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Motivation

• All models are wrong, but some are useful [George Box]

• Models of physical systems rely on
• Presumed theoretical framework
• Mathematical formulation
• Simplifying assumptions, parameterizations
• Numerical discretization of governing equations
• Computational software & hardware

• Model error is frequently non-negligible
• Estimating model error is useful for
• Model validation
• Model comparison
• Scientific discovery and model improvement
• Reliable computational predictions
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• If the model has structural errors, more data does not help!
• We target model-vs-truth discrepancy
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Data-Model-Truth
• Measurements data truth data error

yi = g(xi) + εd
i

• Model
truth

g(xi) =
model

f (xi;λ) +
model error
δ(xi)

• Total error budget

yi = f (xi;λ) + δ(xi)︸ ︷︷ ︸
truth g(xi)

+εd
i

Statistical modeling of errors in calibrating f (x;λ)

Data Error: εd
i ∼ N(0, σ2)

Model Error: δ(x) ∼ GP(µ(x),C(x, x′))

Estimate model parameters λ along with those of δ(x), εd
i
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State-of-the-art: Issues for physical models

yi = f (xi;λ) + δ(xi)︸ ︷︷ ︸
truth

+εd
i

• Explicit additive statistical model for model error δ(x)
Kennedy-O’Hagan (2001).

• Calibrated predictive model ymod(x) = f (x;λ) + δ(x)

• Potential violation of physical constraints
• e.g. incompressible flow: ∇ •v = 0

• Disambiguation of model error δ(xi) and data error εd
i

• Calibration of model error on measured observable does not impact
the quality of model predictions on other QoIs

• Physical scientists are unlikely to augment their model with a
statistical model error term on select outputs
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Model error embedding: key idea

• Ideally, modelers want predictive errorbars:
inserting randomness on the outputs has issues, so...

• Cast input parameters λ as a random variable Λ
Black-box yi = f (xi; Λ) + εd

i

• More generally, explore additional parameterizations,
Extra ‘physics’

yi = f̃ (xi;λ,Θ) + εd
i
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Model error embedding: features

yi = f (xi; Λ) + εd
i yi = f̃ (xi;λ,Θ) + εd

i

• Embed model error in specific submodel phenomenology
• a modified transport or constitutive law
• a modified formulation for a material property

• Allows placement of model error term in locations where key
modeling assumptions and approximations are made
• as a correction or high-order term
• as a possible alternate phenomenology

• Naturally preserves model structure and physical constraints
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Model error embedding: Bayesian formulation

• In the simplest setting, cast λ as a random variable Λ
Black-box yi = f (xi; Λ) + εd

i

• Calibration turns into density estimation for the PDF of Λ
• Polynomial Chaos parameterization for Λ =

∑K
k=0 αkΨk(ξ)

• Back to parameter estimation, now for α = (α0, . . . , αK)

p(α|D)︸ ︷︷ ︸
Posterior

∝ LD(α)︸ ︷︷ ︸
Likelihood

p(α)︸︷︷︸
Prior

α

Prior p(α)

Probabilistic model for Λ

Λ
πΛ(·;α)

f (xi; Λ)

Black-box
model

Likelihood D = {yi = g(xi) + εd
i }

Data

Posterior p(α|D)
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Likelihood construction

Data D = {(xi, yi)}N
i=1

Data model (assuming Gauss-Hermite PC for parameters Λ):

yi = f (xi,Λ) + εd
i = f

(
xi,
∑

k

αkΨk(ξ1, . . . , ξd)

)
+ σDξd+i

NISP
=

∑
k

fik(α)Ψk(ξ1, . . . , ξd) + σDξd+i = hi(α, σD; ξ)

Infer α̂ = (α, σD).

Note: for each α̂, the data model h(α̂; ξ) is a multivariate random
variable with easily accessible mean µ and covariance Σ.

