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Motivation

All models are wrong, but some are useful [George Box]

Models of physical systems rely on

Presumed theoretical framework
Mathematical formulation
Simplifying assumptions, parameterizations
Numerical discretization of governing equations
Computational software & hardware
Model error is frequently non-negligible
Estimating model error is useful for
Model validation
Model comparison
Scientific discovery and model improvement
Reliable computational predictions
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Motivation
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Motivation
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o If the model has structural errors, more data does not help!
o We target model-vs-truth discrepancy
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Data-Model-Truth

e Measurements data truth data error
yi = glxi) +¢f
o Model
truth model model error
glxi) =f(xzA) + 6(x)
e Total error budget
yi = f(xi; A) 4 6(x;) +¢€
~—_——
truth g(x;)
Statistical modeling of errors in calibrating f(x; \)
Data Error: el ~ N(0,0?)

Model Error: d(x) ~ GP(p(x), C(x,x"))
Estimate model parameters \ along with those of §(x), €
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State-of-the-art: Issues for physical models

yi = f(xi; A) + 6(x;) +ef
N ———

truth

e Explicit additive statistical model for model error §(x)
Kennedy-O’Hagan (2001).

e Calibrated predictive model Ymod(x) = f(x; \) + d(x)

e Potential violation of physical constraints
e.g. incompressible flow: Vev =0

o Disambiguation of model error §(x;) and data error ¢!

e Calibration of model error on measured observable does not impact
the quality of model predictions on other Qols

e Physical scientists are unlikely to augment their model with a
statistical model error term on select outputs
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Model error embedding: key idea

o Ideally, modelers want predictive errorbars:
inserting randomness on the outputs has issues, so...

e Cast input parameters A\ as a random variable A
Black-box yi = f(xi A) + €

e More generally, explore additional parameterizations,

Extra ‘physics’ -
phy y,-:f(x,-;)\,@)—Fe;1
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Model error embedding: features

yi = f(xi; A) + € yi =f(xi; A, 0) + €

o Embed model error in specific submodel phenomenology

a modified transport or constitutive law
a modified formulation for a material property

¢ Allows placement of model error term in locations where key
modeling assumptions and approximations are made

as a correction or high-order term
as a possible alternate phenomenology

o Naturally preserves model structure and physical constraints
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Model error embedding: Bayesian formulation

¢ In the simplest setting, cast A as a random variable A
Black-box vi = flxis A) + 6?

e Calibration turns into density estimation for the PDF of A
¢ Polynomial Chaos parameterization for A = ZkK:O ¥ (§)
e Back to parameter estimation, now for a = (ay, .. ., ak)

p(a|D) o Lp(a) p(a)
—— —— =~

Posterior Likelihood Prior

@ Black-box

model Data

(5 Q) Likelihood

Probabilistic model for A

Posterior p(a|D)
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Likelihood construction

@ Data D = {(x;,y:)}¥,

@ Data model (assuming Gauss-Hermite PC for parameters A):

i = [ A)+e = <xzazak\1/k§la-~-a§d)>+0’D§d+i

ka VW&, &) + opéati = hi(a, 0p; §)

@ Infer & = (a, aD)

Note: for each &, the data model k(&; &) is a multivariate random
variable with easily accessible mean p and covariance X.

@ Full Likelihood: L(&) = p(D|&) = p(y1, . .., yn|&) = 7 (v)

o Degenerate if no data noise
o Requires multivariate KDE
e Gaussian approximation: L(d&) o exp (—3(y — p)"S7 ' (y — p))
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Likelihood construction

@ Data D = {(x;,y:)}¥,

@ Data model (assuming Gauss-Hermite PC for parameters A):

i = [ A)+e = <xzazak\1/k§la-~-a§d)>+0’D§d+i

ka VW&, &) + opéati = hi(a, 0p; §)

@ Infer & = (a, aD)

Note: for each &, the data model k(&; &) is a multivariate random
variable with easily accessible mean p and covariance X.

