


*Exceptional service in the national interest*



# Uncertainty of Conventional Mass Conversion

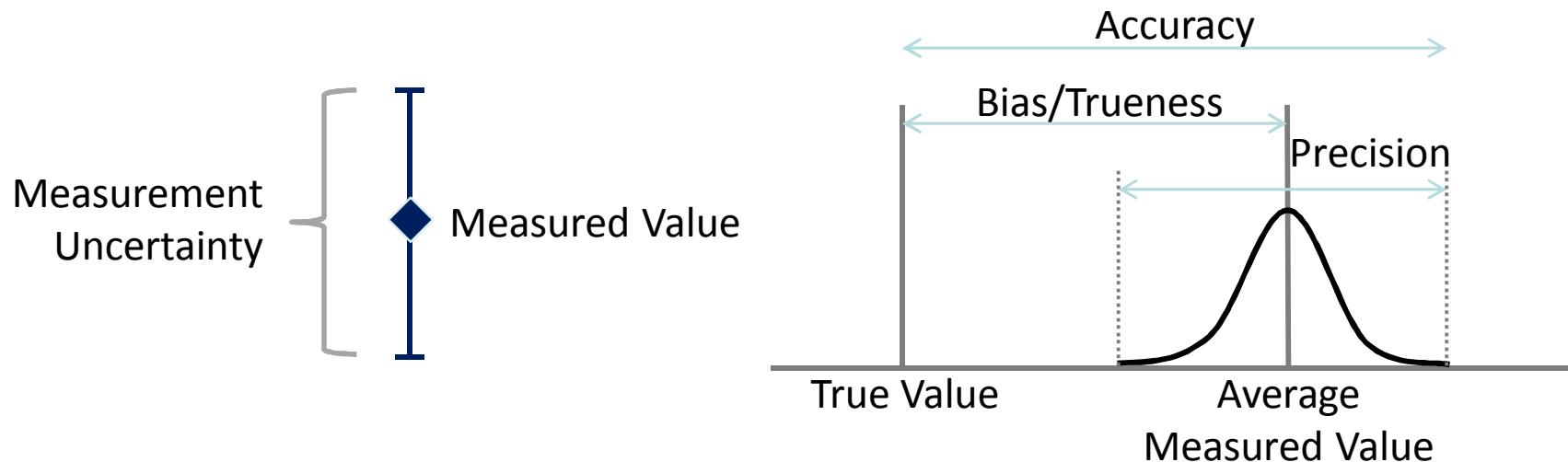
Celia Flicker  
Primary Standards Laboratory

Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately describe the experimental procedure. Such identification does not imply recommendation or endorsement by the authors or Sandia National Laboratories, nor does it imply that the materials or equipment identified are the only or best available for the purpose.

# Outline

- Metrology
- Mass measurement
- What is conventional mass?
- Measurement uncertainty
  - Monte Carlo simulation
- Results
- Thermometer Calibration

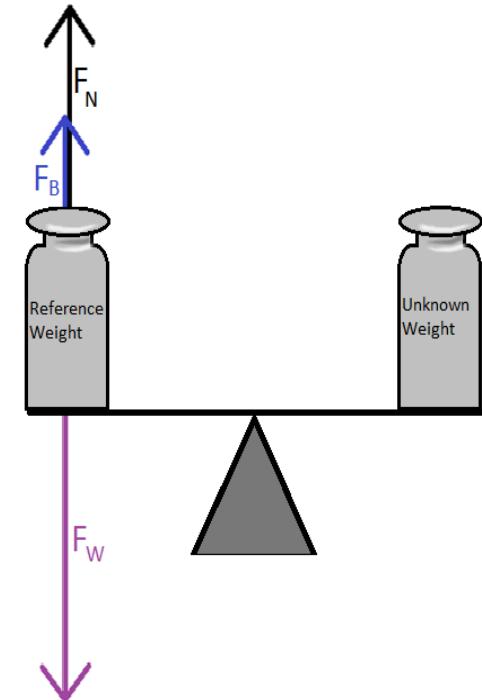
# Metrology


- Study of measurement
- Important in science, technology, and commerce
- Length/Mass/Force Lab

- Accuracy
- Traceability



# Mass Measurement


- Comparison between known reference and unknown unit under test
- Mass of unit under test is mass of reference weight that balances it, with corrections applied
- Uncertainties – estimate of range of values about the measured value in which the true value is believed to lie



