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Abstract—The development of non-blocking code is difficult;
developers must ensure the progress of an operation on shared
memory despite conflicting operations. Managing this shared
memory in a non-blocking fashion is even more problematic.
The non-blocking property guarantees that progress is made
toward the desired operation in a finite amount of time. We
present a framework that implements memory reclamation
and progress assurance for code that follows the semantics of
our framework. This reduces the effort required to implement
non-blocking, and more specifically wait-free, algorithms. We
also present a library that demonstrates the ease with which
wait-free algorithms can be implemented using our framework.

1. Introduction

Non-blocking synchronization is a problem that pro-
grammers of real-time systems have been dealing with for
years. Now, this problem is becoming mainstream as com-
panies are being funded based on these technologies [15].
The usual method of synchronization is to use a lock-based
approach that might include constructs such as a mutex.
We can allow for more concurrency by choosing to use a
non-blocking approach which does not employ any software
locks.

There are two kinds of non-blocking synchronization
that we will discuss — lock-freedom and wait-freedom.
Lock-free algorithms require that at least one thread makes
progress in a finite amount of time. In contrast to this
system-level requirement, is wait-freedom which requires
that all threads make progress in a finite amount of time.
Achieving any level of synchronization without software
locks is a difficult problem.

We present Tervel, which is a collection of descriptor-
based techniques for non-blocking synchronization. Tervel
contains an approach to the problem of implementing non-
blocking synchronization that is based on a progress assur-
ance algorithm [8], and combined with hazard pointers [17]
and reference counting [5]. A progress assurance method
is a way of ensuring that threads, that have conflicting
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writes, cooperate such that forward progress is made. This
cooperation is facilitated by a descriptor object which stores
algorithm-specific information about a thread’s operation.
Hazard pointers are lists of memory blocks that cannot be
freed, and an associated algorithm that allows us to know
which blocks belong in the list — reference-counting serves
a similar purpose in this paper. Knowing which blocks
cannot be freed is the biggest problem for any memory
reclamation algorithm.

Tervel provides a progress assurance scheme constructed
from an announcement table [11], [14], descriptor object [3],
and association model [8]. Progress assurance allows the
construction of wait-free algorithms by preventing scenarios
of livelock in the event a thread is continually preempted by
other threads. It has been shown in [14] that these cases of
livelock are exceedingly rare. And by extension the times at
which a thread will use the progress assurance is also rare.

To handle memory reclamation, Tervel uses thread-local
and global memory pools. It uses implementations of hazard
pointers [17] and reference counting [5] to ensure objects are
not reused or freed while a thread is operating on them. The
API for these implementations has been expanded to allow
for their use with objects that have complex dependencies.

The aforementioned techniques are packaged as a frame-
work that allows users easy access to these algorithms. To
showcase the ease by which algorithms can be implemented
in this framework, we describe the implementations of a
wait-free multi-word compare-and-swap algorithm and a
hash map data structure. In addition to these two algorithms,
our initial release includes implementations of a wait-free
ring buffer and wait-free vector.

Using data structures or algorithms implemented in Ter-
vel in an application is a straight forward procedure. It
requires a main thread calling an initialization function for
the library and each thread that uses Tervel algorithms to
call an attachment function. Freeing of Tervel resources is
accomplished calling the destructor of the object returned
from the initialization or attachment function. The only task
that a user must complete in order to add their own algorithm
to the Tervel framework, is to implement an abstract class
for a descriptor object.

Potential applications for wait-free algorithms include
real-time operating systems, and other pieces of software



that are used for mission-critical systems that require hard
real-time limits. Non-blocking algorithms can have a pos-
itive impact on performance while also providing progress
guarantees to general-use applications that may not need
them. An example of this has been described in [6].

Our contributions are:

o We present a framework that allows the user to write
non-blocking code that is reclaimed in a wait-free
manner. This includes a methodology for allowing
users to add their own descriptor-based algorithms.
One of the key properties of our framework that
allows this to be possible is the fact that all library
structures are unified and composable.

e We extend all of the existing techniques that we
use in order to provide additional features that are
necessary for compatibility with our library; such
as, stronger progress guarantees, and composability.
Examples of this include the association model that
we incorporated into the announcements which are
placed in the announcement table, allowing for the
design of more complex announcements that remove
the risk of individual operations being executed
more than once. We also add additional API to
our implementation of hazard pointers and refer-
ence counting to allow for the protection of objects
with complex dependencies. The issues of recursion
in non-blocking algorithms that are caused by the
inclusion of helping routines, is resolved by two
detection methods that Tervel provides as part of
its framework.

e We provide an open-source library that includes
implementations of known wait-free algorithms;
these include a wait-free multi-word compare-and-
swap(MCAS), a wait-free hash map, a wait-free ring
buffer, and a wait-free vector.

