
Flush and Reload: an L3 Cache Timing Attack

Project Mentor: Severiano Sisneros, 05635

Raewyn Duvall, Tufts University

Problem Statement:

The goal of this project was to recover the secret key in 
GnuPG RSA encryption/decryption by timing the memory 
access.

Objective and Approach:

The object of this project was to mimic “FLUSH+RELOAD: a 
High Resolution, Low Noise, L3 Cache Side-Channel Attack” by 
Yarom and Falkner.

RSA generates an encryption by selecting two random prime 
numbers p and q and calculating n = pq. GnuPG uses e = 65537 
as it’s public exponent; then RSA calculates a private exponent 
d ≡ e-1 (mod(p – 1)(q – 1)). The encryption then consists of the 
public key, (n,e); the private key, (p,q,d); the encrypting 
function, E(m) = memod(n); and the decrypting function, D(c) = 
cdmod(n). To compute the encryption and decryption 
functions, GnuPG uses the square and multiply exponentiation 
algorithm that is shown in Figure 1. It shows how for every bit 
of e, a square and reduce are performed, and if the bit is a 1, a 
multiply and reduce are also performed. Therefore, if it can be 
determined which patterns of square, reduce, and multiply 
are called, then it is possible to get all the bits to the private 
key.

Figure 1

In the x86 architecture, all processors share the Last-Level L3 
Cache, therefore all memory will be copied in the L3 Cache 
when accessed. With this information, we timed memory 
access during GnuPG RSA decryption to see if those square, 
reduce, and multiply functions had been cached recently and

Impact and Benefits:

This is a proof of concept that this attack is viable. It can be 
used to create other cache side-channel attacks that we can 
use to find and fix vulnerabilities before they’re exploited.

therefore used. The timing code is pictured in Figure 2.

Figure 2
Results:

Figure 3

Figure 3 shows a visualization of the timings of each function 
over the course of the attack. Looking at the points below the 
threshold (blue solid line), when there was a Square-Reduce-
Multiply-Reduce pattern, the key contained a 1; when there 
was only a Square-Reduce pattern, the key contained a 0. 
Going through all the output this way, we determined the 
binary of the secret key used in GnuPG RSA 
encryption/decryption. Unfortunately there has been a lot of 
noise that skews the results, so we are currently creating a 
process to eliminate the noise by averaging a lot more data.

SAND2015-6162C