# Conventional Mass

- “Conventional result of weighing in air if:
  - $t_0 = 20^\circ\text{C}$
  - $\rho_R = 8000 \text{ kg/m}^3$
  - $\rho_a = 1.2 \text{ kg/m}^3$
- “True mass” (mass in a vacuum)
  - Mass measurement, without the effect of buoyancy
- Corrections required from other air conditions

$$m_{CUUT} = m_{UUT} \frac{1 - \frac{1.2}{\rho_R}}{1 - \frac{1.2}{8000}}$$



# Measurement Uncertainty

- Task: Find which has lower uncertainty
- First converting to true mass, then to conventional

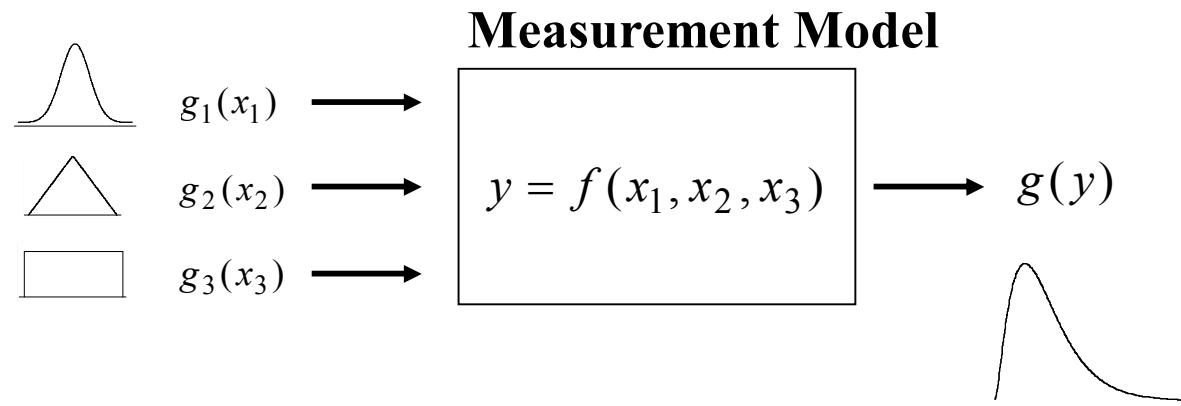
$$m_{CUUT} = \frac{m_{(ABQ)UUT} * \rho_{UUT}}{(\rho_{UUT} - \rho_{(ABQ)a})} * \frac{(\rho_{UUT} - \rho_0)}{\rho_{UUT}}$$

- Converting directly to conventional

$$m_{CUUT} \approx m_{(ABQ)UUT} + \frac{m_{(ABQ)UUT}}{\rho_{UUT}} * (\rho_{(ABQ)a} - \rho_0)$$

- Equation valid in conditions other than Albuquerque's
- Use Monte Carlo random number simulation for uncertainty

5.1.2 The combined standard uncertainty  $u_c(y)$  is the positive square root of the combined variance  $u_c^2(y)$ , which is given by


$$u_c^2(y) = \sum_{i=1}^N \left( \frac{\partial f}{\partial x_i} \right)^2 u^2(x_i) \quad (10)$$

where  $f$  is the function given in Equation [\(1\)](#). Each  $u(x_i)$  is a standard uncertainty evaluated as described in [4.2](#) (Type A evaluation) or as in [4.3](#) (Type B evaluation). The combined standard uncertainty  $u_c(y)$  is an estimated standard deviation and characterizes the dispersion of the values that could reasonably be attributed to the measurand  $Y$  (see [2.2.3](#)).

Equation [\(10\)](#) and its counterpart for correlated input quantities, Equation [\(13\)](#), both of which are based on a first-order Taylor series approximation of  $Y=f(X_1, X_2, \dots, X_N)$ , express what is termed in this *Guide* the *law of propagation of uncertainty* (see [E.3.1](#) and [E.3.2](#)).