2. Background

This section provides an overview of techniques that
have been used to implement non-blocking algorithms and
data structures.

2.1. Inter-Thread Helping Techniques

The most ubiquitous inter-thread helping technique used
in non-blocking algorithms is the descriptor object. A de-
scriptor object is used to describe a pending operation [3]. A
thread places a reference to a descriptor object into shared
memory. Operations that read a reference to a descriptor
object will often perform a helping routine. For a descriptor-
based operation to be lock-free, the descriptor object must
contain enough information such that an arbitrary thread can
complete the operation described within. Descriptor objects
are often incorporated into the design of algorithms that
modify the value of an address based on the value of one
or more other addresses.

Lock-free algorithm designs that use descriptor objects
often show correctness by stating that if a thread placed a
descriptor, then it has made progress in completing its own
operation. Any thread that sees this descriptor will perform
a helping routine before continuing with its own operation.
If a descriptor is placed using a compare-and-swap(cas)'
operation, it is possible for a thread to fail at placing. In this
event, some other thread must have successfully placed a
descriptor object. As a result, the system has made progress
which is the requirement of lock-freedom.

It is difficult to use descriptor objects to construct wait-
free algorithms. This is because there is a theoretical danger
where one or more threads will be perpetually helping other
threads, thus making no progress in their own operation.
Because of this, there is no guarantee that a thread will
make progress on its own operation, which is contrary to
the definition of wait-free.

An announcement table scheme can be used in con-
junction with descriptor objects to achieve wait-freedom.
This scheme allows a delayed thread to announce when
it is unable to make progress [12]. Other threads will
observe this announcement and help the delayed thread.
An announcement differs from a descriptor object in that
it describes an entire operation, as opposed to just a portion
of an operation. Before commencing an operation, a thread
is required to check this for table for announcements. If
an announcement is found, a helping a routine is executed
based on the contents of the announcement. A thread writes
an announcement to its position in the table when it has
failed to make progress a predefined number of times.

Herlihy’s design requires each thread to check the entire
table before commencing any operation. This check is very
costly and makes the design impractical for systems with
a large number of threads. However, the theoretical upper
bound for the number of operations that can complete before
an announced operation does is only numberO fT hreads.

Kogan [14] proposes new methodology by which a
thread checks for an announcement. This methodology uses
a thread-local counter, checkDelay, to control how often
a thread checks for an announcement. Another thread-local
counter, checkPosition, is used to track the last checked
position in the table. If after decrementing checkDelay,
it is 0, the thread will read the value at checkPosition
in the table. If the position holds an operation, the thread
will help complete that operation. Before the function re-
turns, checkPosition is incremented and checkDelay is
set equal to the user-defined constant maxDelay. This
methodology reduces the number of atomic loads caused by
including this check from the number of executing threads,
numberO fThreads, to (1/maxDelay). However, it raises
the upper bound on the number of operations that can be
completed before an announced operation is guaranteed to
complete. The theoretical upper bound of this approach is
max Delay * numberO fThreads?.

1. An atomic operation that writes a value to a memory location only if
its current value is equal to a given expected value.



Descriptor::Parent{ Descriptor:Child{

atomic<Descriptor *> child [——

} }

Descriptor * parent

Figure 1: Associated descriptor objects.

The multi-word compare and swap algorithm of Feld-
man et al. [8] uses a bi-directional association model to
ensure correctness when using multiple descriptor objects.
Two objects have a bi-directional association when they hold
references to one another. This association can be used to
prevent multiple threads from successfully completing the
same operation multiple times. In general, it is performed
as follows: Let object A cause some thread to determine
that it needs to place an object B. Before placing B, the
thread will assign a reference variable in B equal to A.
After placing B, the thread will use a cas operation to
change a reference variable in A from null to B. Figure 1
provides an example of this association model.

