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1. INTRODUCTION

Geothermal Energy (GTE) Development requires knowing and understanding the fundamental systems of:
|. Heat Extraction (Reservoir Performance)

Heat Conversion (Plant Performance)

Well Field (Physical Operations)

Spatial Constraints (Geographic Limitations)

Economics
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Institutional Constraints

Failure to adequately understand of any of these systems and the relationships between these systems results in
higher uncertainty, lower investment rates, longer development times, and reduced market penetration.

A gap exists between the physical and non-physical aspects of GTE development (FIGURE 1).
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FIGURE | — THIS WORK BRIDGES THE GAP BETWEEN THE PHYSICAL AND NON-PHYSICAL ASPECTS OF GTE DEVELOPMENT.

2. OBJECTIVE

This work is filling the gap between the physics and analysis by creating an integrated systems model that
accounts for the inter-relationships and feedbacks between each of the six systems described above. The
model captures the dynamic and temporal relationships that cause the non-linear and un-intuitive behavior that
are difficult to assess.

3. METHODOLOGY

The approach is conceptualized as a multi-tiered system of systems where the upper most Tier is made up of
the six fundamental systems. Each system is dynamically linked where appropriate to the next. For instance,
the heat extraction and heat conversion calculations are mutually dependent (FIGURE 2).

Successive Tiers provide ever increasing detail to the upper Tier systems.

The model is designed to leverage research and analysis on an ongoing basis to include new understanding in
the model as it becomes available.
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FIGURE 2 — EACH TIER IS COMPOSED OF A SET OF SUB-TIERS (LEFT) WITH EACH SUCCESSIVE SUB-TIER PROVIDING INCREASING DETAIL.
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4. IMPLEMENTATION

The project consists of two parallel efforts:

|. Design and creation of the multi-tiered systems model

2. Stochastic simulation of reservoir performance

4b. STOCHASTIC SIMULATION OF RESERVOIR PERFORMANCE

4a. DESIGN AND CREATION OF THE MULTI-TIERED SYSTEMS MODEL

The current model simulates heat and fluid flow, pressure
and parasitic losses, and net power production for a
binary power plant at an EGS site (FIGURE 3). Heat
exchange between the reservoir and geofluid is calculated
using one of two analytical solutions; the Carslaw and
Jaeger (Carslaw and Jaeger, 1959) solution for a single
fracture, and the Gringarten (Gringarten et al, 1975)
solution for multiple, interacting fractures. More
complex solutions methods will be added to the model in

later versions

A user interface allows the user to quickly change input
values and to view output in real-time (FIGURES 4 & 5).
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Reservoir Characteristics

Initial Temperature 220.00 C
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Fractures per Producer 5.0

Fracture Aperature 0.27 mm

User Defined Well Distance 2,000.00 m
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Power Plant Characteristics

Size 20.0 MW
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Design Period 30.0 yr
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Thermal Efficiency 15.00 %
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Reinjection Temperature 80.0 C

Minimum Operating Temperature 180.0 C
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FIGURE 4 — THE CURRENT MODEL SIMULATES AN EGS FROM THE
EXIT POINT OF THE POWER PLANT TO THE ENTRY POINT, TREATING THE
POWER PLANT AS A ‘BLACK-BOX’. SEVERAL ANALYTICAL SOLUTIONS

2 ] - g ARE AVAILABLE TO SIMULATE RESERVOIR PERFORMANCE BUT THE MODEL
@—t—® MAINTAINS THE ABILITY TO INCLUDE MORE DETAILED SIMULATIONS.
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FIGURE 5 — SCREEN SHOT OF THE USER INTERFACE AND SELECTED OUTPUT GRAPHICS. THE RIGHT-MOST FIGURE ILLUSTRATES THE OUTPUT FROM A
RISK-BASED ASSESSMENT OF TEMPERATURE DECLINE AS A FUNCTION OF DISTANCE BETWEEN THE INJECTION AND PRODUCTION WELLS. THE RANGE

SHOWS THE 5-95 PERCENTILES.

The model is linked to the ‘Geothermal Electricity Technology Evaluation Model’ (Entingh et al., 2006) that is
used to perform the economic analysis piece of the evaluation.
means for the user to input GETEM specific variables. Where GETEM needs a static input to a dynamic
process (e.g. thermal drawdown rate), the model calculates an effective value at the end of the simulation that

gets passed into GETEM.

RESOURCE DEFINITION
Resource Type |EGS =
Base Calculation |Temperature g
Resource Temperature 225.00 C
Resource Depth 6,000.00 m
I/C Thermal Gradient | Calculate |
Calculated Thermal Gradient 35.83 C/km
I/C Ambient Design Temp |User Input |
Calculated Ambient Design Temp 13.79 C
User Input Ambient Desigh Temp 10.00 C
Plant Design Temperature 225.00 C
Subsurface Water Loss 2.00 %
Makeup Water Cost $100.00 per AF
ROCK PROPERTIES
Thermal Conductivity 3.0000 W/(m*C)
Specific Heat 0.9500 kJ/(kg*C)
Density 2,600.00 kg/m3

The systems model input
interface includes all the

inputs to GETEM, which

are mapped directly into

GETEM.
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A separate interface (FIGURE 6) provides a

More realistic reservoir performance scenarios are being developed as part of this project through a series of
dual permeability multi-phase simulations using TOUGH?2 (Battistelli, 1997). The simulations are using a geo-
statistical approach to generate ensembles of permeability fields across a range of fracture properties, fracture
and well configurations, power plant efficiencies, and flow rates (FIGURE 7). Simulations of the production
temperature over time will be aggregated to a set of look-up tables for use in the systems model. These results
will be included in future versions of the model.
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FIGURE 7 — GEOSTATISTICAL APPROACH TO GENERATING FRACTURE PERMEABILITY ENSEMBLES. THE PERMEABILITY FIELDS ARE USED AS INPUT TO
TOUGH?2 TO SIMULATE MULTI-PHASE HEAT TRANSFER ACROSS A WIDE RANGE OF PHYSICAL AND OPERATIONAL CONDITIONS.

5. CONNECTING TO OTHER TECHNOLOGIES AND ANALYSES
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FIGURE 6 — SCREEN SHOT OF A PIECE OF THE GETEM INPUT PAGE FROM THE MODEL (LEFT) AND THE CORRESPONDING ENTRY CELLSTO GETEM
(RIGHT). CALCULATED VALUES SUCH AS THERMAL DRAWDOWN RATES OR PUMPING REQUIREMENTS ARE CALCULATED AS EFFECTIVE VALUES AT THE END
OF THE SYSTEMS MODEL SIMULATION. THE ENTIRE RANGE OF INPUTS TO GETEM CAN BE ENTERED THROUGH THE SYSTEMS MODEL INTERFACE.
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FIGURE 8 — THE MULTI-TIERED APPROACH IS DESIGNED TO USE,AND BE USED BY, OTHER TECHNOLOGIES,ANALYSES,AND SIMULATIONS. THE MODEL CAN
BE USED FOR SCENARIO ANALYSIS, SITE EVALUATION,AND RISK ANALYSIS ASWELL AS FOR PRELIMINARY DESIGN AND ENGINEERING ASSESSMENT. THE FIRST
BETA VERSION IS SCHEDULED TO BE AVAILABLE BY THE END OF 2010.


http://www1.eere.energy.gov/geothermal/getem.html

