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MOtivation A Upstream Research

Full waveform inversion

— provides quantitative information about the subsurface structure
which may otherwise not be found using conventional processing

— is usually formulated as a minimization problem.

Minimization problems are often solved using iterative gradient-
based methods.

Gradient-based methods benefit from accurate evaluation of the
derivative of the objective function with respect to medium
parameters.

Gradient can be computed in various ways.

— finite differences

— adjoint state method

— automatic differentiation
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Schematic of Full Waveform Inversion (FWI) with  EX{onNobil
the Ad_joint-State Method Upstream Research
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Key Advantage: Uses all of the data



Adjoint-State Method

Upstream Research
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Comparison of gradient computation Ex¢zonMobil
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appr oaches Upstreamn Research

* Finite differences
— Advantage: simplicity of formulation and implementation
— Disadvantage: very high computational cost.

* Automatic differentiation
— Advantage: produces perfect adjoint

— Disadvantage: relatively high cost: less than FD, but higher than
ASM. Difficult to apply to complex algorithms.

* Adjoint-state method
— Advantage: simplicity of formulation. Low cost.
— Disadvantage: relatively difficult implementation.
— Problem: "Discrete of adjoint is not always adjoint of the discrete”



Continuous vs. Discrete Xxonivioot

Upstream Research

Continuous approach

|— Adjoint equatons —— Discretize N > Gradient 1
: | -~

Wave equation — > Discretize
—> Discretize — Discrete adjoint equations Y*—» Gradient 2

Discrete approach — can be implemented using AD

Use AD to verify the gradient obtained using
the continuous approach



Upstream Research

Continuous vs. Discrete Adjoints

e Continuous adjoint
— Derive adjoint, then discretize

— Pros: Adjoint is easy to derive and is independent of the
implementation (finite difference scheme)

— Cons: Once both forward and adjoint equations are disretized
(even using the same finite-difference scheme), the adjoint may

not be exact.
* Discrete adjoint
— Discretize, then derive adjoint
— Pros: Adjoint is exact

— Cons: More difficult to derive than in the continuous case; need to
re-derive the adjoint if finite-difference scheme changes.



Two different approaches to AD

Upstream Research

function.c

diff_function.c

diff_function.o

Code transformation automatic differentiation

function.c++

DualNumbers.h

Operator overloading automatic differentiation

http://en.wikipedia.org/wiki/Automatic_differentiation



Automatic differentiation (AD) : ADOL-C RO ipatrean Rescarch

* Facilitates evaluation of first and higher derivatives of vector
functions that are defined by computer programs written in C or
C++.

e Derivative evaluation routines may be called from C,C++,
Fortran, or any other language that can be linked with C.

* Derivative calculations involve a possibly substantial but always
predictable amounts of data.

e Since the data is accessed strictly sequentially it can be
automatically paged out to external files.
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AD basics: Chain rule

(fog)(x)=f(g(x)g (x)

df df dg
dx dg dx




AD basics: Forward mode “ AN Upstream Research
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AD basics: Reverse mode RO e Research

f(x,x)=x%xx, +sin(x,)
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AD basics: Forward Vs Reverse xonviodl!

Upstream Research

e Forward mode

— Has limited memory requirements. The state of all variables is
updated as the source code proceeds.

— Very efficient when number of dependent variables is significant.

e Reverse mode

— At each stage of the reverse list, evaluation of the elemental

Jacobians requires numerical values of the corresponding
intermediate variables.

— The entire state of the code, including the values of all variables,
needs to be known at each time step.

— Very efficient for gradient computations.
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Reverse mode, using checkpointing.

Upstream Research
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Gl‘adient comPUtations. A Upstream Research

Forward: Reverse. No
' checkpoining:

v Slow, restricted to small models. v'1.Fast. Slow if needs

to use 1/0

v'2.Could be reused for
another velocity model

Reverse with checkpointing:

v'1.Resonably fast. ] WINNER:

v'2.1/0 could be reduced or Reverse with checkpointing

eliminated.




Hessian*vector and Hessian computations El;c‘ﬁur::z- N
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in ADOL-C pstream Researc

« ADOL-C package contains for the
and computations

* |nthe standard ADOL-C package checkpointing is not
implemented for the functions used in the procedures
computing and as a consequence for

computations.

The applicability of these drivers is limited to
due to the absence of checkpointing.
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Resolving some limitations " Upstream Research

e ADOL-C can be implemented with

algorithm for
and as appropriate for
FWI.



Numerical examples

100 by 100 mesh, with 20m spacing, rho=1

Total simulation time 1.9s; source at the red dot, 64 receivers along the green line.
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Numerical exampleS o Upstream Research
ADOLC gradient Adjoint gradient
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Numerical examples
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2nd-order algorithm without PML
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Differences, magnified EX(onhiobi

fd-adolc gradient adjoint-adolc gradient
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Adolc for a relatively large model
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Upstream Research

Marmousi with grid size 1701*351;
Dirichlet boudary condition.
Initial model generated by smooth the true model (not shown here).
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Adjoint Gradient
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ADOLC Gradient
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ADOLC Gradient — Adjoint Gradient
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DiSCUSSion o Upstream Research

* Automatic differentiation is a valuable benchmarking tool for the
validation of the current gradient computations.

* For the purpose of gradient and Hessian computations the

reverse mode with checkpointing appeared to be the most
efficient.



Backup




Continuous vs. Discrete

Continuous approach

AN .,
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— Continuous equations — Adjoint equations

\ 4

Direct equations E(c)=0

—» Discrete direct equations — Discrete adjoint equations ———»
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Continuous Adjoint approach ~ =X°M"obt

Upstream Research

Constrained minimization problem adjoint field

J'M,P,c]=E[P(c)]+jdedMK— - : 8”+V2jP+s}
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Upstream Research

Continuous Adjoint approach

Constrained minimization problem adjoint field
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Discrete VS. Continuous o Upstream Research
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Tape mode

Upstream Research

 Development of the ADOLC-C software package is based on
the decision to store all data necessary for derivative
computation on “tapes”, where large applications require the
tapes to be written out to the corresponding files. It means that
the code starts to use I/O in the case of tape size exceeding

size of the memory buffer.

- Advantages:
- Enables ADOLC-C to offer multiple functions
« Very fast, if the buffer size is sufficient

« Could be reused to compute gradients for multiple velocity models

- Disadvantage:

Extensive use of /O means a considerable drawback in terms of run
time due to the excessive disk accesses. Could be used with the
checkpointing procedure which gives us tradeoff between memory
use and computational complexity.



AD basics: Overloading. Forward mode. oo

class doublet
{ double val;
double dot; }

doublet operator* (doublet a, doublet b)
{ doublet c;

c.val = a.val*xb.val;

c.dot = a.dot*b.val+a.val*b.dot;
return c; }

In order to implement the forward approach to caleulating a tangent vector, it
15 convenient to have a data tyvpe doublet that contains two fHoating point values,
corresponding to the calculated wvalues of a variable and the corresponding dotted
variable, v; and #;, respectively.
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