If B references A and A reference B, the two are said to
be associated. If however, A does not reference B, it implies
B was placed after some other thread associated an object
with A. This further implies, that B was placed after the
operation that placed A has been completed. Therefore, B
should be replaced by the value that B had initially replaced.

The following sections describe how we use and expand
upon the above techniques in the implemented algorithms.

3. The Tervel Framework

Tervel is a framework for implementing non-blocking
libraries. It is designed to unify, extend, and improve the
usability of known techniques for developing non-blocking
algorithms. Tervel provides memory reclamation, descrip-
tors, and progress assurance constructs. These constructs
provide fundamental building blocks by which developers
can implement non-blocking algorithms.

3.1. Memory Reclamation

A number of papers that present concurrent data struc-
tures suggest the use of either hazard pointers or reference
counting to support reusing memory, however they omit
the necessary implementation details [7]-[9], [20]. Tervel
provides a comprehensive interface by which developers can
add either hazard pointer (HP) or reference counting (RC)
protection to shared memory or objects. Throughout this
paper we refer to the act of applying memory protection
as watching, the act of removing memory protection as
unwatching, and an object that has memory protection as
watched. An object is watched by calling either a RC or
HP specific watch function. This function returns a boolean

indicating whether or not it was successful. FALSE is re-
turned in the event the value at the address the object was
read from has changed.

This describes the standard procedure by which HP or
RC are typically used and it works well for objects that are
only accessible through a single reference. For objects that
maybe accessed through multiple references, such as those
used in the association model, it does not provide adequate
protection. To protect these objects, we allow the developer
to define additional steps that are performed during the
watching of an object. These steps are encapsulated by
an on_watch member function, which is called by the
watch function if the object was successfully watched. If
the on_wat ch function returns FALSE, the wat ch function
removes the watch on the object and also returns FALSE.
In addition to the on_watch function, we also provide
on_unwatch and on_is_watched functions. Section 5
shows how these three functions simplify our implementa-
tion of existing algorithms. A developer has access to these
functions by extending the HPElement or RCElement
abstract class.

In order to safely reuse objects or return memory to
the system, Tervel provides both thread-local and shared
memory pools. When an object is no longer needed, the
object’s owner will call a specialized free function based
on how the object was allocated. An object’s owner is a
thread responsible for freeing that object. An object must be
owned by only one thread or it may result in an object being
freed by multiple threads. In general, an object’s owner is
determined as follows:

e An object is initially owned by the thread it was
allocated to.

o A thread takes ownership of an object that it re-
moved all references to it.

e An object’s ownership transfers to a thread if it
becomes associated with that thread’s operation.

The last point is necessary for objects that contain references
to other objects. For these objects, it is usually the case
that neither can be freed while either is watched. An object
is freed only if the call to is_watched returns FALSE.
This function internally calls the on_is_watched mem-
ber function of the passed object. This allows a developer
to encode logic to prevent an object from being freed
prematurely. It does require a root object to be identified
and have that object’s destructor call the appropriate free
function for each object referenced by the root object.

When freeing an HPElement object, a thread adds the
object to its thread-local HPElement memory pool. Then
for each element in the pool, the is_watched function is
called on it. If it returns FALSE, the object is removed from
the pool and it is returned to the allocator.

An RCElement cannot be returned to the allocator,
instead it is moved from an wunsafe memory pool to a
safe memory pool. This is because it is possible for the
reference count member of the object to be incremented at
any point, making it unsafe to return the object to the system.
When allocating an RCElement the thread will attempt to



get an object from the following sources in order: thread-
local safe pool, thread-local unsafe pool, shared safe pool,
shared unsafe pool, and finally system allocator. To prevent
a single thread from accumulating too many objects, we
implemented a load balancing scheme. If a thread contains
too many objects, it offloads the excess to the shared pool.

To simplify management of subclasses of RCElement
that exhibit varying sizes, we force the allocated size of
these objects to be a multiple of the system cache. A
separate pair of unsafe and safe pools are used for each
size. Our implementation improves memory utilization of
an application by allowing all instances of all algorithms to
share a common set of memory pools. This is in contrast to
algorithms that contain their own independent reclamation
scheme.

