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• Compare different experimental substructuring techniques 
using two different systems

• Discover the best practices for experimental-numerical 
substructuring

Objective



Substructuring Theory
• Component Mode Synthesis (CMS) is used to combine two 

substructures to predict the dynamic response of the assembly

• This is useful when testing a full assembly is impractical or trying to 
analyze the effects of changing out different sub-assemblies

• These predictions can be very sensitive to interface errors where 
two substructures are joined

• In order to exercise the joints as they see in the assembly the 
experiment can be connected to known fixture  or transmission 
simulator (TS)

• The Craig-Mayes method uses the transmission simulator theory to 
create an experimental Craig-Bampton like form of the 
experimental results
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C - A + D = B

C A D B

• In the transmission simulator method a known transmission simulator 
(A) is subtracted from the experimental subsystem (C)

• Next a new subsystem (D) is added to the result creating the target 
assembly (B) 
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• Substructuring B=D+C-A by

– Craig-Mayes model of C-A attached to Craig-Bampton model of 
D ( CM-CB) and traditional transmission simulator (TS)

– 2 degrees off freedom used at 3 node locations as connection

Beam Example
C (Experiment)

A (Transmission Simulator)

D (Finite Element Model)

B (Assembly)
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Convergence Test
• In this simulation, the TS and CM-CB method show similar 

convergence rates given the same TS and experimental modes

• The convergence improves when TS modes estimate the connection 
points motion more accurately

• After including 
sufficient (e.g., >6) 
experimental modes 
convergence rates 
show no significant 
improvement

• Further improvement 
is observed when the 
first bending mode of 
TS is included 



Experimental System
• Experimental system consists of the can-plate-beam system packed 

with foam and some internal instrumentation pieces

• Testing complete with low-level excitations to avoid non-linearities
in the system

• 14 Elastic modes extracted from experimental data
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beamplatewashers
cylinder

ring

Components Element type Material

Beam, plate, cylinder, ring Higher order 3-D 20 node solid 6061-T6 Aluminum

Washer Higher order 3-D 20 node solid Steel

Finite Element Model
• Transmission components and properties



• System frequencies Measurement point

Experiment
[Hz]

Can-Plate-
Beam Only

% Difference
System A

Can-Plate-Beam
with Ring 

% Change Due 
to Ring

System D
Validation 
Structure

134.2 136.8 1.90 137.2 2.23 101.9

171.2 175.8 2.60 177.5 3.68 133.9

430.0 422.8 1.70 848.5 97.32 848.5

511.2 525.9 2.80 540.8 5.78 407.6

975.7 960.6 1.50 993.8 1.85 993.8

1027 1025 0.19 1026 0.019 861.5

1312 1312 0.00 1549 18.04 1548.7

1528 1535 0.45 1598.5 4.62 1598.6

1637 1610 1.68 1598.2 2.37 1707.8

1801 1835.15 1.86 1834.2 1.85 1924.6

1833 1835.35 0.12 1835.3 0.13 2108.5



DETECTION 
Wavelet Transform
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Most nonlinear modes (exercising 
the joints)
• Mode 1: First bending mode of 

the beam in the horizontal plane 
• Mode 2: First bending mode of 

the beam in the vertical plane
• Mode 6: Axial mode, beam and 

internals out-of-phase

Nonlinear Characterization



CHARACTERIZATION & QUANTIFICATION
ZEFFT - STFT - WT - HT 

Zeroed Early-time FFT
Short-time FT
Wavelet Transform
Hilbert Transforn
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← Amplitude / Time →

Amplitude ↗ ⇒ Natural 
frequency ↘
Amplitude ↗ ⇒ Damping ratio ↗

Natural frequency variations
• Mode 1: - 4% 
• Mode 2: - 3% 
• Mode 6: - 2.5%



PARAMETER ESTIMATION
Iwan Model
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Fitting a modal Iwan model on damping 
and natural frequency vs. amplitude 
curves using Hilbert transform



Substructuring Predictions
• Transmission Simulator approach completed using 13 modes from the 

transmission simulator (A) and 17 modes of the new subsystem (D)

• Modes of system A kept up to 989 Hz

• Modes of system D kept up to 1495 Hz
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Mode # ftest [Hz]
fprediction

[Hz]
fn Error 

[%]
ζtest ζprediction

ζ Error
[%]

MAC

7 88.33 87.09 -1.41% 0.00196 0.00214 8.83% .9798

8 115.80 115.13 -0.58% 0.00163 0.00207 26.75% .9925

9 275.97 276.21 0.09% 0.02468 0.02465 -0.14% .9116

10 283.32 283.45 0.05% 0.02151 0.02166 0.72% .9957

11 301.40 301.76 0.12% 0.02327 0.02290 -1.60% .9869

12 346.25 349.95 1.07% 0.00291 0.00358 23.33% .9683

13 584.71 583.33 -0.24% 0.02119 0.02138 0.92% .9963

14 635.16 634.96 -0.03% 0.02037 0.01897 -6.85% .9955

- NA 671.02 NA NA 0.00505 NA NA

15 688.92 690.42 0.22% 0.01515 0.01367 -9.73% .9372

- NA 721.79 NA NA 0.00579 NA NA

16 758.36 NA NA 0.01131 NA NA NA

17 769.71 771.16 0.19% 0.01191 0.01203 1.09% .9121
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