Full Likelihood: L(α̂) = p(D|α̂) = p(y1, . . . , yN |α̂) = πh(y)

Degenerate if no data noise
Requires multivariate KDE
Gaussian approximation: L(α̂) ∝ exp

(
− 1

2 (y− µ)TΣ−1(y− µ)
)
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Likelihood construction

Data D = {(xi, yi)}N
i=1

Data model (assuming Gauss-Hermite PC for parameters Λ):

yi = f (xi,Λ) + εd
i = f

(
xi,
∑

k

αkΨk(ξ1, . . . , ξd)

)
+ σDξd+i

NISP
=

∑
k

fik(α)Ψk(ξ1, . . . , ξd) + σDξd+i = hi(α, σD; ξ)

Infer α̂ = (α, σD).

Note: for each α̂, the data model h(α̂; ξ) is a multivariate random
variable with easily accessible mean µ and covariance Σ.

Approximate Bayesian Computation (ABC): L(α̂) = 1
εK
(
ρ(SM,SD)

ε

)
p(y|D) is “centered” on the data

The width of the distribution p(y|D) is consistent with the spread of the data
around the nominal model prediction

L(α̂) ∝ exp

(
− 1

2ε2

N∑
i=1

[
(µi(α)− yi)

2 + (σi(α)− γ|µi(α)− yi|)2
])
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Calibrated predictions – general x
For fixed α, e.g. Maximum a Posteriori (MAP) value,
Uncertain prediction: y = f (x, λ(α; ξ))

Mean: µ(x, α) = Eξ[f (x, λ(α; ξ))]

Variance: σ2(x, α) = Vξ[f (x, λ(α; ξ))]

Average over posterior of α
Pushed-forward posterior:

p(f |D) =

∫
p(f |α)p(α|D)dα = Eα[p(f |α)]

Pushed-forward mean:
µPFP(x) = EξEα[f (x, λ(α; ξ))] = Eαµ(x, α)

Pushed-forward variance:
σ2

PFP(x) = Eα[σ2(x, α)]︸ ︷︷ ︸
model error

+Vα[µ(x, α)]︸ ︷︷ ︸
data noise
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Calibrated predictions – compare to data at xi

For fixed α, e.g. Maximum a Posteriori (MAP) value,
Uncertain prediction:

yi = h(xi, λ(α; ξ̂)) = f (xi, λ(α; ξ)) + σDξd+i

Mean: µ(xi, α) = Eξ[f (xi, λ(α; ξ))]

Variance: σ2(xi, α) = Vξ[f (xi, λ(α; ξ))] + σ2
D

Average over posterior of α
Pushed-forward posterior:

p(h|D) =

∫
p(h|α, σD)p(α, σD|D)dαdσD = Eα,σD [p(h|α, σD)]

Pushed-forward mean:
µPFP(xi) = EξEα[f (xi, λ(α; ξ))] = Eαµ(xi, α)

Pushed-forward variance:
σ2

PFP(xi) = Eα[σ2(xi, α)]︸ ︷︷ ︸
model error

+Vα[µ(xi, α)] + EσD [σ2
D]︸ ︷︷ ︸

data noise
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Predictions account for model error

Calibrating single-exponential models
with data from a double exponential model g(x) = e−0.5x + e−2x

Linear-exponential f (x, λ) = eλ1+λ2x

0 1 2 3 4 5
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100

Data from truth g(x)

MAP predictive mean

MAP predictive stdev

Additive Gaussian error
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Model f(x;λ) for best value of λ
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Test problem – Cubic data fit by a line – ABC

N = 11
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MAP predictive standard deviation captures range of discrepancy
Increasing number of data points has a small effect on both
predictive mean and stdev.
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Test problem – Cubic data fit by a quadratic – ABC

N = 11
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More data leads to ‘leftover’ model error

Calibrating a quadratic f (x) = λ0 + λ1x + λ2x2

w.r.t. ‘truth’ g(x) = 6 + x2 − 0.5(x + 1)3.5 measured with noise σ = 0.1.