3.2. Descriptor-based Methodologies

Tervel provides an abstract descriptor class to guide the
implementation of descriptor objects. Objects extending this
abstract class must provide implementations of the value
and complete member functions. The value function re-
turns the logical value of the descriptor object. This is either
the value that the descriptor object replaced, or a value
determined by the operation that placed the descriptor. The
latter is returned if the operation has been completed, but the
descriptor has not yet been removed. The complete function
is used to remove a descriptor object from an address.

These functions enable a developer to more readily
reason about the correctness of two concurrent operations.
The developer must only need to consider the case where a
thread’s calls the complete function of a descriptor object at
an arbitrary point in time. Without such functions, the devel-
oper may have to consider more complex interactions; e.g.,
two or more different operations executing concurrently.

If the algorithm’s operations are linearizable, then it can
be shown that two concurrent descriptor based operations,
operating on overlapping address spaces, are ordered by
whichever placed a descriptor object at a common address
first. The other will either see the descriptor and help, or
the operation will be completed first. Cyclic dependencies
may arise if an operation uses multiple descriptor objects.
However, this can be prevented by placing descriptor objects
in an ascending or descending address order.

The association model uses two or more descriptor ob-
jects, where one object is a parent and the rest are children.
The parent contains atomic reference(s), which are initially
NULL, and are set using a cas operation. The children
contain a reference to the parent object. A child and a
parent are said to be associated if the child references
the parent and the parent references the child. When using
this model, it is necessary to include specific logic in the
on_watch function of a child descriptor object to ensure
that it returns TRUE only if the child is associated with
its parent. In general, the on_watch function attempts
to acquire a watch on the parent object and if successful,
it attempts to associate them. If this association fails, the

descriptor object is replaced by its logical value, before
returning FALSE Otherwise, the function returns TRUE.

The watching of the parent object is an important step.
Consider the case where a thread attempts to associate a
child object with a parent object. However, just before the
cas operation is invoked, the parent object is freed and
reused. When the cas operation executes, the application
could experience undefined behavior.

By encapsulating this logic in the on_watch function,
we reduce the number of places where an implementation
error may occur. The on_watch function ensures that if
an object is watched, it is also associated.

3.3. Recursive Helping

Recursive helping has not been discussed in the literature
but its presence may lead to a scenario where a thread
consistently sees new descriptor objects that it must remove
before being able to finish executing its current operation.
Tervel provides two mechanisms by which to detect such
an event.

The first is that each thread tracks the number of op-
erations it is currently helping. If this number exceeds the
number of executing threads, the thread will return back to
its own operation. For a thread to have gotten to this point, it
implies that at least one of the operations the thread believes
it is helping has completed. If this is the case, there no longer
exists a dependency between the threads own operation, and
the one it is currently helping.

The second mechanism has each thread store, in a
thread-local variable, the address of a control word. When
the value of this control word is no longer NULL, it implies
the thread’s operation is complete. This allows a thread to
detect if some other thread has completed their operation,
while it was performing a helping routine. For algorithms
that use the association model, the control word is often
the atomic reference to the child member inside the parent
descriptor object.

3.4. Progress Assurance

The majority of the wait-free algorithms implemented
in Tervel depend on an announcement table [10] for their
progress guarantees. In Tervel we refer to an announcement
as an operation record. An operation record is a type of
descriptor object that contains the information necessary
for an arbitrary thread to execute an entire operation. To
provide O(1) access when checking the table, Tervel uses
the methodology described in [14].

For simple operations, we follow the fast-path-slow-
path [14] design methodology. In this methodology, a thread
examines the state of an operation record and executes it if
its state is not in the complete state. When designing more
complex operations, this design may allow the ABA prob-
lem, or data races to occur. For example, if it is uncertain
which memory words will be affected by an operation, the
same operation may be successfully executed on multiple



memory locations, and values could be reused, leading to
the ABA problem.

To avoid these problems, we employ the association
model when we implement complex operations. In general,
a thread will replace a value with references to a child
descriptor object that contains a copy of the value. Then
a thread will attempt to associate the child descriptor with
its parent. If successful, the reference to the child descriptor
is replaced by the result of the operation. Otherwise, it is
replaced by the value contained within.

4. Extending Tervel with User Algorithms

This section presents a brief and general description of
how a developer can use Tervel’s framework to implement
a non-blocking algorithm. We assume the developer already
has a descriptor-based design.

The majority of non-blocking algorithms use one or
more types of descriptor object. Based on how these de-
scriptor objects are used either RC or HP memory protection
may be used.

