


Verification of Gradient and Hessian
Computation for Full Wavefield Inversion
Using Automatic Differentiation

Lijian Tan, Valery Brytik, Anatoly Baumstein,
David Hinkley

ExxonMobil Upstream Research Company

SAND2010-6787C

Outline

• Introduction

• Theory

• Numerical examples

• Summary

Motivation

• Full waveform inversion
– provides quantitative information about the subsurface structure

which may otherwise not be found using conventional processing
– is usually formulated as a minimization problem.

• Minimization problems are often solved using iterative gradient-
based methods.

• Gradient-based methods benefit from accurate evaluation of the
derivative of the objective function with respect to medium
parameters.

• Gradient can be computed in various ways.
– finite differences
– adjoint state method
– automatic differentiation

Gradient and its use

m1

m2

-gradient direction -local minima -global minimum


Schematic of Full Waveform Inversion (FWI) with
the Adjoint-State Method

Physics – wave equation
(acoustic, elastic, ...)

Update
Earth Model

Vp, Vs, 

Seismic
Data

Adjoint
Modeling

Marine Acquisition

Land Acquisition

Forward
Modeling

• Fit the complete wavefield – optimize |Gm - d|2

Residual
Data Fit Error

Simulated
Data

Key Advantage: Uses all of the data

d=data

m=model

G=forward simulation

Adjoint-State Method
Earth Model

Cij, density, Vp, Vs, ...

Forward Simulation (with check-
pointing)

Measured Prestack
Seismic DataCompute Residual

Adjoint Simulation (back-
propagation of residual)

Forward Simulation (using check-
points)

Compute Gradient (cross-
correlate forward and adjoint)
Compute Objective Function

Gradient volume for
each earth parameter

Objective Function
Evaluation

MPI job on 100’s or 1000’s of cores
Read Earth Model and Measured Seismic

Data at beginning
Output 3-D Gradient volumes and objective

function evaluation at the end

1 number

Several 3-D
volumes

Several 3-D
volumes

Up to a 5-D
volume


Comparison of gradient computation
approaches

• Finite differences
– Advantage: simplicity of formulation and implementation
– Disadvantage: very high computational cost.

• Automatic differentiation
– Advantage: produces perfect adjoint
– Disadvantage: relatively high cost: less than FD, but higher than

ASM. Difficult to apply to complex algorithms.
• Adjoint-state method

– Advantage: simplicity of formulation. Low cost.
– Disadvantage: relatively difficult implementation.
– Problem: "Discrete of adjoint is not always adjoint of the discrete”



Wave equation

Adjoint equations Discretize

Discretize Discrete adjoint equations

Continuous approach

Discrete approach – can be implemented using AD

Gradient 1

Gradient 2

Continuous vs. Discrete

Discretize

?=

Use AD to verify the gradient obtained using
the continuous approach

Continuous vs. Discrete Adjoints

• Continuous adjoint
– Derive adjoint, then discretize
– Pros: Adjoint is easy to derive and is independent of the

implementation (finite difference scheme)
– Cons: Once both forward and adjoint equations are disretized

(even using the same finite-difference scheme), the adjoint may
not be exact.

• Discrete adjoint
– Discretize, then derive adjoint
– Pros: Adjoint is exact
– Cons: More difficult to derive than in the continuous case; need to

re-derive the adjoint if finite-difference scheme changes.

Two different approaches to AD

Operator overloading automatic differentiation

Code transformation automatic differentiation

http://en.wikipedia.org/wiki/Automatic_differentiation

Automatic differentiation (AD) : ADOL-C

• Facilitates evaluation of first and higher derivatives of vector
functions that are defined by computer programs written in C or
C++.

• Derivative evaluation routines may be called from C,C++,
Fortran, or any other language that can be linked with C.

• Derivative calculations involve a possibly substantial but always
predictable amounts of data.

• Since the data is accessed strictly sequentially it can be
automatically paged out to external files.

AD basics: Chain rule

dx
dg

dg
df

dx
df

=

)())(()()(xgxgfxgf ′′=′

AD basics: Forward mode

http://en.wikipedia.org/wiki/Automatic_differentiation

)sin(),(12121 xxxxxf +×=

AD basics: Reverse mode

http://en.wikipedia.org/wiki/Automatic_differentiation

)sin(),(12121 xxxxxf +×=

AD basics: Forward Vs Reverse

• Forward mode
– Has limited memory requirements. The state of all variables is

updated as the source code proceeds.
– Very efficient when number of dependent variables is significant.

• Reverse mode
– At each stage of the reverse list, evaluation of the elemental

Jacobians requires numerical values of the corresponding
intermediate variables.

– The entire state of the code, including the values of all variables,
needs to be known at each time step.

– Very efficient for gradient computations.

Reverse mode, using checkpointing.

Gradient computations.

Forward:
 Slow, restricted to small models.

