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Thermal inversion
1 it
{D{Izi?én;}zxez 5 /Q(u — )2 dx +r(2)
subject to

-V - (zVu) =fin Q, + boundary conditions.

@ U is the state space — simulated temperature;

@ Z is the parameter (control, design) space — thermal diffusivity;
@ r: Z — R is a regularization functional; and

e f is a Gaussian heat source at (0,0), with amplitude 5 and width 0.1.
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Thermal inversion

Computed thermal diffusivity True thermal diffusivity
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Two formulations

Full-space formulation Reduced-space formulation
o1 N 1 —
min §||u —ul]? + r(2) min §||A(z)_1(f — Bz) — 1| + r(2)

st. A(Z)u+Bz=f

@ state u and control z @ control z only

@ the constraint is explicit in the @ the constraint is eliminated at
formulation; allows us to trade each optimization step, by
feasibility for optimality solving A(z)u=1f — Bz

@ no A(z)7! in the formulation @ A(z)~!in the objective function!
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Problem classes benefiting from
the full-space approach

@ In full space, the solution operator A(z)~! is not required.

@ The forward operator A(z) is allowed to be rank deficient.
@ Examples: Acoustic inverse problems near resonance; problems
without essential boundary conditions; nonlinear constraints.

@ The solution operator A(z)~! can be nondifferentiable.
@ Example: Multiple eigenvalues in structural optimization.

@ Full-space methods can take advantage of A(z)™1, if it is available.
However, A(z)~! is allowed to be very inaccurate.

@ Example: Large-scale simulations using iterative solvers.
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Problem classes benefiting from
the full-space approach

@ In full space, the solution operator A(z)~! is not required.

@ The forward operator A(z) is allowed to be rank deficient.

@ Examples: Acoustic inverse problems near resonance; problems
without essential boundary conditions; nonlinear constraints.

@ The solution operator A(z)~! can be nondifferentiable.
@ Example: Multiple eigenvalues in structural optimization.

@ Full-space methods can take advantage of A(z)?, if it is available.
However, A(z)~! is allowed to be very inaccurate.

@ Example: Large-scale simulations using iterative solvers.

Takeaway: Advances in inexact full-space SQP methods are
enabling robust and efficient solvers for the above problem classes.
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Inexact full-space methods: TR-SQP, LS-SQP, TR-RSQP

Sandia
National D. Ridzal Inexact full-space SQP 6
Laboratories

Solver hierarchy




ﬁ Motivation  Inexact SQP  Preconditioning  Solver hierarchy
Sequential Quadratic Programming

Solve equality-constrained optimization problem, or NLP:

min f(x)
st. ¢c(x)=0

where f : X - R and ¢ : X — C, for some Hilbert spaces X and C, and
f and c are twice continuously Fréchet differentiable. We identify the
spaces X and C with their duals. Note that earlier ¥ =U x Z.

Define Lagrangian functional £: X x C — R:

L(x,A) = f(x) + (A c(x))c.
If regular point x, is a local solution of the NLP, then there exists a
A« € C satisfying the first-order necessary optimality conditions:

Vif (%) + cx(x:)" A =0
c(x.) = 0.
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Sequential Quadratic Programming

Newton's method applied to optimality conditions:

(Vxxﬁ(xk,)\k) Cx(Xk)*> (s) g (fo(xk) + Cx(Xk)*)\k> :

cx(xk) 0 z c(xk)

If V. L(xk, \k) is positive definite on the null space of ¢, (xx), the above
KKT system is necessary and sufficient for solving the QP:

SEX

1
min §<Vxxﬁ(xk, Ak)S, S)a + (Vi L(xk, Ak), S)x + L(xk, Ak)
s.t. cx(xk)s + c(xx) = 0.

Globalization: Trust region (TR) or line search (LS).

The choice of globalization is not arbitrary. It critically determines:
o features and limitations of quadratic subproblems, e.g., convexity;
@ the type of linear systems solved at every optimization iteration;
@ the preconditioner/solver options and their characteristics; and
@ the mechanisms to deal with the potential rank deficiency of c.
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Composite-step approach with trust regions

cx(xk)s + c(x) =0

o Composite step:
Sk = Nk + tk

@ Quasi-normal step ny:

reduces linear infeasibility

. 2
min - fledl)n + c(x)lic
s.t. Hn”)( < (A

o Tangential step t;:
improves optimality while
staying in the null space of
the linearized constraints

. 1
min E(Vxx['(xky M)+ k), t 4 mi) x + (VL Ak), t 4 i) x + L(xk, Ak)
st (X )t =0, [t+ nllx < Ak

Note: It is ok for the tangential step model to be nonconvex (Steihaug-Toint CG method).
Note: The quasi-normal step computation can handle rank deficiency in c,.
Omojokun (1989), Byrd, Hribar, Nocedal (1997), Dennis, El-Alem, Maciel (1997)
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Inexact TR-SQP

Composite step:
Sk = Nk + ty

Sx(xi)s + c(x) =0

RN © Compute quasi-normal step ng
using inexact Powell dogleg.