@ Marginalized Likelihood: L(&) = p(D|&) = [T, p(yil@) = T[T, 7 (i)

e Gaussian approximation: L(&) o exp (—% Zf’zl Y2 (i — ui)z)
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Likelihood construction

@ DataD = {(x,-,y,-)}ﬁvzl
@ Data model (assuming Gauss-HErmite PC for paramete)rs A):

+ op&ati

Vi = f(Xi,A +e = xlazak\l/k gla"'agd)

ka YWi(&rs. - &) + opéati = hi(a, 0p; §)
@ Infera = (O[,O'D>.k

Note: for each &, the data model k(&; €) is a multivariate random
variable with easily accessible mean p and covariance X.

@ Approximate Bayesian Computation (ABC): L(&) = 1k (M)

@ p(y|D) is “centered” on the data

@ The width of the distribution p(y|D) is consistent with the spread of the data
around the nominal model prediction

L(&) o< exp ( 22 Z [ pi(a) = yi)* + (oi(@) = 7| mi() —y,-l)zD
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Calibrated predictions — general x

For fixed «, e.g. Maximum a Posteriori (MAP) value,
Uncertain prediction: v = f(x, M £))

Mean:

(x,0) = B [f(x A(@ €))
0’2()6, a) = VE [f(x7 )‘<O‘§ 5))]

Average over posterior of «
Pushed-forward posterior:

p(fID) = /p(fa)p(a!D)da = Ealp(fle)]

Variance:

Pushed-forward mean:
pprp(X) = EeEo[f (x, Ma; €))] = Eap(x, a)
Pushed-forward variance:
oprp(x) = Ealo?(x, @)] + Va[u(x, )]

model error data noise
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Calibrated predictions — compare to data at x;

For fixed «, e.g. Maximum a Posteriori (MAP) value,

Uncertain prediction: .
yi = h(xi, N(; §)) = f(xi; M §)) + 0pEati

plxi, @) = Eelf (i A €))]
(xh Vg[fxl? (a £) )]+02D

Average over posterior of «
Pushed-forward posterior:

p(h[D) = / p(hlov, op)p(at, op|D)dadop = Ee oy [p(hlac, o)

Mean:

Variance:

Pushed-forward mean:
pprp (xi) = EgEo[f (xi, M §))] = Bapu(xi, @)
Pushed-forward variance:
oprp (%) = Ealo” (i, )] + Vo u(xi, @)] + Eqp [07)]

model error data noise
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Predictions account for model error

Calibrating single-exponential models
with data from a double exponential model g(x) = e=03% 4 ¢~

H - 7 — A1 +HXx
Linear-exponential f(x, 3) = ™1+ Additive Gaussian error

® e Data from truth g(z)
— MAP predictive mean \
0 I MAP predictive stdev
10 P 10° N
N
h
N
N
N
N

.
.
.
10" * - \ .

e o Data from truth model g(z)
— Model f(x;)) for best value of A

102 -2
0 T 2 3 4 5 10 i 5 5 v <
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Predictions account for model error

Calibrating single-exponential models
with data from a double exponential model g(x) = e=03% 4 ¢~

i = i = M+ . . 2
Linear-exponential f(x, \) = e Quadratic-exponential f>(x, \) = e +22x+2s¥
._. ait:;:g;tri::hnz(:;n e e Data from truth g(z)
- — MAP predictive mean
100 I MAP predictive stdev 100 - EEE MAP predictive stdev
b
N
b
.
.
-1 .
10 101
107 2
! 2y 3 4 > 10 I T 3 Z 5
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Test problem — Cubic data fit by a line — ABC

® o Cubic Data 8l ® e Cubic Data
— MAP predictive mean . — MAP predictive mean
7 I MAP predictive stdev 7 [ MAP predictive stdev
.
5 .

Seessess®®

0.0
X

MAP predictive mean centered on data
MAP predictive standard deviation captures range of discrepancy

@ Increasing number of data points has a small effect on both
predictive mean and stdev.
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Test problem — Cubic data fit by a quadratic — ABC

® Cubic Data 8l ® e Cubic Data
— MAP predictive mean . — MAP predictive mean
7 I MAP predictive stdev 7 [ MAP predictive stdev

MAP predictive mean centered on data
MAP predictive standard deviation captures range of discrepancy

@ Increasing number of data points has a small effect on both
predictive mean and stdev.
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Test problem — Cubic data fit by a cubic — ABC