N = 20 N = 50 N = 1000
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Summary of features:

Well-defined model-to-model calibration
Model-driven discrepancy correlations
Respects physical constraints
Disambiguates model and data errors
Calibrated predictions of multiple QoIs
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Chemistry problem – ABC

Homogeneous ignition, methane-air mixture
Single-step global reaction model calibrated against a detailed
chemical kinetic model

Data: ignition time; range of
initial T & equivalence ratio
Single-step model:

CH4 + 2O2 → CO2 + 2H2O

R = [CH4][O2]kf

kf = A exp(−E/RoT)

(ln A,E) =
∑

k αkΨk(ξ)
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Quality of Uncertain Calibrated Model Predictions

Calibrated uncertain fit model
is consistent with the
detailed-model data.

Over the range of (T0,Φ):
MAP predictive mean
ignition-time is centered
on the data
MAP predictive stdv
is consistent with the
scatter of the data

K. Sargsyan, HNN, and R. Ghanem
”On the Statistical Calibration of Physical Models”

Int. J. Chem. Kin., 47(4): 246-276, 2015
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TransCom3 Experiment of CO2 Flux Inversion
[Gurney et al., Tellus B, 2003]

• Observations d at N = 77 sites around the world
• Inverse problem: find fluxes s at M = 22 locations
• Linearized ‘response’ model R, such that d ≈ Rs

d = Rs + εd

• Model R is never perfect thus contaminating the inversion
• The inferred values of s compensate for model deficiencies
• εd is meant to capture data errors, but is ‘entangled’ with

model errors
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Consider 14 different response models R
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Infer fluxes s, given measurements d to satisfy d ≈ Rs

• Conventional additive Gaussian error (least-squares): d = Rs + ξ

• Embed probabilistic model for fluxes s: d = R(µs + Csξ)
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Consider 14 different response models R
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Infer fluxes s, given measurements d to satisfy d ≈ Rs

• Conventional additive Gaussian error (least-squares): d = Rs + ξ

• Embed probabilistic model for fluxes s: d = R(µs + Csξ)
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Summary Thank You
Method

Targeting model discrepancy from truth

Reformulate the calibration as a density (PDF) estimation problem

Bayesian machinery to find PDF parameters

Likelihood construction targets constraints of interest

Features

Respects the physical constraints

Mechanism for model-to-model calibration

Disambiguates model error (irreducible) and data noise (reducible)

Meaningful prediction uncertainties

K. Sargsyan, H. Najm, and R. Ghanem, “On the Statistical Calibration of Physical
Models”. International Journal for Chemical Kinetics, 47(4): pp 246–276, 2015.

K. Sargsyan et. al., “Bias-Enhanced Bayesian Inference of Atmospheric Trace
Gas Sources and Sinks”, in progress, 2015.

K. Sargsyan (ksargsy@sandia.gov) USNCCM 2015 July 29, 2015 20 / 20



Full Likelihood

L(α) = p(D|α) = πf (ydata,1, . . . , ydata,N |α)

where:
πf (·, α): N-variate density of the random variable (f1, . . . , fN)
with fi = f (xi, λ(α))

Problem: πf (·) is degenerate in general when N > M

Consider a case with M = 1, λ ∼ N(µ, σ2), and f = λx
Let N = 2, hence (f1, f2) = (λx1, λx2) for any λ sample
With f1/x1 = f2/x2 = λ, (f1, f2) are dependent and
πf (·|µ, σ) is non-zero only along the line f2 = (x2/x1)f1

hence πf (ydata,1, ydata,2|µ, σ) is non-zero only along the line
ydata,2/x2 = ydata,1/x1



Marginalized Likelihood

L(α) = p(D|α) =

N∏
i=1

πfi(ydata,i|α)

where πfi(·, α) is the univariate density of the RV fi = f (xi, λ(α))

Problem: the likelihood has multiple singularities corresponding to α
values leading to vanishing marginal variances at each xi

