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Thermal inversion

Minimize
{u,z}∈ U×Z

1

2

∫
Ω

(u − û)2 dx + r(z)

subject to

−∇ · (z∇u) = f in Ω, + boundary conditions.

U is the state space – simulated temperature;
Z is the parameter (control, design) space – thermal diffusivity;
r : Z → R is a regularization functional; and
f is a Gaussian heat source at (0,0), with amplitude 5 and width 0.1.

Temperature in uniform material Our measured temperature û
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Thermal inversion

Computed thermal diffusivity True thermal diffusivity
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Two formulations

Full-space formulation

min
u,z

1

2
‖u − û‖2 + r(z)

s.t. A(z)u + Bz = f

Reduced-space formulation

min
z

1

2
‖A(z)−1(f − Bz)− û‖2 + r(z)

state u and control z

the constraint is explicit in the
formulation; allows us to trade
feasibility for optimality

no A(z)−1 in the formulation

control z only

the constraint is eliminated at
each optimization step, by
solving A(z)u = f − Bz

A(z)−1 in the objective function!
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Problem classes benefiting from
the full-space approach

In full space, the solution operator A(z)−1 is not required.

The forward operator A(z) is allowed to be rank deficient.

Examples: Acoustic inverse problems near resonance; problems
without essential boundary conditions; nonlinear constraints.

The solution operator A(z)−1 can be nondifferentiable.

Example: Multiple eigenvalues in structural optimization.

Full-space methods can take advantage of A(z)−1, if it is available.
However, A(z)−1 is allowed to be very inaccurate.

Example: Large-scale simulations using iterative solvers.

Takeaway: Advances in inexact full-space SQP methods are
enabling robust and efficient solvers for the above problem classes.
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Sequential Quadratic Programming
Solve equality-constrained optimization problem, or NLP:

min
x∈X

f (x)

s.t. c(x) = 0

where f : X → R and c : X → C, for some Hilbert spaces X and C, and
f and c are twice continuously Fréchet differentiable. We identify the
spaces X and C with their duals. Note that earlier X = U × Z.

Define Lagrangian functional L : X × C → R:

L(x , λ) = f (x) + 〈λ, c(x)〉C .

If regular point x∗ is a local solution of the NLP, then there exists a
λ∗ ∈ C satisfying the first-order necessary optimality conditions:

∇x f (x∗) + cx(x∗)
∗λ∗ = 0

c(x∗) = 0.

,
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Sequential Quadratic Programming
Newton’s method applied to optimality conditions:(

∇xxL(xk , λk) cx(xk)∗

cx(xk) 0

)(
s
z

)
= −

(
∇x f (xk) + cx(xk)∗λk

c(xk)

)
.

If ∇xxL(xk , λk) is positive definite on the null space of cx(xk), the above
KKT system is necessary and sufficient for solving the QP:

min
s∈X

1

2
〈∇xxL(xk , λk)s, s〉X + 〈∇xL(xk , λk), s〉X + L(xk , λk)

s.t. cx(xk)s + c(xk) = 0.

Globalization: Trust region (TR) or line search (LS).

The choice of globalization is not arbitrary. It critically determines:
features and limitations of quadratic subproblems, e.g., convexity;
the type of linear systems solved at every optimization iteration;
the preconditioner/solver options and their characteristics; and
the mechanisms to deal with the potential rank deficiency of cx .
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Composite-step approach with trust regions

Composite step:
sk = nk + tk

Quasi-normal step nk :

reduces linear infeasibility

min
n∈X

‖cx (xk )n + c(xk )‖2
C

s.t. ‖n‖X ≤ ζ∆k

Tangential step tk :

improves optimality while
staying in the null space of
the linearized constraints

min
t∈X

1

2
〈∇xxL(xk , λk )(t + nk ), t + nk 〉X + 〈∇xL(xk , λk ), t + nk 〉X + L(xk , λk )

s.t. cx (xk )t = 0 , ‖t + nk‖X ≤ ∆k

Note: It is ok for the tangential step model to be nonconvex (Steihaug-Toint CG method).

Note: The quasi-normal step computation can handle rank deficiency in cx .

Omojokun (1989), Byrd, Hribar, Nocedal (1997), Dennis, El-Alem, Maciel (1997)

ζ∆k ∆k

tk

cx (xk )t = 0

cx (xk )s + c(xk ) = 0

nk
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Inexact TR-SQP

ζ∆k ∆k

nk

tk

cx (xk )t = 0

cx (xk )s + c(xk ) = 0

t̃k

Composite step:
sk = nk + tk

1 Compute quasi-normal step nk
using inexact Powell dogleg.

2 Solve tangential subproblem for t̃k
using inexact projected ST-CG.

3 Restore linearized feasibility,
yielding tangential step tk .

4 Update Lagrange multipliers λk+1.

5 Evaluate progress.

Ridzal, Ph.D. Thesis, Rice University (2006)

Heinkenschloss, Ridzal, SIAM J. Opt. (2014)
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Linear systems
1) Given a quasi-normal Cauchy point n

cp
k

, we solve for

δnk = nNk − n
cp
k

, where nNk is the desired Newton step:

(
I cx (xk )∗

cx (xk ) 0

)(
δnk
y

)
=

(
−n

cp
k

+ e1

−cx (xk )n
cp
k
− c(xk ) + e2

)
.