Reverse. No
checkpoining:

1.Fast. Slow if needs
to use I/O

2.Could be reused for
another velocity model

Reverse with checkpointing:
1.Resonably fast.

2. I/O could be reduced or
eliminated.

:

Reverse with checkpointing


Hessian*vector and Hessian computations
in ADOL-C

• ADOL-C package contains “easy-to-use” drivers for the
Hessian*vector and Hessian computations

• In the standard ADOL-C package checkpointing is not
implemented for the functions used in the procedures
computing “Hessian * vector” and as a consequence for
“Hessian” computations.

The applicability of these drivers is limited to very small models
due to the absence of checkpointing.

Resolving some limitations

• ADOL-C Hessian computation can be implemented with
checkpointing.

• Developed a Hessian computation algorithm for general
objective function and acquisition geometry as appropriate for
FWI.



100 by 100 mesh, with 20m spacing, rho=1
Total simulation time 1.9s; source at the red dot, 64 receivers along the green line.

This “ball” doesn’t exist in the initial model

Source information

Numerical examples



ADOLC gradient Adjoint gradient

i=20,22 i=20,22

Numerical examples


Gradients along two lines

Adolc gradient Adjoint gradient

i=20

i=22

Numerical examples


2nd-order algorithm without PML

Adolc gradient Adjoint gradient FD gradient

fd-adolc gradient adjoint-adolc gradient


Differences, magnified

fd-adolc gradient adjoint-adolc gradient

10^-16

10^-18


Adolc for a relatively large model

Marmousi with grid size 1701*351;
Dirichlet boudary condition.
Initial model generated by smooth the true model (not shown here).

Adjoint Gradient

ADOLC Gradient

ADOLC Gradient – Adjoint Gradient

Discussion

• Automatic differentiation is a valuable benchmarking tool for the
validation of the current gradient computations.

• For the purpose of gradient and Hessian computations the
reverse mode with checkpointing appeared to be the most
efficient.

Backup



Direct equations E(c)= 0

Continuous equations Adjoint equations

Discrete direct equations Discrete adjoint equations

Continuous approach

Discrete approach

Gradient 1

Gradient 2

- =

Continuous vs. Discrete



  







+








∇+∂−+= sP

zyxc
dtdVcPEcPj tt

2
2),,(

1)]([],,[λλ

2
2

1 (, , ,) (, , ,)
(, ,)

(, , ,) [(, , ,) (, ,)] ()
(, , ,) (, , ,) 0

tt

t

x y z t S x y z t
c x y z
S x y z t P x y z t Data x y t z
x y z T x y z T

λ

δ

λ λ

 
∂ −∇ = 

 
= −

= ∂ =
0

0

=

=

δλ
δ
δ
δ

j
P
j

Continuous Adjoint approach

()() ∂∂−==
T

tt dtP
cdc

dE
c
j

0
3

2
λ

δ
δ

From P and λ evaluate the gradient

Constrained minimization problem adjoint field

A sort of wave

equation with source

term = residual error

Back in time!



  







+








∇+∂−+= sP

zyxc
dtdVcPEcPj tt

2
2),,(

1)]([],,[λλ

2
2

1 (, , ,) (, , ,)
(, ,)

(, , ,) [(, , ,) (, ,)] ()
(, , ,) (, , ,) 0

tt

t

x y z t S x y z t
c x y z
S x y z t P x y z t Data x y t z
x y z T x y z T

λ

δ

λ λ

 
∂ −∇ = 

 
= −

= ∂ =
0

0

=

=

δλ
δ
δ
δ

j
P
j

Continuous Adjoint approach

()() ∂∂−==
T

tt dtP
cdc

dE
c
j

0
3

2
λ

δ
δ

From P and λ evaluate the gradient

Constrained minimization problem adjoint field

A sort of wave

equation with source

term = residual error

Back in time!

Discrete vs. Continuous

)),,,(),,,((1),,,(tzyxPttzyxP
t

tzyx
t
P

−Δ+
Δ

=
∂

∂

)),,,(),,,((1),,,(tzyxPtzyxxP
x

tzyx
x
P

−Δ+
Δ

=
∂

∂

Tape mode

• Development of the ADOLC-C software package is based on
the decision to store all data necessary for derivative
computation on “tapes”, where large applications require the
tapes to be written out to the corresponding files. It means that
the code starts to use I/O in the case of tape size exceeding
size of the memory buffer.
• Advantages:

• Enables ADOLC-C to offer multiple functions
• Very fast, if the buffer size is sufficient
• Could be reused to compute gradients for multiple velocity models

• Disadvantage:
• Extensive use of I/O means a considerable drawback in terms of run

time due to the excessive disk accesses. Could be used with the
checkpointing procedure which gives us tradeoff between memory
use and computational complexity.

AD basics: Overloading. Forward mode.

Hessian