8 e e Cubic Data 8l ® e Cubic Data
— MAP predictive mean — MAP predictive mean
7 [ MAP predictive stdev 7 [ MAP predictive stdev
6
5
>

4
3
2
1 1

-1.0 -0.5 0).(0 0.5 1.0 -1.0 -0.5 0).(0 0.5 1.0

@ MAP predictive mean centered on data
@ MAP predictive standard deviation captures range of discrepancy

@ Increasing number of data points has a small effect on both
predictive mean and stdev.
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More data leads to ‘leftover’ model error

Calibrating a quadratic f(x) = Ao + Aix 4+ Aox’
w.rt. ‘truth’ g(x) = 6 + x> — 0.5(x + 1)** measured with noise o = 0.1.

N =20

N = 1000

Summary of features:

line
.-

quad
ceeree

@ Well-defined model-to-model calibration
@ Model-driven discrepancy correlations

“-e..., cube

Variance
"

@ Respects physical constraints 1
@ Disambiguates model and data errors 107 |2 Sodel ervor
4 || ®-= Data noise T
; i i ; 10 .
@ Calibrated predictions of multiple Qols D T

Number of Samples
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Chemistry problem — ABC

@ Homogeneous ignition, methane-air mixture
@ Single-step global reaction model calibrated against a detailed
chemical kinetic model

@ Data: ignition time; range of :E
initial 7 & equivalence ratio £
@ Single-step model: 25
CHj + 20, — CO, + 2H,0 .8
R = [CHy][Os)ks
1 8
kf = A exp(iE/R()T) 1000 4459 o '

1200

emp., 70

1250 4390 06 ((,0‘

o (InAE) =, cq ¥y (€)
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Quiality of Uncertain Calibrated Model Predictions

Calibrated uncertain fit model
is consistent with the
detailed-model data.

o ~

Over the range of (7°, ®):

@ MAP predictive mean
ignition-time is centered
on the data

@ MAP predictive stdv
is consistent with the
scatter of the data

HH‘I\/»
b
Log (Ignition time), Inr

[N
LIS

K. Sargsyan, HNN, and R. Ghanem
"On the Statistical Calibration of Physical Models”
Int. J. Chem. Kin., 47(4): 246-276, 2015

K. Sargsyan (ksargsy@sandia.gov) USNCCM 2015 July 29, 2015 16/20



TransCom3 Experiment of CO, Flux Inversion
[Gurney et al., Tellus B, 2003]

e Observations d at N = 77 sites around the world
e Inverse problem: find fluxes s at M = 22 locations
e Linearized ‘response’ model R, such that d ~ Rs

d:RS+€d

Model R is never perfect thus contaminating the inversion
The inferred values of s compensate for model deficiencies
€4 is meant to capture data errors, but is ‘entangled’ with
model errors
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Consider 14 different response models R

GISS.prather . .prather3 JMA-CDTM.maki
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Infer fluxes s, given measurements d to satisfy d ~ Rs

e Conventional additive Gaussian error (least-squares): d=Rs+ ¢
e Embed probabilistic model for fluxes s: d = R(ps + Cs8)
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Consider 14 different response models R
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Infer fluxes s, given measurements d to satisfy d ~ Rs

e Conventional additive Gaussian error (least-squares): d=Rs+ ¢
e Embed probabilistic model for fluxes s: d = R(ps + Cs8)
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Summary Thank You

Method
@ Targeting model discrepancy from truth
@ Reformulate the calibration as a density (PDF) estimation problem
@ Bayesian machinery to find PDF parameters
@ Likelihood construction targets constraints of interest

Features

Respects the physical constraints

@ Mechanism for model-to-model calibration

@ Disambiguates model error (irreducible) and data noise (reducible)
@ Meaningful prediction uncertainties

K. Sargsyan, H. Najm, and R. Ghanem, “On the Statistical Calibration of Physical
Models”. International Journal for Chemical Kinetics, 47(4): pp 246—276, 2015.