# Monte Carlo Simulation

- Possible to simulate many measurements
- Define all input variables and uncertainties
- Simulate many random values for each variable
  - Normal distribution
- Calculate output from each set
- Uncertainty of result = standard deviation of all calculated values of result



# Results

- Direct conventional mass uncertainty always less than conventional mass through true mass uncertainty

$$u(m_{CUUT\_direct}) < u(m_{CUUT\_throughTrue})$$

- Less than uncertainty of true mass

$$u(m_{CUUT\_direct}) < u(m_{UUT})$$

Uncertainty (k=2) in mg of true mass and conventional mass as a function of density and density uncertainty

|             |                        | UUT Density Uncertainty    |                             |                            |                             |                            |                             |                            |                             |                            |                             |                            |                             |
|-------------|------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|
|             |                        | 0.05% U(m <sub>UUT</sub> ) | 0.05% U(m <sub>CUUT</sub> ) | 0.14% U(m <sub>UUT</sub> ) | 0.14% U(m <sub>CUUT</sub> ) | 0.23% U(m <sub>UUT</sub> ) | 0.23% U(m <sub>CUUT</sub> ) | 0.29% U(m <sub>UUT</sub> ) | 0.29% U(m <sub>CUUT</sub> ) | 0.41% U(m <sub>UUT</sub> ) | 0.41% U(m <sub>CUUT</sub> ) | 0.50% U(m <sub>UUT</sub> ) | 0.50% U(m <sub>CUUT</sub> ) |
| UUT density | 7810 kg/m <sup>3</sup> | 0.14                       | 0.057                       | 0.36                       | 0.093                       | 0.58                       | 0.14                        | 0.73                       | 0.17                        | 1.0                        | 0.24                        | 1.3                        | 0.29                        |
|             | 7910 kg/m <sup>3</sup> | 0.13                       | 0.057                       | 0.35                       | 0.092                       | 0.57                       | 0.14                        | 0.72                       | 0.17                        | 1.0                        | 0.23                        | 1.2                        | 0.28                        |
|             | 8010 kg/m <sup>3</sup> | 0.13                       | 0.058                       | 0.35                       | 0.093                       | 0.57                       | 0.14                        | 0.71                       | 0.17                        | 1.0                        | 0.23                        | 1.2                        | 0.28                        |
|             | 8110 kg/m <sup>3</sup> | 0.13                       | 0.058                       | 0.34                       | 0.092                       | 0.56                       | 0.14                        | 0.70                       | 0.17                        | 0.99                       | 0.23                        | 1.2                        | 0.28                        |
|             | 8210 kg/m <sup>3</sup> | 0.13                       | 0.057                       | 0.34                       | 0.090                       | 0.55                       | 0.13                        | 0.69                       | 0.16                        | 0.98                       | 0.23                        | 1.2                        | 0.27                        |

Based on Stainless Steel Standards

# Thermometer Calibration

- Calibration Procedure for Black Stack 2564 Thermometer
  - Resistance
  - Temperature



# Resistance

- Resistance affected by temperature, used to determine temperature
- Used resistance box and certified ohmmeter to find differences between displayed and actual resistance
  - Within likely temperature range

# Temperature

- Connected thermometer to one thermistor probe, “master” probe
- Compared readings to certified thermometer
  - Found offset of probe readings
- Connected thermometer to all probes
  - Same environment
  - Found offset of each probe from master
  - Added to master offset to find offset of each probe

# Learning Experience

- Interesting problems to solve
- Importance of measurements
- Effects of small changes
- Difference between results of different methods
- Useful contribution to metrology

# Acknowledgements

- I would like to thank
  - Hy Tran, my mentor, for his guidance
  - Rick Mertes and Eric Forrest for their help
  - The STAR Fellowship program for the opportunity

# Sources and Further Information



Bell, S. (1999). A Beginner's Guide to Uncertainty of Measurement. *Measurement Good Practice Guide*, 11(2) pp. 11-21. ISSN:1368-6550

Davidson, S., Perkin, M., Buckley, M., (2004). The Measurement of Mass and Weight. *Measurement Good Practice Guide*, 71, pp. 9-12, 19-27. ISSN:1368-6550

International Organization of Legal Metrology. *OIML D28: Conventional value of the result of weighing in air*, 2004 ed. International Document.

JCGM (2008). *JCGM 101:2008: Evaluation of measurement data – Supplement 1 to the “Guide to the expression of uncertainty in measurement” – Propagation of distributions using a Monte Carlo method*, 2008 ed.

Jones, F., & Schoonover, R. (2002). From Balance Observations to Mass Differences, Examples of Buoyancy Corrections in Weighing, Conventional Value of the Result of Weighing in Air. In *Handbook of mass measurement* (pp. 43-50, 95-104, 169-177). Boca Raton, Florida: CRC Press LLC.

Youden, W. (1998). *Experimentation and measurement*. Mineola, New York: Dover Publications.