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Motivation

• Full waveform inversion 
– provides quantitative information about the subsurface structure

which may otherwise not be found using conventional processing
– is usually formulated as a minimization problem. 

• Minimization problems are often solved using iterative  gradient-
based methods. 

• Gradient-based methods benefit from accurate evaluation of the 
derivative of the objective function with respect to medium 
parameters. 

• Gradient can be computed in  various ways.
– finite differences
– adjoint state method
– automatic differentiation



Gradient  and its use

m1

m2

-gradient direction -local minima -global minimum




Schematic of Full Waveform Inversion (FWI) with 
the Adjoint-State Method
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Key Advantage:  Uses all of the data
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G=forward simulation



Adjoint-State Method
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
Comparison of gradient  computation 
approaches

• Finite differences 
– Advantage: simplicity of formulation and implementation
– Disadvantage: very high computational cost.

• Automatic differentiation
– Advantage: produces perfect adjoint
– Disadvantage: relatively high cost: less than FD, but higher than 

ASM. Difficult to apply to complex algorithms.   
• Adjoint-state method 

– Advantage: simplicity of formulation. Low cost.
– Disadvantage: relatively difficult implementation.
– Problem: "Discrete of adjoint is not always adjoint of the discrete”
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Wave equation

Adjoint equations Discretize

Discretize Discrete adjoint equations

Continuous approach

Discrete approach – can be implemented using AD

Gradient 1

Gradient 2

Continuous vs. Discrete

Discretize
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Use AD to verify the gradient obtained using 
the continuous approach



Continuous vs. Discrete Adjoints

• Continuous adjoint
– Derive adjoint, then discretize
– Pros: Adjoint is easy to derive and is independent of the 

implementation (finite difference scheme)
– Cons: Once both forward and adjoint equations are disretized

(even using the same finite-difference scheme), the adjoint may 
not be exact.

• Discrete  adjoint
– Discretize, then derive adjoint
– Pros: Adjoint is exact
– Cons: More difficult to derive than in the continuous case; need to 

re-derive the adjoint if finite-difference scheme changes.



Two different approaches to AD

Operator overloading automatic differentiation

Code transformation automatic differentiation

http://en.wikipedia.org/wiki/Automatic_differentiation



Automatic differentiation (AD) : ADOL-C

• Facilitates evaluation of first and higher derivatives of vector
functions that are defined by computer programs written in C or 
C++. 

• Derivative evaluation routines may be called from C,C++, 
Fortran, or any other language that can be linked with C.

• Derivative calculations involve a possibly substantial but always 
predictable amounts of data. 

• Since the data is accessed strictly sequentially it can be 
automatically paged out to external files.



AD basics: Chain rule
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AD basics: Forward mode

http://en.wikipedia.org/wiki/Automatic_differentiation

)sin(),( 12121 xxxxxf +×=



AD basics: Reverse mode

http://en.wikipedia.org/wiki/Automatic_differentiation
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AD basics: Forward Vs Reverse 

• Forward mode
– Has limited memory requirements. The state of all variables is 

updated as the source code proceeds.
– Very efficient when number of dependent variables is significant.

• Reverse mode
– At each stage of the reverse list, evaluation of the elemental 

Jacobians requires numerical values of the corresponding 
intermediate variables. 

– The entire state of the code, including the values of all variables, 
needs to be known at each time step. 

– Very efficient for gradient computations.



Reverse mode, using checkpointing.



Gradient computations.

Forward:
 Slow, restricted to small models.

Reverse. No 
checkpoining:

1.Fast. Slow if needs 
to use I/O

2.Could be reused for 
another velocity model

Reverse with checkpointing:
1.Resonably fast.

2. I/O could be reduced or 
eliminated. 

:

Reverse with checkpointing




Hessian*vector and Hessian computations
in  ADOL-C

• ADOL-C package contains “easy-to-use” drivers for the 
Hessian*vector and Hessian  computations

• In the standard ADOL-C package checkpointing is not 
implemented for the functions used in the procedures 
computing “Hessian * vector” and as a consequence for 
“Hessian” computations.

The applicability of these drivers is limited to very small models
due to the absence of checkpointing.



Resolving some limitations

• ADOL-C Hessian computation can be implemented with 
checkpointing.

• Developed a Hessian computation algorithm for general 
objective function and acquisition geometry as appropriate for 
FWI. 
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100 by 100 mesh, with 20m spacing, rho=1
Total simulation time 1.9s; source at the red dot, 64 receivers along the green line. 

This “ball” doesn’t exist in the initial model

Source information

Numerical examples





ADOLC gradient Adjoint gradient

i=20,22 i=20,22

Numerical examples




Gradients along two lines

Adolc gradient Adjoint gradient

i=20

i=22

Numerical examples




2nd-order algorithm without PML

Adolc gradient Adjoint gradient FD gradient

fd-adolc gradient adjoint-adolc gradient




Differences, magnified

fd-adolc gradient adjoint-adolc gradient

10^-16

10^-18




Adolc for a relatively large model

Marmousi with grid size 1701*351;
Dirichlet boudary condition. 
Initial model generated by smooth the true model (not shown here).



Adjoint Gradient



ADOLC Gradient



ADOLC Gradient – Adjoint Gradient



Discussion

• Automatic differentiation is a valuable benchmarking tool for the 
validation of the current gradient computations.

• For the purpose of gradient and Hessian computations the 
reverse mode with checkpointing appeared to be the most 
efficient.



Backup





Direct equations E(c)= 0

Continuous equations Adjoint equations

Discrete direct equations Discrete adjoint equations

Continuous approach

Discrete approach

Gradient 1

Gradient 2

- =

Continuous vs. Discrete
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Discrete vs. Continuous
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Tape mode

• Development of the ADOLC-C software package is based on 
the decision to store all data necessary for derivative 
computation on “tapes”, where large applications require the 
tapes to be written out to the corresponding files. It means that 
the code starts to use I/O in the case of tape size exceeding 
size of the memory buffer.
• Advantages: 

• Enables ADOLC-C to offer multiple functions
• Very fast, if the buffer size is sufficient
• Could be reused to compute gradients for multiple velocity models

• Disadvantage: 
• Extensive use of I/O  means a considerable drawback in terms of run 

time due to the excessive disk accesses.  Could be used with the
checkpointing procedure  which gives us tradeoff between memory  
use and computational complexity. 



AD basics: Overloading. Forward mode.



Hessian