The size of the residual
(
e1 e2

)
∈ X × C is restricted via

‖e1‖2
X + ‖e2‖2

C ≤
(
ξ
qn
)2 ‖cx (xk )n

cp
k

+ c(xk )‖2
C ,

where 0 < ξqn ≤ 1.

2) At every CG iteration i , we compute an inexact projection
z̃i = Wk (r̃i ):

(
I cx (xk )∗

cx (xk ) 0

)(
z̃i
y

)
=

(
r̃i
0

)
+

(
e1
i
e2
i

)
,

where the residual
(
e1
i e2

i

)
∈ X × C is controlled via

‖e1
i ‖X + ‖e2

i ‖C ≤ ξ
proj min

{
‖z̃i‖X , ‖r̃i‖X

}
,

with 0 < ξproj ≤ 1.

3) We perform another inexact null space projection,

(
I cx (xk )∗

cx (xk ) 0

)(
tk
y

)
=

(
t̃k
0

)
+

(
e1

e2

)
,

where the residual
(
e1 e2

)
∈ X × C must satisfy

‖e1‖X+‖e2‖C ≤ ∆k min
{

∆k , ‖nk + tk‖X , ξ
tang‖t̃k‖X /∆k

}
,

for 0 < ξtang ≤ 1.

4) Let x̂k = xk + nk + tk . We solve for ∆λ = λk+1 − λk :

(
I cx (x̂k )∗

cx (x̂k ) 0

)(
z

∆λ

)
=

(
−∇x f (x̂k ) − cx (x̂k )∗λk + e1

e2

)
.

The residual
(
e1 e2

)
∈ X × C must satisfy

‖e1‖X+‖e2‖C ≤ min
{
ξ
lmg
, ξ

lmh‖∇x f (x̂k ) + cx (x̂k )∗λk‖X
}
,

for 0 < ξlmh ≤ 1 and a fixed ξlmg > 0 independent of k.
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Linear systems
... are all augmented constraint systems(

I cx(xk)
∗

cx(xk) 0

)(
z
y

)
=

(
b1

b2

)
+

(
e1

e2

)
The size of (e1 e2) is governed by various model reduction
conditions, i.e., the progress of the optimization algorithm.

These are KKT systems for the convex quadratic programs

min
1

2
〈z , z〉X − 〈b1, z〉X

s.t. cx(xk)z = b2.

True even if the trust-region subproblems

min
1

2
〈∇xxL(xk , λk )s, s〉X + 〈∇xL(xk , λk ), s〉X + L(xk , λk )

s.t. cx (xk )s + c(xk ) = 0, ‖s‖X ≤ ∆k

are not convex !
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Inexact LS-SQP

[1] Byrd, Curtis, Nocedal, SIAM J. Optim., 2008; [2] Byrd, Curtis, Nocedal,

Math. Prog., 2008; [3] Curtis, Nocedal, Wächter, SIAM J. Optim., 2009.

Geared at inexactly solving the full KKT system:(
H(xk , λk) cx(xk)∗

cx(xk) 0

)(
s
z

)
= −

(
∇x f (xk) + cx(xk)∗λk

c(xk)

)
+

(
e1

e2

)
.

The size of the residual
(
e1 e2

)
∈ X × C is governed by a

model-reduction condition inspired by trust-region literature.

A backtracking line search is used to compute a steplength satisfying
Armijo conditions for the merit function φ(x , π) = f (x) + π‖c(x)‖.

The operator H(xk , λk) must be positive definite on the null space
of cx ; in [2] an iterative inertia correction procedure is suggested.

To handle potential rank deficiency in cx , in [3] a composite-step
strategy is borrowed from the trust-region literature.
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Inexact TR-RSQP

Heinkenschloss, Vicente, SIAM J. Optim., 2001.

A “reduced” SQP method, where a decomposition of the
optimization variables x into basic and nonbasic variables is
assumed, e.g., state variables u and control variables z .

Very similar to inexact TR-SQP, with some simplifications. In
particular, the approach only uses inexact applications of

the state Jacobian inverse, c−1
u ; and

its adjoint, c−∗u .

The latter is also a limitation for rank-deficient problems.

