The Center for Cyber Defenders
Expanding Computer Security Knowledge

Problem Statement:

The goal of this project was to recover the secret key in
GnuPG RSA encryption/decryption by timing the memory
access.

Objective and Approach:

The object of this project was to mimic “FLUSH+RELOAD: a
High Resolution, Low Noise, L3 Cache Side-Channel Attack” by
Yarom and Falkner.

RSA generates an encryption by selecting two random prime
numbers p and g and calculating n = pg. GnuPG uses e = 65537
as it’s public exponent; then RSA calculates a private exponent
d=e?(mod(p—1)(q— 1)). The encryption then consists of the
publickey, (n,e); the private key, (p,q,d); the encrypting
function, E(m) = mémod(n); and the decrypting function, D(c) =
¢mod(n). To compute the encryption and decryption
functions, GnuPG uses the square and multiply exponentiation
algorithm that is shown in Figure 1. It shows how for every bit
of e, a square and reduce are performed, and if the bitisa 1, a
multiply and reduce are also performed. Therefore, if it can be
determined which patterns of square, reduce, and multiply
are called, then it is possible to get all the bits to the private
key.

1 function exponent(, ¢, m)
2 begin
3 w1

4 fori |e|— 1 downto O do
5 1+t

6 xexmodm

T if (e = 1) then

8 xcab

9 x ¢ x mod m

10 cndif

11 done
12 return x
13 end

Figure 1

In the x86 architecture, all processors share the Last-Level L3
Cache, therefore all memory will be copied in the L3 Cache
when accessed. With this information, we timed memory
access during GnuPG RSA decryption to see if those square,
reduce, and multiply functions had been cached recently and

Sandia

I operated by

@Natmnal_ e et
Laboratories

SAND2015-6162C

‘\)‘éa‘, Flush and Reload: an L3 Cache Timing Attack

therefore used. The timing code is pictured in Figure 2.

probe(*adrs) {
time;
(

=a” (time)
(adrs)
", "¥edx");

1 "Kesi”,
time;

Figure 2
Results:

Figure 3

Figure 3 shows a visualization of the timings of each function
over the course of the attack. Looking at the points below the
threshold (blue solid line), when there was a Square-Reduce-
Multiply-Reduce pattern, the key contained a 1; when there
was only a Square-Reduce pattern, the key contained a 0.
Going through all the output this way, we determined the
binary of the secret key used in GnuPG RSA
encryption/decryption. Unfortunately there has been a lot of
noise that skews the results, so we are currently creating a
process to eliminate the noise by averaging a lot more data.

Impact and Benefits:
This is a proof of concept that this attack is viable. It can be

used to create other cache side-channel attacks that we can
use to find and fix vulnerabilities before they’re exploited.

