
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Parallel Mesh Optimization for
Grid-based Hex Meshes

Computational Modeling Sciences Department

US National Congress on
Computational Mechanics

San Diego, CA

July, 26th 2015

Steven J. Owen
Sandia National Laboratories,

Albuquerque, NM

SAND2015-6194C

Overlay Grid Hex Meshing Method

2

Overlay
Cartesian
Grid on
Geometry

Nodes
projected to
interfaces

Nodes
duplicated at
interfaces and
moved
orthogonally

Layers of
hexes created
at interfaces

Smoothing
performed

Sculpt Examples

3

STL MRI Brain Model, Courtesy Bryce Owen
Brigham Young University, Provo, UT

Weapon Component Models Courtesy Stephen Recchia,
US Army, Picitinni. Used with Permission

V2 model
courtesy Ansys, Inc

Weapon Component
model, Sandia Labs

Eros Asteroid, STL Model

Scaled Jacobian

4

1

0

2

3

4
5

6

7

Ei

E j

Ek

“Acceptable”

5

min Js  p

p

Compute minimum scaled
Jacobian, , of node in all
attached hexes

Optimization

pJs 
p

6

Optimization





x

y

p

py

px

Compute minimum scaled
Jacobian, , of node in all
attached hexes

pJs 
p

Compute numerical
gradient Js 

p

7

Optimization





x

y

p

py

px

Js px 

Js 
px


Js px  Js(p)











Compute minimum scaled
Jacobian, , of node in all
attached hexes

pJs 
p

Compute numerical
gradient Js 

p

8

Optimization





x

y

p

py

px

Js px 

Js 
px


Js px  Js(p)











Js py 
Compute minimum scaled
Jacobian, , of node in all
attached hexes

pJs 
p

Compute numerical
gradient Js 

p

Js 
py


Js py  Js (p)















9

Optimization

Js 
py


Js py  Js (p)















Js 
px


Js px  Js(p)











Js 
p

p

Compute minimum scaled
Jacobian, , of node in all
attached hexes

pJs 
p

Compute numerical
gradient Js 

p

10

Optimization

Js 
py


Js py  Js (p)















Js 
px


Js px  Js(p)











Js 
p

p

Compute minimum scaled
Jacobian, , of node in all
attached hexes

pJs 
p

Compute numerical
gradient Js 

p

Find improved by searching
along vector Js 

p

Js 
p

11

Optimization

Js 
py


Js py  Js (p)















Js 
px


Js px  Js(p)











Js 
p

ptest

p

Js 
ptest

Compute minimum scaled
Jacobian, , of node in all
attached hexes

pJs 
p

Compute numerical
gradient Js 

p

Find improved by searching
along vector Js 

p

Js 
p

12

Optimization

Js 
py


Js py  Js (p)















Js 
px


Js px  Js(p)











Js 
pptest

p
Js 

ptest

Compute minimum scaled
Jacobian, , of node in all
attached hexes

pJs 
p

Compute numerical
gradient Js 

p

Find improved by searching
along vector Js 

p

Js 
p

13

Optimization

Js 
py


Js py  Js (p)















Js 
px


Js px  Js(p)











Js 
p

ptest

p
Js 

ptest

Compute minimum scaled
Jacobian, , of node in all
attached hexes

pJs 
p

Compute numerical
gradient Js 

p

Find improved by searching
along vector Js 

p

Js 
p

14

Compute minimum scaled
Jacobian, , of node in all
attached hexes

Optimization

pJs 
p

Compute numerical
gradient Js 

p

Find improved by searching
along vector Js 

p

Js 
p pnew  ptest

15

Compute minimum scaled
Jacobian, , of node in all
attached hexes

Optimization

pJs 
p

Compute numerical
gradient Js 

p

Find improved by searching
along vector Js 

p

Js 
p

p

min Js 
p

Js 
p

Js 
p
 0.2

Stopping Criteria

Maximum 3 iterations

16

Optimization for Surface Nodes

p

normal

Tu

Tv

Compute numerical
gradient on
tangent plane

Js 
p

Optimize of adjacent hexes
to (not surface quads)

Js 
p

p

Project to surfacepnew

17

Optimization for Surface Nodes

p

normal

Tu

Tv




Js 
pv


Js pv  Js (p)











Js 
pu


Js pu  Js (p)











Js 
p

Compute numerical
gradient on
tangent plane

Js 
p

Optimize of adjacent hexes
to (not surface quads)