K. Sargsyan et. al., “Bias-Enhanced Bayesian Inference of Atmospheric Trace
Gas Sources and Sinks”, in progress, 2015.
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Full Likelihood

L(a) = p(D‘O‘) = 7Tf(ydata,la ce 7ydata,N’a)
where:
(-, «): N-variate density of the random variable (fi, ..., fv)

with f; = f(x;, AM(«))
Problem: 7¢(-) is degenerate in general when N > M

Consider a case with M = 1, A ~ N(p,0?), and f = \x
Let N = 2, hence (fi,f2) = (Ax1, Axp) for any A sample
With £ /x1 = f2/x2 = A, (f1,/2) are dependent and

7r(-|ie, o) is non-zero only along the line f> = (x2/x1)fi

hence 7¢(ydata,1, Ydata 2|14, 0) iS NON-zero only along the line
ydata,Z/XZ = ydata7l/x1



Marginalized Likelihood

L(a) = p(Dla) = wa (Vawasle)

where (-, a) is the univariate density of the RV f; = f(x;, A(«))

Problem: the likelihood has multiple singularities corresponding to «
values leading to vanishing marginal variances at each x;

Gaussian example: Let f; ~ N(u;(a), oi(a)?), then

N 1i(@) = Vaaa)?
— JYdata,i
He N/ZlHlaz e"p< 201(0)? )

Multiple singularities, o;(a) =0,i=1,...,N

Posterior maximization always finds one of these singularities, fitting
one point perfectly, while misfitting the rest (= priors)



Approximate Bayesian Computation (ABC)

Employ a kernel density as a pseudo-likelihood to enforce select
constraints:

@ Uncertain prediction p(y|D) is centered on the data
o With pi(er) = Ee[f (xi, A(; )]
minimize || pi(a) — Yaawi |3
@ The width of the distribution p(y|D) is consistent with the spread of
the data around the nominal model prediction
o With o2(a) = Ve[f(x:, A€, @))):
minimize || o;(a) — y|pi(a) = Yaaw,i| |3

e ~ is a factor that specifies the desired match between ¢; and the
discrepancy |pi(a) — Yaaw,i|, ON average



ABC Likelihood

With p(S) being a metric of the statistic S, use the kernel function as

an ABC likelihood: | s
Lasc(a) = -K <P( ))

€

where e controls the severity of the consistency control

Propose the Gaussian kernel density:

gil\a) — o) — i 2
L 2WH6XP< “ud + (ee) ~lte) )




Test problem — Posterior density on o

@ Cubic data, line-fit
@ Joint posterior on two

)

N

elements of «

@ Uncertainty in « is
decreased by

=

@

A

@ Increasing N

e=0.5, N=11
e=0.1, N=11
€=0.5, N=51
€=0.1, N=51

e Decreasing e

2.8 3.0 3.2 3.4 3.6
)



Quadratic-fit — Classical Bayesian likelihood

8 8 .
7 7] pganate® et Vol
6 6
5 5
4 4
3 3
2 2
| 1| N=50
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
@ With additional data, predictive N
uncertainty around the wrong j - éﬁ:i’E‘Eif:fii::;“:if;mw
model is indefinitely reducible ———
@ Predictive uncertainty not 5
indicative of discrepancy from 4
truth 3
2
1

-1.0 -0.5 0.0 0.5 1.0



Quadratic-fit — ModErr — MargGauss
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Quadratic-fit — ModErr — MargGauss
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Quadratic-fit — ModErr — MargGauss
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Calibrating a quadratic f(x) w.r.t. g(x) = 6 + x* + 0.5(x + 1)3*



Predictions account for model error: example 1

Calibrating an exponential model f(x; Aj, \y) = ApeM* —2

with data from a hyperbolic tangent model g(x) = tanh(3(x — 0.3))

Additive Gaussian error

® o Data, N=5
--- Truth
— Model prediction

Embedded model error

® o Data,N=5

=== Truth
— Model prediction




Predictions account for model error: example 1

Calibrating an exponential model f(x; Aj, \y) = ApeM* —2
with data from a hyperbolic tangent model g(x) = tanh(3(x — 0.3))
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Challenges/Risks

e Density estimation is a well-known challenging task

¢ Inverse problem is ill-posed or intractable
= Employ empirical likelihoods,
Approximate Bayesian Computation (ABC)

e Potentially a high-dimensional Bayesian problem

e Full posterior may be inaccessible
= Adaptive MCMC algorithms;
resort to optimization algorithms in no-noise case

e Sparse or noisy data

e With low information content, calibration may struggle
= More informative priors/regularization