For small short-lived objects that are used repeatedly, we
recommend extending the RCElement class. The memory
pools allow threads to maintain their own allocation of
objects and reduce the contention on the system allocator.
Since the objects are frequently used, the fact that they
cannot be returned to the system is not a significant concern.

Hazard pointer memory protection is provided by ex-
tending the HPElement class. Since the HPElement class
does not contain an atomically incremented member, these
objects can be returned to the system once they are no longer
watched. This makes it ideal for objects that are infrequently
used, very large in size, or have variable sizes.

In contrast to RC-protected objects, the maximum num-
ber of HP-protected objects watched by any given thread
must be known. If recursive functions are used, it may not
be possible to use HP protection, as subsequent function
calls could overwrite an address. The framework includes
assertions to alert the developer in the event they inadver-
tently reuse a position in the hazard pointer table.

Regardless of the chosen memory protection scheme,
each descriptor class must have these member functions:

e value: This function returns the logical value of a
descriptor object.

« complete: This function should be implemented such
that upon its return the descriptor object has been
removed.

The on_watch, on_unwatch, and on_is_watched
member functions may also be implemented.

If wait-freedom is desired, an operation record must
be implemented for each operation that contains un-
bounded loops. An unbounded loop is a loop that may
execute indefinitely if certain conditions are continu-
ally met. To create an operation record, a developer
will extend the OperationRecord class and imple-
ment a help_complete function. The design of the
help_compete function must be such that upon its return the

operation is complete. The developer can take advantage of
the following statement when reasoning about the threads
executing the help_complete function. After making an
announcement, only (check Delay+ NumberO fThreads)?
more operations may begin before either all threads are
helping to complete the same operation or the operation has
been completed. This assumes that the algorithm is livelock-
free, such that two operations cannot cause each other to fail
(though it is fine for one operation to cause the other to fail).

The unbounded loops can be bounded by adding a
fail counter that creates an operation record and calls the
announcement function, when it reaches a compile time
constant. Internally, this function calls the operation record’s
help_complete function.

5. Implementation Examples

Tervel provides a number of abstract classes and struc-
tures to guide a developer who is implementing non-
blocking or wait-free algorithms. The following section
present excerpts from two wait-free data structures we im-
plemented in Tervel. These excerpts were selected because
they showcase the expressiveness, functionality, and con-
ciseness of the framework. For details, see: cse.eecs.ucf.edu

5.1. Multi-Word Compare-And-Swap

Using Tervel’s design patterns, we re-implemented a
wait-free Multi-Word Compare-and-Swap (MCAS) [8] algo-
rithm. Compared to the original implementation, there was
less redundancy and better encapsulation of helping routines.
For example, we leveraged the on_watch function to
associate objects, removing the need to handle unassociated
or incorrectly placed objects in each function. Instead the
handling of these events is done purely within on_watch.

The MCAS design uses two types of descriptor objects,
which are partially described in Figure 2 and 3. It is per-
formed by iteratively replacing the expected value at each
address with a reference to an MCasHelper. To prevent the
ABA problem from occurring, this design uses the asso-
ciation model (Section 2). After placing an MCasHelper,
the next step is to associate it with its MCasOp. We ex-
press the association model by defining an associate
function (Figure 3 Line 38). This function uses a cas
operation to assign a child reference to the address of the
MCasHelper. It returns whether or not the child references
the MCasHelper. If it references some other MCasHelper,
the function removes the MCasHelper. It is important to
quickly remove incorrectly placed objects to prevent other
threads from accessing them. For a more thorough descrip-
tion of these objects and their parent classes, see our website.

Figure 3 Line 19 presents the complete function that
is called by a thread to remove an MCasHelper placed
by a different thread. Because a thread calls the complete
function after it has acquired a watch on the object, it does
not have to consider the case where a descriptor has been
placed in error. For example, if an MCasHelper was placed
in error, its on_watch function (which is called by the



1: Class MCASOP<T> EXTENDS OPERATIONRECORD
2: atomic State state;

3 const T* addresses[];

4 const T expected_values|[];

5: const T new_values[];

6 const atomic<MCasHelper*> helpers[];

7
8
9

Destructor MCASoP
for helper in helpers do

10: RC::allocator::return(helper);
11: end for

12: end Destructor

13:

14: function ON_IS_WATCHED

15: for helper in helpers do

16: if RC::is_watched(helper) == true then
17: return true;

18: end if

19: end for

20: return false;

21: end function

22:

23: function HELP_COMPLETE(z = 0)

24: for x<helpers.length; x++ do

25: if place_helper(x) == false then
26: return state.load() == pass;
27: end if

28: end for

29: state.cas(undecided, pass);

30: return state.load() == pass;

31: end function

32: end Class
Figure 2: MCAS operation record

watch function) would have removed it when the call to
associate returned false.

