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Synthetic simulations from a 2 1/2D model with real 3D topography
Stig Hestholm and Warren Ross, ExxonMobil Upstream Research Company

SUMMARY

Elastic and viscoelastic simulations have been pursued for a 2
1/2D model covered by a real 3D free surface topography. A
2D model has been extended into 2 1/2D to perform full 3D
elastic and viscoelastic simulations. Seismograms and snap-
shots have been computed comparing free surface topography
with the corresponding free plane surface simulations. Topog-
raphy of only a very modest amount caused noticeable differ-
ences in the forward—scattered wavefield. We also compared
viscoelasticity with elastic simulations, with and without to-
pography. Q being very low for this example, the effect of
viscoelasticity is to virtually eliminate the effect of modest to-
pography. Nonetheless, small differences in amplitude still re-
main. For situations with higher O or more pronounced eleva-
tion changes, incorporating topography is an important step in
accurate surface—wave simulation and inversion.

INTRODUCTION

The free surface topography is the interface used in seismic
modeling across which we encounter the most significant ma-
terial property changes. Given this, along with the fact that
elevation is among the best known data available, it should be
accounted for in seismic modeling. In order to model free sur-
face topography, various flavors on a few methods have been
attempted. A tensorial formulation using irregular grids (Ko-
matitsch et al., 1996) was used, as well as the more recently
investigated spectral element method (Komatitsch et al., 1999,
2000). Its popularity is due to relatively high stability and
dispersion bounds compared to other finite—element methods
(Basabe and Sen, 2007), along with its inherent ability to ex-
actly model free surfaces of any shapes due to its weak (in-
tegral) formulation of wave equations. For the same accuracy
however, the computational cost is higher than using the finite—
difference (FD) method, and this is all the more pronounced
given the fact that up to 80% of the work during a simulation
setup is typically dedicated to create the grid to represent the
model necessary for the simulation. Such detailed represen-
tation of a model is unwarranted given that model interfaces
of the subsurface are usually known only to within reflected
P-wavelengths, which are increasing with depth.

Tessmer and Kosloff (1994); Tessmer et al. (1992) employ
Chebyshev polynomials to discretize a wavefield formulation
where the governing equations are transformed from a curved
to a rectangular grid. The curved grid is automatically adapted
to given surface topography elevation data and curvatures are
gradually decreased with grid depth onto a plane surface at
its bottom. Using this principle with FD discretization (Hes-
tholm and Ruud, 1998; Hestholm, 1999), elastic and viscoelas-
tic modeling were done with less cost and without any grid
preparation procedure necessary for the spectral element method.
Free-boundary conditions for surface topography (Hestholm

and Ruud, 2002) were implemented at the upper model bound-
ary, and no grid preparation is required for known surface ele-
vation data.

We have pursued full 3D synthetic simulations for a 3D topog-
raphy over a 2 1/2D medium derived from a real region, with
and without topography, and using elastic and viscoelastic al-
gorithms for corresponding simulations. Lower Q—values for
P— and S—waves are used in the upper 50m of the viscoelastic
simulations, which are based on time domain algorithms em-
ploying memory variables for time convolutions (Blanch et al.,
1995; Carcione et al., 1988; Carcione, 1993).

GOVERNING EQUATIONS AND BOUNDARY CONDI-
TIONS FOR 3D ELASTIC MEDIA

We introduce a linear mapping from a rectangular (&, k,1)—
grid to a curved grid in the (x,y,z)-system where both grids
have positive direction upwards. The 3-D mapping can be
written
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20(€, k) is the topography function, and the rectangular (&, &, 17)—
grid is bounded by & =0, & = &4 and kK =0, K = Kpax
horizontally and 1 = 0 and 17 = 1n,,4 vertically. The degree
of stretching of the curved grid in the (x,y,z)-system is pro-
portional to the height above the bottom plane (z = 0). We
assume the curved grid to be located in a Cartesian (x,y,z) co-
ordinate system where the velocity—stress formulation of the
seismic wave equations is valid. Then we transform the equa-
tions into the rectangular, computational (&, k, 7)—grid by us-
ing the chain rule and employing expressions for the partial
derivatives of the coordinates (Hestholm, 1999),
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We obtain the velocity—stress formulation of the elastic and
viscoelastic wave equations in the rectangular (&, k, 17)—grid
(Hestholm and Ruud, 1998; Hestholm, 1999), from which the
elastic wave equations for stresses are