@ Solve tangential subproblem for
using inexact projected ST-CG.

© Restore linearized feasibility,
yielding tangential step t.

© Update Lagrange multipliers Axy1.

@ Evaluate progress.

Ridzal, Ph.D. Thesis, Rice University (2006)
Heinkenschloss, Ridzal, SIAM J. Opt. (2014)
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Linear systems

1) Given a quasi-normal Cauchy point nip. we solve for

Sy = nLV i nin here "kN is the desired Newton step: 3) We perform another inexact null space projection,

A COR W A | (o =) (=) ()

. 1.2 .
where the residual (e* e“) € X X C must satisfy
The size of the residual (el ez) € X X C is restricted via ( ) Y

1 2 . tang =
12 .20 2 2 et +lele < Agmin { A, ling + tell x, €2 NEcll 20 /Ay )
et 1% + 1215 < (€97)° llexGoedn® + <) 12 { }

for0 < €18 < 1.
where 0 < €9" < 1. € -

4) Let )y = xj + nj + ty. Wesolve for AN = Xj 1 — Mg

(i ) ()

The residual (e1 e2) € X X C must satisfy

2) At every CG iteration i, we compute an inexact projection
% = Wi (@)

(at =¥ C)-(6)+ (;> ’

) € X X Cis controlled via

(—vxf@) — (T A+ el)
52 )

where the residual (el.l el.2

et lx+le?lie < min {8, M wyr ) + @) Mellac } o
letlix + l? e < e min {2 1712}
for 0 < €/MM < 1 and a fixed £/M8 > 0 independent of k.
with 0 < €Prol < 1.
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Linear systems
. are all augmented constraint systems
IFriC, () e + el
o(xk) 0 y b? e’

@ The size of (e; &) is governed by various model reduction
conditions, i.e., the progress of the optimization algorithm.

@ These are KKT systems for the convex quadratic programs

min %(z,z)x — (bl,z>X

st o(xk)z = b2
o True even if the trust-region subproblems
1
min 5(Vxxﬁ(xk, Ak)s, sha + (Ve L(xk, Ak), s)x 4+ L(xi, Ak)
sit. ox(xk)s+c(xk) =0, |sllx < A

are not convex !
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[1] Byrd, Curtis, Nocedal, SIAM J. Optim., 2008; [2] Byrd, Curtis, Nocedal,
Math. Prog., 2008; [3] Curtis, Nocedal, Wachter, SIAM J. Optim., 2009.

o Geared at inexactly solving the full KKT system:
H(xi, Ae)  cx(xk)* s\ _ _ Vi (xk) 4 (X)) * Ak n e
Ge(Xk) 0 z c(x«) &)’

@ The size of the residual (e' €?) € X x C is governed by a
model-reduction condition inspired by trust-region literature.

@ A backtracking line search is used to compute a steplength satisfying
Armijo conditions for the merit function ¢(x, ) = f(x) + 7||c(x)]].

@ The operator H(xk, Ax) must be positive definite on the null space
of ¢; in [2] an iterative inertia correction procedure is suggested.

@ To handle potential rank deficiency in ¢, in [3] a composite-step
strategy is borrowed from the trust-region literature.
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Inexact TR-RSQP

@ Heinkenschloss, Vicente, SIAM J. Optim., 2001.

@ A “reduced” SQP method, where a decomposition of the
optimization variables x into basic and nonbasic variables is
assumed, e.g., state variables u and control variables z.

@ Very similar to inexact TR-SQP, with some simplifications. In
particular, the approach only uses inexact applications of

o the state Jacobian inverse, ¢;!; and
e its adjoint, ¢, .

@ The latter is also a limitation for rank-deficient problems.