In order for an MCasHelper to be removed, the MCAS
operation that placed it must be completed. This is ac-
complished by calling the MCASop’s help_complete
function. Upon its return, the state of the MCASop will
have been changed from undecided to either passed or failed.
Once the state has been decided, the MCasHelpers may be
replaced with their logical values. The logical value of an
MCasHelper is determined by calling their value function.

Our MCAS implementation uses Tervel’s memory man-
agement features to safeguard the reclamation of descrip-
tor objects. We use hazard pointers to protect MCASop
objects and reference counting to protect MCasHelper
objects. The MCASop object is responsible for freeing
all MCasHelper objects referenced by it. As such, the
thread that owns the MCASop also acquires ownership of
those MCasHelpers. This ownership is expressed in the
MCASop’s on_1is_watched and destructor functions.

5.2. Wait-Free Hash Map

The API of the wait-free hash map described in [7]
mirrors that of the sequential hash map, but allows concur-

46:
: end Class

: Class MCASHELPER EXTENDS DESCRIPTOR

const MCASop op;
const int idx;

function oN_wATCH(address, cur)
pos = HP::WatchPos::TempWatch
if HP::watch(pos, address, cur, op) then
bool res = this.associate();
if res == false then
temp = op.expected_values[idx];
address.cas(cur, temp);
end if
HP::unwatch(pos);
return res;
end if
return false;
end function

function coMPLETE(address, cur)
op.help_complete(idx+1);
if op.state == passed then
temp = op.new_values[idx];
else
temp = op.expected_values[idx];
end if
address.cas(cur,temp)
return address.load();
end function

function VALUE()
if op.state == passed then
return op.new_values[idx];
else
return op.expected_values[idx];
end if
end function

function ASSOCIATE()
op.helpers[idx].cas(null,this)
if op.helpers[idx].load() # this then
temp = op.expected_values[idx];
op.addresses[idx].cas(this, temp);
return false;
end if
return true;
end function

Figure 3: MCAS descriptor object



rent operations. To safeguard access to key-value pairs, we
require that a thread acquire hazard pointer protection on an
object before dereferencing. Unfortunately, this restriction
breaks the wait-free guarantee of the algorithm. The authors
describe a mechanism by which they use the atomic or
operation to force the table to expand, in the event a memory
address is experiencing heavy contention. However, we do
not believe that this mechanism can be adapted to address
possible livelocks introduced by applying hazard pointers.

To address this and other limitations of this concurrent
design, we made the following adaptations:

e We use operation records to apply an operation in
the event livelock is detected.

e« We combined the get and update operation into
an access operation.

e We changed insert to return true if it a key-value
pair was inserted, and false if it already exists in the
hash map.

e We changed remove to return an enum indicating
one of three possible results.

— The key-value pair was removed.

— The key-value pair was not removed because
it is currently being accessed.

— The key-value pair is not in the hash map.

The access operation takes as arguments the key to
find and a Tervel accessor object, and returns a boolean
indicating whether or not the key exists in the hash map.
The accessor object removes a lot of ambiguity that may
occur in the original API where multiple updates and/or
deletes may occur on the same key. A simplified example
of this is presented in Figure 4. For brevity, implementation
details of the searchForKey function has been omitted.
In short it searches the hash map for the passed key and
returns the following:

o found: This indicates whether or not the key was
found.

e array: The array the key is or would be stored on.

¢ pos: The position on array the key is or would be
at.

e pair: A value loaded from array[pos]. If it is a
reference to an object, the object was successfully
watched.

If the access operation returns true, the accessor is
used to read and modify a key’s value. Each key-value
pair contains an atomic counter and internally the access
operation performs a fetch-and-add on this counter. If the
counter is now non-negative value, a reference to a pair is
stored within the accessor. A negative result indicates that
the object has been deleted. When the accessor is deleted,
its destructor decrements the counter of the pair within.