du du v v ow
- 0 (ag tAS Yo tBan +Cf977>

v v 9
ou (: B +CW>, %

d0xx
ot




Synthetic topography simulations

ag;y = H(gg +A@+3—v+ iv]JngZ)
—2u (%+A‘9“+c§:) ®)
agf - n<§§+A§Z+3;+ gv +C§Z>
—2u (gg+A8”+§V+ g;) ©)
aaiz‘y = (3Z+B§Z+3E+Aav>, (10)
aaal” - u (cgz +§—vg +A‘9W> 7 (11
a;;’z = u (Cg; +% +B§:7V> , (12)

which are needed in the derivation of the surface topography
boundary conditions. Here p is the density, IT is the relaxation
modulus for P-waves, IT= 2 +2u (A and u are the Lamé pa-
rameters), and U is the relaxation modulus for S—waves. The
body forces are added in the momentum conservation equa-
tions (not shown here), u, v and w are the particle velocity
components and Oyy, Oyy, Oz, Oxy, Oy, and Oy, are the stress
components. Together with the equations of motions these are
the curved grid stress—strain relations governing wave propa-
gation in a linear isotropic elastic medium. For viscoelasticity
(Blanch et al., 1995), memory variables are added to equations
(7)-(12), and additional equations are solved for them.

The boundary condition at any free surface is that the traction
vector T vanishes, T=rti= 0, i.e., in Cartesian coordinates,
o;;nj =0, where 7 is the stress tensor with components o;; and
7 is a normal vector to the local surface point with components
nj; i,j = 1,2,3. Any normal vector may be used, even though
T is defined by the unit normal vector. In 3-D we can choose

T
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with hy = dzo(&,x)/d& and hy = dz(&, k) /I K; h being the
elevation data function and 7 means transposed. Partially dif-
ferentiating the equations o;;n; = 0 with respect to time and
using the given 7 yields
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We now substitute the expressions for all time differentiated
stresses from equations (7)—(12). Then equations (14)—(16)
become
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Using the properties from equations (4)—(6) valid at the sur-
face, A = —Chy and B = —Chy, and rearranging terms give the
following form of equations (17)—(19),
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Equations (20)—(22) are exact 3—-D boundary conditions for
an arbitrary, smooth, free surface topography. They are dis-
cretized by second—order centered staggered FD operators. Near
the free surface, gradually decreased order of centered stag-
gered FD methods are used (Fornberg, 1988), while staggered
8th order FDs are employed in the interior of the domain (Kinde-
lan et al., 1990; Holberg, 1987). The exponential damping
method of Cerjan et al. (1985) is applied within absorbing
strips at the sides and bottom of the computational domain,
together with viscoelastic damping (low Q).

SIMULATIONS FROM A REAL REGION

A real 3D topography and a 2D subsurface model is chosen
for all seismic simulations, extending the 2D model to 2 1/2D.
The 2D section is 1250m long in the x-direction and 350m
deep. It is extended to 200m in the y-direction and discretized
by a grid sampling of Im. Lee and Ross (2008) describe in
some detail the derivation of this model. Due to the 200m
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absorbing boundaries at the ends and bottom, the medium is
effectively 850m long in the x-direction and 150m deep. Only
40m absorbing strips are used in the y-direction, to make the
effective model length in the y-direction to be 120m. Figure 1
is the cross-section of the S—wave velocities, which are as low
as 184 m/s near the surface. P—velocities range up to around
2600 m/s.
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Figure 1: S-velocity of 2D cross-section.
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Figure 2: Surface view of real 3D topography used.

