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Metrology

 Study of measurement

 Important in science, technology, and commerce

 Length/Mass/Force Lab

 Accuracy

 Traceability
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Mass Measurement

 Comparison between known reference and unknown 
unit under test

 Mass of unit under test is mass of reference weight that 
balances it, with corrections applied

 Uncertainties – estimate of range of values about the 
measured value in which the true value is believed to lie
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Conventional Mass

 “Conventional result of weighing in air if:

 t0 = 20 oC

 ρR = 8000 kg/m3

 ρa = 1.2 kg/m3

 “True mass” (mass in a vacuum)

 Mass measurement, without the effect of                             
buoyancy

 Corrections required from other air                                       
conditions
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Measurement Uncertainty

 Task: Find which has lower uncertainty

 First converting to true mass, then to conventional

 Converting directly to conventional

 Equation valid in conditions other than Albuquerque’s

 Use Monte Carlo random number simulation for 
uncertainty
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Monte Carlo Simulation

 Possible to simulate many measurements

 Define all input variables and uncertainties

 Simulate many random values for each variable
 Normal distribution

 Calculate output from each set

 Uncertainty of result = standard deviation of all calculated 
values of result
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Results

 Direct conventional mass uncertainty always less than 
conventional mass through true mass uncertainty

 Less than uncertainty of true mass
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7810 

kg/m3
0.14 0.057 0.36 0.093 0.58 0.14 0.73 0.17 1.0 0.24 1.3 0.29

7910 

kg/m3
0.13 0.057 0.35 0.092 0.57 0.14 0.72 0.17 1.0 0.23 1.2 0.28

8010 

kg/m3
0.13 0.058 0.35 0.093 0.57 0.14 0.71 0.17 1.0 0.23 1.2 0.28

8110 

kg/m3
0.13 0.058 0.34 0.092 0.56 0.14 0.70 0.17 0.99 0.23 1.2 0.28

8210 

kg/m3
0.13 0.057 0.34 0.090 0.55 0.13 0.69 0.16 0.98 0.23 1.2 0.27

Uncertainty (k=2) in mg of true mass and conventional mass as a function of density and density uncertainty

Based on Stainless Steel Standards



Thermometer Calibration

 Calibration Procedure for Black Stack 2564 Thermometer

 Resistance

 Temperature
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Resistance

 Resistance affected by temperature, used to determine 
temperature

 Used resistance box and certified ohmmeter to find 
differences between displayed and actual resistance

 Within likely temperature range
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Temperature

 Connected thermometer to one thermistor probe, 
“master” probe

 Compared readings to certified thermometer

 Found offset of probe readings

 Connected thermometer to all probes

 Same environment

 Found offset of each probe from master

 Added to master offset to find offset of each probe
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Learning Experience

 Interesting problems to solve

 Importance of measurements

 Effects of small changes

 Difference between results of different 
methods

 Useful contribution to metrology
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