Gaussian example: Let fi ∼ N(µi(α), σi(α)2), then

L(α) =
1

(2π)N/2

N∏
i=1

1
σi(α)

exp
(

(µi(α)− ydata,i)
2

2σi(α)2

)
Multiple singularities, σi(α) = 0, i = 1, . . . ,N

Posterior maximization always finds one of these singularities, fitting
one point perfectly, while misfitting the rest (⇒ priors)



Approximate Bayesian Computation (ABC)

Employ a kernel density as a pseudo-likelihood to enforce select
constraints:

Uncertain prediction p(y|D) is centered on the data

With µi(α) = Eξ[f (xi, λ(ξ;α))]:

minimize ‖ µi(α)− ydata,i ‖2
2

The width of the distribution p(y|D) is consistent with the spread of
the data around the nominal model prediction

With σ2
i (α) = Vξ[f (xi, λ(ξ, α))]:

minimize ‖ σi(α)− γ|µi(α)− ydata,i| ‖2
2

γ is a factor that specifies the desired match between σi and the
discrepancy |µi(α)− ydata,i|, on average



ABC Likelihood

With ρ(S) being a metric of the statistic S, use the kernel function as
an ABC likelihood:

LABC(α) =
1
ε

K
(
ρ(S)

ε

)
where ε controls the severity of the consistency control

Propose the Gaussian kernel density:

Lε(α) =
1

ε
√

2π

N∏
i=1

exp
(
−(µi(α)− yd,i)

2 + (σi(α)− γ|µi(α)− yd,i|)2

2ε2

)



Test problem – Posterior density on α

Cubic data, line-fit
Joint posterior on two
elements of α

Uncertainty in α is
decreased by

Increasing N
Decreasing ε

2.8 3.0 3.2 3.4 3.6
a00
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−1.0
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Quadratic-fit – Classical Bayesian likelihood
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Observations {yi} with noise
Mean pushed-forward posterior EPF[f ]
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N = 20

With additional data, predictive
uncertainty around the wrong
model is indefinitely reducible
Predictive uncertainty not
indicative of discrepancy from
truth
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Quadratic-fit – ModErr – MargGauss
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With additional data, predictive
uncertainty due to data noise
is reducible
Predictive uncertainty due to
model error is not reducible
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Quadratic-fit – ModErr – MargGauss
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σ = 1.0

Predictive uncertainty
composed of both model-error
and data-noise components
The data-noise component is
reducible with lower-noise in
the data
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σ = 0.5
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Quadratic-fit – ModErr – MargGauss

101 102 103 104 105 106

N

10-5

10-4

10-3

10-2

10-1

100

101

102

103

Va
ria

nc
e

Pushed-forward variance VPF[f ]

Model error Eα[Vξ[f ]]

Data error Vα[Eξ[f ]]

Calibrating a quadratic f (x) w.r.t. g(x) = 6 + x2 + 0.5(x + 1)3.5



Predictions account for model error: example 1

Calibrating an exponential model f (x;λ1, λ2) = λ2eλ1x − 2
with data from a hyperbolic tangent model g(x) = tanh(3(x− 0.3))

Additive Gaussian error

x

y

Data, N = 5

Truth

Model prediction

Embedded model error

x
y

Data, N = 5

Truth

Model prediction



Predictions account for model error: example 1

Calibrating an exponential model f (x;λ1, λ2) = λ2eλ1x − 2
with data from a hyperbolic tangent model g(x) = tanh(3(x− 0.3))

Additive Gaussian error
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Embedded model error
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Model prediction



Challenges/Risks

• Density estimation is a well-known challenging task
• Inverse problem is ill-posed or intractable
⇒ Employ empirical likelihoods,

Approximate Bayesian Computation (ABC)

• Potentially a high-dimensional Bayesian problem
• Full posterior may be inaccessible
⇒ Adaptive MCMC algorithms;

resort to optimization algorithms in no-noise case

• Sparse or noisy data
• With low information content, calibration may struggle
⇒ More informative priors/regularization