A Ricker P-wave source with 10 Hz central frequency is in-
serted at x = 325m, y = 100m, at Sm depth. We will compare
snapshots and seismograms for four different scenarios using
the 2 1/2D model of cross section of Figure 1 and real free
surface topography of Figure 2: 1) Elastic with surface topog-
raphy; 2) Elastic with plane, free surface on top; 3) Viscoelas-
tic with surface topography, where Q = 10 in the upper 10m,
Q = 15 in the next 40m, and Q = 30 in the lower half-space
— the Q—values are mutual for both P— and S—waves; and 4)
Viscoelastic with plane, free surface on top and the Q—value
distribution of 3). Figure 3 represents snapshots of scenarios
1)-4) above at time 2s, displaying the vertical particle veloc-
ity w along the vertical xz—section of the model at y = 100m
(the middle of the y-dimension). The different snapshots of
Figure 3 are scaled relative to each other, and so it is note-
worthy to see how the low Q—values of the viscoelastic cases
(Figures 3(c) and 3(d)) weaken amplitudes as well as greatly
disperse waveforms compared to the exact same elastic cases
(Figures 3(a) and 3(b)). The modest topographic elevation dif-
ferences of only about 8m (Figure 2) do not cause large scatter-
ing effects however, as can be seen when comparing the elastic
topography case (Figure 3(a)) with the plane surface case (Fig-
ure 3(b)), and to a lesser extent when comparing the viscoelas-
tic topography case (Figure 3(c)) to its plane surface analogue
(Figure 3(d)). After 2 seconds the clearest visible differences
are a few wavefront disruptions in the topography cases. For
the elastic cases, the topography causes some wavefront am-
plitude amplification - seen in particular at the right portion
of Figure 3(a) when comparing with Figure 3(b). Some am-
plification from topography can also be seen in some of the
isolated waveforms of the viscoelastic cases.
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Figure 3: Vertical particle velocity snapshots at time 2 seconds
along the vertical xz-plane of scenarios 1)—4) listed.
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Figure 4: Pressure seismograms of scenarios 1) and 2) de-
scribed. The 650 1m-spaced receivers are decimated by 7,
to constitute 7m between each trace shown.

Pressure seismograms up to 3.5s are shown for scenarios 1)—
4) in the two next figures. Figure 4 displays the two elastic
simulations with (Figure 4(a)) and without (Figure 4(b)) to-
pography, and although the two seismograms are similar, the
wavefield is more broken up in the forward scattered field in
the topography case after 1.5s simulation time. Even for this
modest topography, a clear difference in the wavefields can
be noted. There is precedence in the literature for this. Ob-
servations (Lee et al., 2009) show a teleseismic example in
which scattering from topography is visible for elevation to S—
wavelength ratio of 1:6. Due to the strong attenuation resulting
from the low Q—values applied, the corresponding viscoelastic
seismograms (Figure 5) has amplitudes enhanced by a factor
10 compared to Figure 4, and acts to downplay the importance
of including topography in modeling of domains of high at-
tenuation. Even the low—frequency Rayleigh (Rg) waves are
attenuated to the extent of showing no significant scattering
due to topography. When comparing the topography case (Fig-
ure 5(a)) with the plane surface case (Figure 5(b)), only a few
broken—up waveforms around 1.5s are seen to be different be-
fore the medium attenuation causes the subsequent waveforms
to decay in amplitude and to be very similar between the to-
pography and no—topography cases.

CONCLUSIONS

We simulated a Ricker wavelet at the surface of a real 3D to-
pography over a 2 1/2D medium, for elastic and real viscoelas-
tic media to assess and isolate effects of free surface topogra-
phy in each case. Elastic simulations reveal that even a mod-

est topography of only 8m elevation differences have clear ef-
fects on the scattered wavefields after enough time, even when
the central source S—wavelength is far greater than the typi-
cal elevation variation wavelength. Introducing the real vis-
coelastic layers however, downplays the importance of inclu-
sion of this modest topography in simulations because even
low—frequency scattering is greatly attenuated and almost neg-
ligible after enough time. For earlier simulation times how-
ever, we see some clear differences between free surface to-
pography and plane surface results even in low—Q viscoelas-
tic cases. Furthermore, in cases where elevation changes ap-
proach the S—wavelength, we anticipate the effect of topogra-
phy will remain and become important in surface wave simu-
lation and inversion.
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Figure 5: Pressure seismograms of scenarios 3) and 4) de-
scribed. The 650 1m-—spaced receivers are decimated by 7,
to constitute 7m between each trace shown. Traces from the
viscoelastic runs are enhanced by a factor 10 from the ones in
Figure 4.
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