A remove operation attempting to delete a key-
value pair will first attempt to logically delete it (Fig-
ure 5 Line 6). Internally, the logicalDelete func-
tion attempts to change the atomic counter from 0 to
—1xnumber_of_threads. If successful, this prevents other

1: function BOOL ACCESS(Key key, Accessor *access)
2 tervel::attemptToHelp();

3 found, array, pos, pair = searchForKey(key);
4 if found then

5: res = pair—incAccess();

6 hashmapUnwatch(pair);

7 if res >= 0 then

8 access—init(pair—counter, pair—value);
9: return true;

10: end if

11: end if

12: return false;

13: end function

Figure 4: Hash map access operation.

threads from accessing the key-value pair. If it fails, the
remove operation returns a value indicating that a thread
is accessing the specified key.

Figure 6 presents the insert operation and Figure 8
presents its operation record. For brevity, we only include
the insert operation’s operation record, the remove and
access operation records are available on our website

This design places a helper object on an array, associates
it with an operation record, and then replaces it with a
reference to a key-value pair. The helper object allows the
thread that made the operation record to determine if the
insert was successful or not.

An alternative to using the helper object would be to
include an additional variable in the key-value pair. How-
ever, we believe that such a design will require additional
conditional statements in the key-value pair’s on_watch
function. We choose not to go with this approach because
we believe that the conditions necessary for an operation
record to be used are highly unlikely.

1: function REMOVE(Key key)

2: tervel::attemptToHelp();

3 found, array, pos, pair = searchForKey(key);
4: if found == false then

5 return not found;

6 else if pair—logicalDelete() then

7 removeReference(array, pos, pair);

8 return key removed;

9

: else
10: return key in use;
11: end if
12: return false;

13: end function

Figure 5: Hash map remove operation.

6. Related Work

We are aware of several concurrent libraries that focus
on fine-grained synchronization and progress guarantees.
Below we provide a brief summary of them and key dif-
ferences between them and Tervel.



1: function INSERT(Key key, Value value)

2 tervel::attemptToHelp();

3 pair = new HashMapPair(key, value);

4 for ¢ = 0; ¢ < Tervel:MaxFails; c++ do

5: found, array, pos, cur = searchForKey(key);
6 if found == true then

7 delete pair;

8 return false;

9: else if array[pos].cas(cur, pair) then
10: return true;

11: end if

12: end for

13: op = new HashMaplnsertOp(this, pair);
14: tervel::announceOp(op)

15: res = op—res;

16: op—safeDelete;

17: return res

8: end function

—

Figure 6: Hash map insert operation.

: Class HASHMAPHELPER EXTENDS HP::OBJECT
const HashMapOp *op;

1

2

3

4 function oN_wATCH(address, cur)

5: pos = HP::WatchPos::TempWatch

6 res = HP::watch(pos, address, cur, op)
7 if res then

8: op—associate(address, this);
9: end if

10: return false;

11: end function

12: end Class

Figure 7: HashMapHelper descriptor object.

The C++ Standard Template Library (STL) provides
several sequential containers; none are concurrent.

Amino Concurrent Building Blocks (Amino) is an open
source software project [1]. Its goal is to develop concurrent
libraries or building blocks that can be used by program-
mers. It provides several implementations lock-free data
structures, but not include any wait-free algorithms. This
library was last updated on April 14th, 2010.

Boost [4] provides a lock-free queue and a lock-free
stack algorithm. These algorithms are implemented based
on the designs described in [13]. Like Amino, it does not
provide any wait-free algorithms.

LibCDS [2] is a collection of lock-free and lock-based
fine-grained algorithms of data structures like maps, queues,
list etc. The library contains implementation of well-known
data structures and memory reclamation schemas for modern
processor architectures. While it provides more functionality
and algorithms, than our initial library release, we believe
that over time our library will grow to support these func-
tionalities. In contrast to LibCDS, our goal to ensure that
every component is wait-free.

