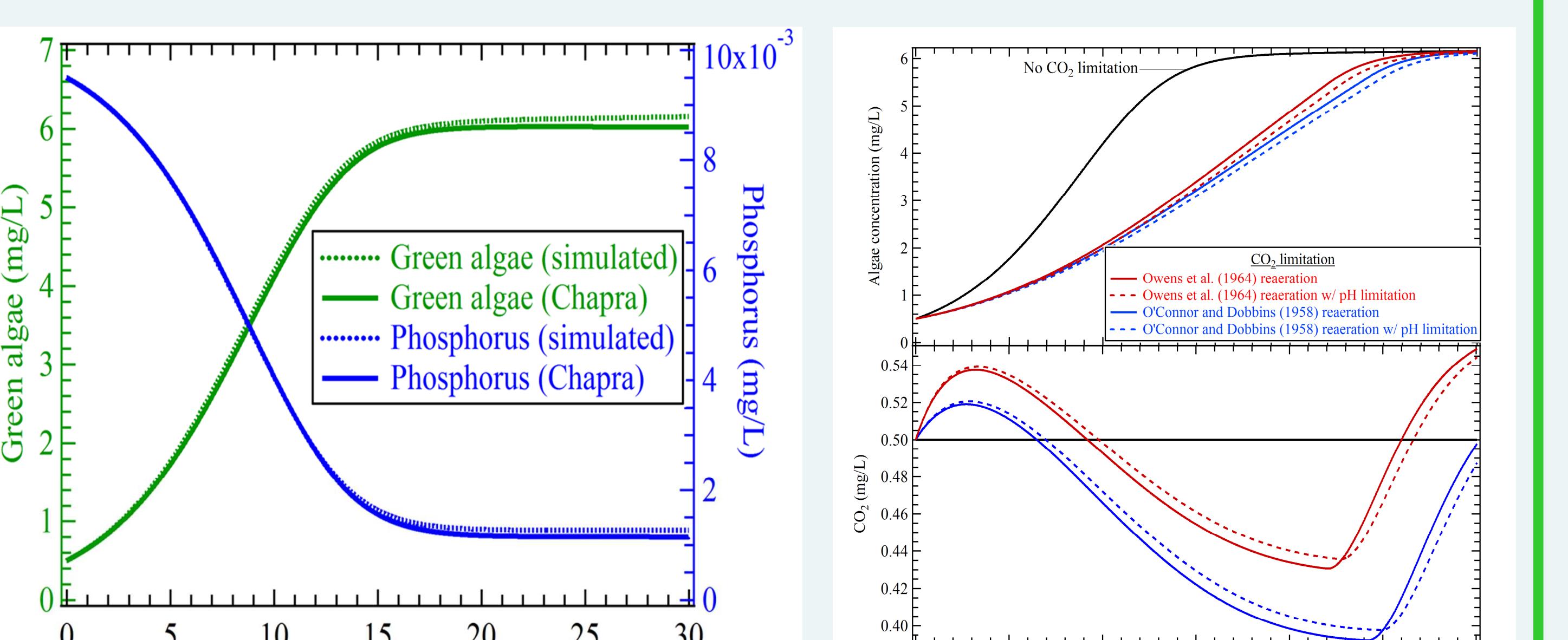



Figure 5: Validation of algae growth model with Chapra's example

Figure 6: Chapra's example 33-2 with CO₂ and pH limitations

- Figure 5 shows excellent agreement between Chapra's analytical solution and SNL-EFDC simulations for algae and total phosphorus concentration.
- Figure 6 shows simulations results without (solid curves) and with (dashed curves) pH limitation using one of two options for reaeration.
- In reaeration models, initially CO₂ concentrations increase due to reaeration while algae concentrations are quite low. As biomass increases, CO₂ concentrations decrease accordingly.
- As the algae growth rate decreases to zero, CO₂ levels increase due to reaeration supplying sufficient CO₂ to sustain the algae population at a constant concentration.
- In addition to CO₂ limitation, by including pH limitation, growth is further decreased.

Greenhouse model

- This model simulates growth of *Nannochloropsis salina* in a real pond maintained inside a greenhouse under known temperature and irradiance conditions.
- Schematics of the model is similar to the schematic shown in Figure 5 except that there are no nutrients added to the system other than CO₂ and there is no flow. A high C:N:P ratio of 430:17:1 (to simulate a nonideal nutrient environment) is assumed.
- Pond dimensions: 1.666 m long, 1.5 m wide, 0.211 m deep containing 0.53 m³ of growth medium.
- After 52 days, algal growth was inhibited by adding acid to the pond (no fit sought thereafter).
- Other model parameters are listed in Table 1 (notably $B_M = 0.1$ /day and half-saturation constants).