@ Precursor to both TR-SQP and LS-SQP.
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Reduced-space result for thermal inversion

Study inaccurate solution operator. Apply Newton-CG with trust
regions. Use ML to compute A(z)_l(f — Bz) to tolerance tol.

tol=10"1; tol=10"2;
2.5
0.5 2
0 1.5
-0.5 1
—1 0.5

tol=10"%; convergence tol=10"8:; convergence
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Full-space result for thermal inversion

Study inaccurate solution operator, as preconditioner(*). Apply the
inexact full-space TR-SQP algorithm. Use ML to apply A(z)~!.

tol=0.5; convergence

2.5
n 1.5
1
-1 0.5
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Full-space inversion in 3D

e

@ Setup similar to the 2D example.

@ One million elements, runs on my workstation.

@ Converges to 10716 in 22 SQP iterations and ~ 1300 CG iterations.
@ A single V-cycle of multigrid used to apply A(z)~!.

@ Parallelizes as well as ML does.
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Calibration of electrical circuit models
Nonlinear constraints, with ill-conditioned constraint Jacobians.

A simple diode.

Shockley diode equation:

VSrC _ /R

Estimate parameters /s and R in a large number of
experiments where V* is varied.

— Initial condition 1: /s = 1le-10, Rs = 1.0

Method #iterations time (sec)
Reduced space, LS > 1000 —
Reduced space, TR 204 3.34

Full space, TR-SQP 46 0.10

— Initial condition 2: [s = 1e-13, Rs = 0.5

Method #iterations time (sec)
Reduced space, LS 13 0.04
Reduced space, TR 97 1.51

Full space, TR-SQP 23 0.08
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Preconditioners for TR-SQP in PDE-constrained optimization
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The augmented system in PDE optimization
@ Reintroduce state variables v and control variables z:
min  f(u,z)
st. c(u,z)=0

@ Write augmented system matrices as 3x3 block matrices

/ 0 cul(k, zk)*
0 / ez (uk, zk)*
cu(uks zk)  cz(uk, zk) 0
@ Compress notation:
I o ¢
o I C]
¢, ¢ 0
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Schur preconditioners

Consider the exact and the approximate preconditioners, resp.:

/| 0 0 | 0 0
P =10 | 0 and P=|(0 |/ 0
0 0 (C,CT+CCI)t 0 0 (CCT)t

@ P*-preconditioned GMRES converges in three iterations.
@ P amounts to applying C;! and C, 7, i.e., forward/adjoint solves.
@ These forward/adjoint solves can be very coarse!

@ Documented physics-independent performance!
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A recent result for the Helmholtz equation

Mesh \ w 1125 225 450 900 1800 3600
50 x 50 7.8
100 x 100 7.4 6.3
200 x 200 6.7 6.0 5.3
400 x 400 5.5 51 4.6 4.4
800 x 800 4.7 4.4 4.5 4.4 3.9
1600 x 1600 4.5 4.4 45 35 31 2.7

Theorem (Tsuji/Kouri/Ridzal/ Tuminaro)

Under suitable assumptions, the eigenvalues . of the preconditioned
system PA satisfy:

either

=1,
or E(lwa)_ug;(um),
or ;(1— 5+alc2(w))§u§;(1—\@>.

where a; is a positive constant independent of the discretization
parameters, w is the system frequency, and c(w) ~ 1/w.
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A hierarchy of linear systems and solvers in full-space methods
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Linear systems in inexact SQP methods for
PDE-constrained optimization

Inexact line-search SQP:

H11 H12 CZ— u bl €1
H21 H22 C;r y4 = b2 + €
¢, G, O A bs €3
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Linear systems in inexact SQP methods for
PDE-constrained optimization

Inexact trust-region SQP:

/ c! b e
| C ;f z|l=1|b|+| e
¢, ¢, O A bs €3
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Linear systems in inexact SQP methods for
PDE-constrained optimization

Inexact trust-region “reduced” SQP:
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Inexact SQP

Preconditioning

Solver hierarchy

Summary of inexact SQP methods

Method Linear systems  Linear solves Indefinite Hessian Rank deficiency
LS-SQP KKT Specialized KKT  Inertia correction Hybrid methods,
systems solvers; can combine using a general
constraint precondi- composite  step
tioning with certain strategy
objective functions
TR-SQP Augmented Constraint  precon-  Conjugate gradi-  Built-in, through
constraint ditioning through ents with Steihaug-  general compos-
systems linearized state and Toint stopping ite steps
adjoint solves; can  conditions
use specialized KKT
solvers
TR-RSQP Constraint Linearized state and Conjugate  gradi- N/A
systems adjoint solves ents with Steihaug-
Toint stopping
conditions

@ TR-SQP is implemented in the Rapid Optimization Library (ROL).

@ The constraint (Schur) preconditioner is also available.
@ Currently implementing LS-SQP and TR-RSQP.
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