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Overlay Grid Hex Meshing Method
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Sculpt Examples
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STL MRI Brain Model, Courtesy Bryce Owen
Brigham Young University, Provo, UT

Weapon Component Models Courtesy Stephen Recchia, 
US Army, Picitinni.  Used with Permission

V2 model 
courtesy Ansys, Inc

Weapon Component 
model, Sandia Labs

Eros Asteroid, STL Model



Scaled Jacobian
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Optimization for Surface Nodes
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Optimization for Surface Nodes

p

normal

Tu

Tv




Js 
pv


Js pv  Js (p)











Js 
pu


Js pu  Js (p)











Js 
p

Compute numerical 
gradient            on 
tangent plane

Js 
p

Optimize         of adjacent hexes 
to     (not surface quads)

Js 
p

p

Project          to surfacepnew



Distributed Meshing

CAD geometry Global overlay Cartesian grid

Cartesian grid decomposed and 
distributed amongst many 

processors

Each processor independently 
meshes its portion of Cartesian grid 
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Smoothing Strategies
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Mesh quality 
may be worse 
after Jacobi 
update

Jacobi Smoothing



Jacobi Smoothing

After several iterations, quality in most cases will improve



Jacobi Smoothing

After several iterations, quality in most cases will improve



After several iterations, quality in most cases will improve

Jacobi Smoothing

…But no guarantee that mesh 
quality will improve or that 
quality will oscillate between 
Jacobi updates.



Solution: Apply damping to node movement

Jacobi Smoothing

Optimum Node 
Locations based 
on Jacobi method
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Parallel Coloring
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Sculpt Smoothing Comparison
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Test Suite: 52 Single Part CAD Models
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Smoothing Procedure

60

Laplacian

Optimization 
with Damping

Coloring

2 iterations

5 iterations

Up to 100 
iterations

Default iterations Applied to which elements

All Hexes

Hexes with SJ < 0.6

Hexes with SJ < 0.2