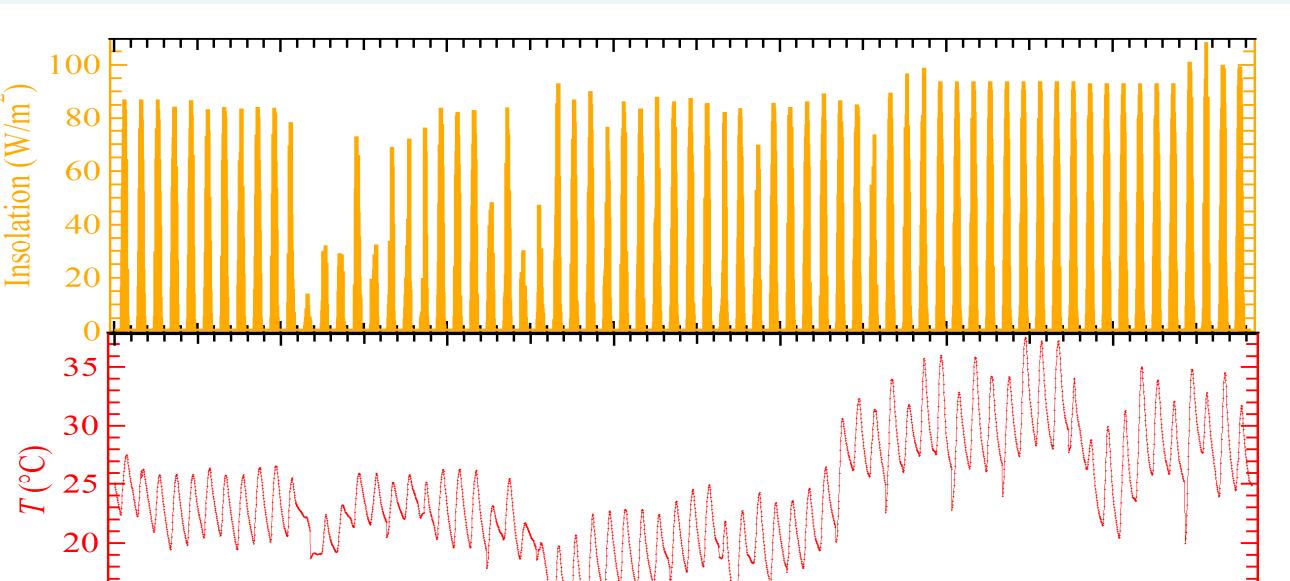


Figure 7: Light exposure and temperature of the algae pond



Figure 8: Algal biomass from the greenhouse experiment and corresponding model

Maximum growth rate for the model was obtained by performing a least squares fit of algal biomass growth to match measured concentrations using a parameter estimation code, PEST^[12]. A maximum growth rates of 4.25 /day was estimated for C:N:P = 430:17:1 and $B_M = 0.1$ /day.

References

- Hamrick, J.M., *A Three-Dimensional Environmental Fluid Dynamics Computer Code: Theoretical and Computational Aspects*, Virginia Institute of Marine Science Special Report 317, 1992.
- Cerco, C.F. and T. Col, *User's Guide to the CE-QUAL-ICM Three-Dimensional Eutrophication Model, Release Version 1.0*, U.S. Army Corps of Engineers Technical Report EL-95-15, 1995.
- Geider, R.J., Osborne, B.A., and Raven, J.A. 1985. Light dependence of growth and photosynthesis in *Phaeodactylum Tricornutum* (Bacillariophyceae). *J. Phycol.* 21, 609-619.
- DiToro, D., S. O'Connor, and R. Thormann, *A dynamic model of the phytoplankton population in the Sacramento-San Joaquin Delta. Nonequilibrium systems in water chemistry*, American Chemical Society, 131-180, 1971.
- Riley, G.A., *Oceanography of Long Island Sound, 1952-1954; II. Physical oceanography*. Bull. Bingham. Oceanog. Collection 1956, 15: p. 15-16
- Montagnes, D.J.S. and D.J. Franklin, *Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: reconsidering some paradigms*. *Limnology and Oceanography*, 46(8), 2008-2018, 2001.
- Mayo, A.W., *Effects of temperature and pH on the kinetic growth of unicellular Chlorella vulgaris cultures containing bacteria*. *Water Environment Research*, 69(1), 64-72, 1997.
- Chapra, S.C., *Surface water-quality modeling*, New York, McGraw-Hill, 1997.
- Raven, J.A. and A.M. Johnston, *Mechanisms of inorganic-carbon acquisition in marine phytoplankton and their implications for the use of other resources*. *Limnology and Oceanography*, 36(8), 1701-1714, 1991.
- Raymond C. Smith, K.S.B., *Optical properties of the clearest natural waters (200-800nm)*. *Applied Optics*, 1981. 20(2): p. 177-184
- Melis, A., *Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency*. *Plant Science*, 2009. 177(4): p. 272-280
- Doherty, J.E., *Manual for PEST: Model Independent Parameter Estimation*, Watermark Numerical Computing, Brisbane, Australia, 2009.