Js 
p

p

Project to surfacepnew

Distributed Meshing

CAD geometry Global overlay Cartesian grid

Cartesian grid decomposed and
distributed amongst many

processors

Each processor independently
meshes its portion of Cartesian grid

P0

P1

Communication for Smoothing

P0

P1

P0
Ghost
Region

P1

Ghost
Region

Communication for Smoothing

P0

P1

P0
Ghost
Region

P1

Ghost
Region

Boundary nodes on P1

Identify
corresponding
interior nodes

on P0

L01

Node locations
on P0 used to
update
boundary
nodes on P1

Communication for Smoothing

P0

P1

P0
Ghost
Region

P1

Ghost
Region

Boundary nodes on P0

Identify
corresponding
interior nodes

on P1

L01

Node locations
on P0 used to
update
boundary
nodes on P1

L10

Node locations
on P1 used to
update
boundary
nodes on P0

Communication for Smoothing

Smoothing Strategies

23

Gauss-Siedel

Jacobi

a

b c

a

b c

update

Order-dependent

Order-independent

Jacobi Smoothing

Jacobi Smoothing

Node to
smooth

Jacobi Smoothing

New Smoothed
Location
(stored)

Node to
smooth

Jacobi Smoothing

Jacobi Smoothing

New Smoothed
Location
(stored)

update

Mesh quality
may be worse
after Jacobi
update

Jacobi Smoothing

Jacobi Smoothing

After several iterations, quality in most cases will improve

Jacobi Smoothing

After several iterations, quality in most cases will improve

After several iterations, quality in most cases will improve

Jacobi Smoothing

…But no guarantee that mesh
quality will improve or that
quality will oscillate between
Jacobi updates.

Solution: Apply damping to node movement

Jacobi Smoothing

Optimum Node
Locations based
on Jacobi method

d2

d1

Jacobi Smoothing

Distance to
optimum

Distance to
optimum

Solution: Apply damping to node movement

d2

d1

N

N

Jacobi Smoothing
number of remaining
smoothing iterations

N =

Solution: Apply damping to node movement

Store/update
damped
location of
node

Jacobi Smoothing

Solution: Apply damping to node movement

Store/update
damped
location of
node

d1

d2

Jacobi Smoothing

Distance to
optimum

Distance to
optimum

d1

N

d2

N

Jacobi Smoothing

Solution: Apply damping to node movement

number of remaining
smoothing iterations

N =

Store/update
damped
location of
node

Jacobi Smoothing

Solution: Apply damping to node movement

Store/update
damped
location of
node

Parallel Coloring

40

Parallel Coloring

41

.20

Parallel Coloring

42

.20

Parallel Coloring

43

.20

.30

Parallel Coloring

44

.20

.30

Parallel Coloring

45

.20

.30

.25

Parallel Coloring

46

.20

.30

.25

Parallel Coloring

47

.20

.25

Parallel Coloring

48

Parallel Coloring

49

Parallel Coloring

50
P0 P1

Parallel Coloring

51
P0 P1

.20

.30

.25

Parallel Coloring

52
P0 P1

.20.20

.30

.25

Parallel Coloring

53
P0 P1

.30

.25

.20

.30

.25

.20

Parallel Coloring

54
P0 P1

.20

.25.25

.20

Parallel Coloring

55
P0 P1

Sculpt Smoothing Comparison

56

Test Suite: 52 Single Part CAD Models

min SJ<0.0

0.0<min SJ<0.1

0.1<min SJ<0.2

min SJ > 0.2

Optimization
No Damping

Optimization
With Damping

Optimization
No Damping +
Coloring

Optimization
With Damping +
Coloring

Minimum Mesh Quality
Test Suite: 52 Single Part CAD Models

0

0.05

0.1

0.15

0.2

0.25

No Damping Damping No Damping &
Color

Damping & Color

Average Minimum Mesh Quality
Test Suite: 52 Single Part CAD Models

59

0

20

40

60

80

100

120

140

Total Time in Smoothing
Test Suite: 52 Single Part CAD Models

Laplacian Optimization Coloring

T
im

e
 (

se
co

n
d

s)

Total Nodes: 516,806
Total Time: 186 s

8 Processors
Macbook Air
1.7 GHz Dual Core
8 GB RAM

Smoothing Procedure

60

Laplacian

Optimization
with Damping

Coloring

2 iterations

5 iterations

Up to 100
iterations

Default iterations Applied to which elements

All Hexes

Hexes with SJ < 0.6

Hexes with SJ < 0.2