Precursor to both TR-SQP and LS-SQP.
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Reduced-space result for thermal inversion
Study inaccurate solution operator. Apply Newton-CG with trust
regions. Use ML to compute A(z)−1(f − Bz) to tolerance tol.

tol=10−1; convergence tol=10−2; convergence

tol=10−4; convergence tol=10−8; convergence

,
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Full-space result for thermal inversion
Study inaccurate solution operator, as preconditioner(∗). Apply the
inexact full-space TR-SQP algorithm. Use ML to apply A(z)−1.

tol=0.5; convergence tol=10−1; convergence

tol=10−2; convergence tol=10−4; convergence
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Full-space inversion in 3D

Setup similar to the 2D example.

One million elements, runs on my workstation.

Converges to 10−16 in 22 SQP iterations and ≈ 1300 CG iterations.

A single V-cycle of multigrid used to apply A(z)−1.

Parallelizes as well as ML does.
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Calibration of electrical circuit models
Nonlinear constraints, with ill-conditioned constraint Jacobians.

Vsrc RS

VD

I

A simple diode.

Shockley diode equation:

I = IS

(
exp

(
V src − IRS

ηV th

)
− 1

)
.

Estimate parameters Is and Rs in a large number of
experiments where V src is varied.

— Initial condition 1: IS = 1e-10, RS = 1.0

Method #iterations time (sec)

Reduced space, LS > 1000 —
Reduced space, TR 204 3.34
Full space, TR-SQP 46 0.10

— Initial condition 2: IS = 1e-13, RS = 0.5

Method #iterations time (sec)

Reduced space, LS 13 0.04
Reduced space, TR 97 1.51
Full space, TR-SQP 23 0.08
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The augmented system in PDE optimization

Reintroduce state variables u and control variables z :

min
u,z

f (u, z)

s.t. c(u, z) = 0

Write augmented system matrices as 3×3 block matrices I 0 cu(uk , zk)∗

0 I cz(uk , zk)∗

cu(uk , zk) cz(uk , zk) 0


Compress notation:  I 0 CT

u

0 I CT
z

Cu Cz 0


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Schur preconditioners

Consider the exact and the approximate preconditioners, resp.:

P∗ =

I 0 0

0 I 0

0 0 (CuC
T
u + CzC

T
z )−1

 and P =

I 0 0

0 I 0

0 0 (CuC
T
u )−1



P∗-preconditioned GMRES converges in three iterations.

P amounts to applying C−1
u and C−Tu , i.e., forward/adjoint solves.

These forward/adjoint solves can be very coarse!

Documented physics-independent performance!
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A recent result for the Helmholtz equation
Mesh \ ω 112.5 225 450 900 1800 3600

50× 50 7.8
100× 100 7.4 6.3
200× 200 6.7 6.0 5.3
400× 400 5.5 5.1 4.6 4.4
800× 800 4.7 4.4 4.5 4.4 3.9

1600× 1600 4.5 4.4 4.5 3.5 3.1 2.7

Theorem (Tsuji/Kouri/Ridzal/Tuminaro)

Under suitable assumptions, the eigenvalues µ of the preconditioned
system PA satisfy:

either µ = 1,

or
1

2

(
1 +
√

5

)
≤ µ ≤ 1

2

(
1 +

√
5 + a1c2(ω)

)
,

or
1

2

(
1−

√
5 + a1c2(ω)

)
≤ µ ≤ 1

2

(
1−
√

5

)
.

where a1 is a positive constant independent of the discretization
parameters, ω is the system frequency, and c(ω) ∼ 1/ω.
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Linear systems in inexact SQP methods for
PDE-constrained optimization

Inexact line-search SQP:

H11 H12 CT
u

H21 H22 CT
z

Cu Cz 0

u

z

λ

 =

b1
b2
b3

+

e1
e2
e3



,
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Linear systems in inexact SQP methods for
PDE-constrained optimization

Inexact trust-region SQP:

 I H11 CT
u

H22 I CT
z

Cu Cz 0

u

z

λ

 =

b1
b2
b3

+

e1
e2
e3


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Linear systems in inexact SQP methods for
PDE-constrained optimization

Inexact trust-region “reduced” SQP:

H11 H12 CT
u

H21 H22 CT
z

Cu Cz

u

λ

 =

b1

b3

+

e1

e3


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Summary of inexact SQP methods

Method Linear systems Linear solves Indefinite Hessian Rank deficiency

LS-SQP KKT
systems

Specialized KKT
solvers; can combine
constraint precondi-
tioning with certain
objective functions

Inertia correction Hybrid methods,
using a general
composite step
strategy

TR-SQP Augmented
constraint
systems

Constraint precon-
ditioning through
linearized state and
adjoint solves; can
use specialized KKT
solvers

Conjugate gradi-
ents with Steihaug-
Toint stopping
conditions

Built-in, through
general compos-
ite steps

TR-RSQP Constraint
systems

Linearized state and
adjoint solves

Conjugate gradi-
ents with Steihaug-
Toint stopping
conditions

N/A

TR-SQP is implemented in the Rapid Optimization Library (ROL).

The constraint (Schur) preconditioner is also available.

Currently implementing LS-SQP and TR-RSQP.
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