STAPL (the Standard Template Adaptive Parallel Li-
brary) [19] is a framework for developing parallel programs

1: Class HASHMAPINSERTOP EXTENDS OPERATIONRECORD
2 const HashMap *map;

3 const HashMapPair *pair;

4: atomic<HashMapHelper *> helper;

5: function RESULT()

6 return helper.load() != Tervel::FailPtr

7 end function

8

9

: function ASsSOCIATE(atomic<void *> *address,
Helper *h)

10: helper.cas(null, h);

11: if helper.load() == h then

12: address.cas(h, pair);

13: else

14: address.cas(h, null);

15: end if

16: end function

17:

18: function HELP_COMPLETE()

19: h = new HashMapHelper(this);
20: while helper.load() == null do
21: found, array, pos, cur = searchForKey(key);
22: if found == true then

23: if cur != pair then

24: helper.cas(null, Tervel::FailPtr);
25: end if

26: delete h;

27: return

28: end if

29: if array[pos].cas(cur, h) then
30: this—associate(h);

31: h—safeFree();

32: return

33: end if

34: end while

35: end function

36: end Class

Figure 8: Hash map insert operation record.

in C++. It is designed to work on both shared and distributed
memory parallel computers. STAPL includes a run-time
system, design rules for extending the provided library code,
and optimization tools. Its goal is to allow the user to work at
a high level of abstraction and hide many details specific to
parallel programming, to allow a high degree of productivity,
portability, and performance.

The differences between all of these approaches are
summed up in Table 1.

7. Performance

In order to demonstrate the performance of our library
as compared to the others, we chose to test the one data
structure that was common in most of them — the hash
map. The following available (STAPL is excluded based on
this requirement) libraries include a parenthesized number
of hash maps: STL (1), Tervel (1), Amino (0), Boost (1),
LibCDS (2). The lack of a hash map excludes Amino from



TABLE 1: Library Features by Degree (none, low, some, high)

STL  Tervel Amino Boost CDS STAPL

Reliance on a Runtime System  none none low none low high
Non-blocking Algorithms  none high some low  some none
Non-blocking Memory Reclamation  none high low low  some none
Source Code Availability ~ high high high high high none

our tests; all libraries that make hash map implementations
available are tested. LibCDS provides two lock-free hash
maps [16] and [18]. Despite the fact that neither Boost
nor the STL provide a concurrent hash map, we have used
their sequential map implementations with a global lock; we
include these approaches for completeness, and because this
is a traditional approach to achieving a degree of parallelism.

The tests were conducted on a 64-core workstation
running 64-bit Ubuntu Linux version 11.04, and all code
was compiled with g++4.8, with level three optimizations
enabled. The hash maps were all given an initial size of
1024, and were then filled halfway. Then, each algorithm
would perform thirty repetitions of a five-second-long test
that consisted of randomly choosing and performing an
operation based on a probability distribution. The operation
was chosen from one of seven probability distributions.
The probability of each operation get, insert, update,
remove is shown as a set of percentages here: {10, 18,
70, 2}, {10, 70, 18, 2}, {10, 88, 0, 2}, {25, 25, 25, 25},
{34, 33, 0, 33}, {88, 10, 0, 2}, {88, 8, 2, 2}. Not all of the
algorithms have update functions, so these were synthesized
with a combination of a remove operation for the old value
and an insert operation for the new value.

Representative results of these tests are shown in Fig-
ure 9. Figure 9a shows typical hash map usage (assuming
an API that does not include update) [18]. Figure 9b
shows the opposite of this use case, Figure 9c shows an
even distribution without update operations, and Figure 9d
shows an even distribution of all operations.

In all of the graphs, the non-blocking approaches in-
crease performance with the number of threads up to the
hardware limit. In contrast, the blocking approaches experi-
ence non-increasing performance as the number of threads
increase — usually decreasing. On average, Tervel performs
better than the other non-blocking designs by a factor of 2.
Tervel’s performance improvement is an even larger factor
of 6 compared to the blocking approaches.

8. Conclusion

Writing non-blocking code is a challenging task that
can be made easier by employing our framework to solve
the more challenging problems of memory reclamation, and
progress assurance. We demonstrate this using our own
framework to implement two non-blocking algorithms: a
wait-free hash map, and a wait-free multi-word compare
and swap. This framework is built using established tech-
niques such as reference counting, hazard pointers, and the
announcement scheme. We plan to extend this work in the
future by adding new algorithms and data structures to the

library; as well as, studying the ability of students with
no experience in non-blocking programming to implement
existing non-blocking approaches using our framework.

Appendix

We omit explanation and analysis of the remaining three
graphs due to space concerns, but present the graphs them-
selves in Figure 10 for completeness.
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