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• ExB Filter (Wein Filter)

• Focused ion beam system (FIB)

nm beam spot size on target

• Fast blanking and chopping

• Direct-write lithography

Multiple ion species

Single ion implantation

nm targeting accuracy 

nanoImplanter

Green – demonstrated at other labs
Gray – demonstrated at SNL
Yellow – attempting at SNL

What ion species are possible? 

What mass resolution is possible?

~1/3 the periodic table are available – including P, Sb and Bi

Direct write platform and in-situ electrical probes

• Low temperature stage

• In-situ electrical probes for measurement of ion 
strikes as they occur

• Built-in lithography software 
(Raith ELPHY Plus) capable of 
sub-nm resolution

m/m ~ 0.016, separates out isotopes 
of Sb and Si in this AuSiSb source
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Motivation of Work

Nanoscale Top-Down Ion Implant

Single Ion Detection

Counted Donor Transport

Outlook for Donor-QD Coupling
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x ~35 nm
y ~0 nm

SEM of nanostructure
Ion Beam Induced Charge 
(IBIC) of nanostructure

High resolution IBIC 

 Alignment resolution is dominated by beam spot size
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Number of Ions Detected

Ion Range below
SiO2

e-h pairs

20 keV Sb 11.5±4.9±4.3 nm ~1500

12 keV P 13.0±9.3±7.8 nm ~1100

10 keV Sb 5.5±3.0±2.9 nm ~500

7 keV P 5.7±6.1±5.1 nm ~500

Estimated Spot Size
- 20 keV Sb <50 nm
- 12 keV P ~100 nm

Can be reduced by ~40% 
with negative PS for OL lens 
(installing)
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 Outstanding donor results point towards the need for deterministic implants! 
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Integrated single ion detector 
with Si MOS nanostructure

200 keV Si – Quantized Ion Detection

 Single ion detection now down to 20 keV (50 keV last yr.) and improving!

How to make counted donor devices? 120 keV Sb into a 35 nm oxide layer
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 Noise profile

Implantation plan Detail of implant locations Use calibrated ion response to 
determine number of implanted ions

Low temperature transport in a counted ion implanted device Triangulation from the transport data
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 Transport observed in counted multi-donor devices, push down to single ion!

Previously, donor-donor coupling required strict placement, 
new designs relax donor placement requirements

What is needed to make this device?

1.) Target ion depth of ~5-15 nm below the SiO2

2.) Need to detect low energy ions

20 keV Sb detection
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= 2.5 - improve noise floor, in 

vacuum preamps, etc…

- improve gain – Geiger 
mode operation, sensitive 
to <100 e-h pairs!

3.) For any experiments that require nuclear spin ½ P implants

 Immediate path forward to donor-donor coupling

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned 
subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration 
under contract DE-AC04-94AL85000. 

Excellent agreement between the 
ratio of number of detected ions to 
Poisson probability distribution.

Make use of the donor-QD 
coupling to reduce donor 
placement requirements

Work to extend this design 
to donor-QD-QD-donor

QCAD simulations show simultaneous electron 
occupation and donor ionization are possible

1Sandia National Laboratories, Albuquerque, NM, 2Université de Sherbrooke, 3 Center for Computing Research, Sandia National Laboratories, Albuquerque, NM

Single Qubit Control

Manipulation time (us)
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Coherent Coupling of Single Donor to QD

Experiments performed on 31P donors in 28Si epi using timed implants

Single ion implantation can be used for the following:

1.) Respond to discovery on timed implant path

2.) Tool for understanding donor ‘activation’

3.) Evaluation of different ion species (P, Sb and Bi)

4.) Rapid turn-around for high yield single donor devices

20 keV Sb detected, if need 
low energies, we will:
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Donor-QD (few electron) will require a target depth of <15 nm
with a lateral spacing of ~35 nm between the donor and QD.

Very difficult to hit these 
targets using top down ion 
implantation!
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