

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

P.O. Box 2008
Oak Ridge, TN 37831-6036
PHONE: (865) 241-5622
FAX: (865) 576-3989
E-MAIL: pracheilbm@ornl.gov

14 April 2016

Dear Dr. Costa:

Please find attached our responses to reviewer comments and revision to manuscript ID ECTX-D-15-00181 R1 entitled "Relating Fish Health and Reproductive Metrics to Contaminant Bioaccumulation at the Tennessee Valley Authority Kingston Coal Ash Spill Site". We thank the editor and the reviewers for their attention to this manuscript. We believe that addressing the comments have led to a much improved draft. We have responded point-by-point to reviewer comments.

Please don't hesitate to contact us if you require additional information or materials. We look forward to continue working with you towards publication of this manuscript.

Best regards,

Brenda M. Pracheil, Ph.D.
Aquatic Ecologist
Environmental Sciences Division
Oak Ridge National Laboratory
Email: pracheilbm@ornl.gov
Phone: 865-241-5622
Fax: 865-576-3989

1 TITLE: Relating Fish Health and Reproductive Metrics to Contaminant Bioaccumulation at the
2 Tennessee Valley Authority Kingston Coal Ash Spill Site

3 AUTHORS: Brenda M. Pracheil¹, S. Marshall Adams^{1,2}, Mark S. Bevelhimer¹, Allison M.
4 Fortner¹, Mark S. Greeley, Jr.¹, Cheryl A. Murphy³, Teresa J. Mathews¹, and Mark J. Peterson¹

5 ¹Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, TN 37831

6 ²Retired

7 ³ Department of Fisheries and Wildlife, Lyman Briggs College, Michigan State University, East
8 Lansing, MI, 48824

9

10

11

12

13

14

15

16

17

18 Copyright Notice: This manuscript has been authored by employees of UT-Battelle, LLC, under
19 contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the United
20 States Government retains and the publisher, by accepting the article for publication,
21 acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,
22 world-wide license to publish or reproduce the published form of this manuscript, or allow others
23 to do so, for United States Government purposes.

24 **ABSTRACT**

25 A 4.1 million m³ coal ash release into the Emory and Clinch rivers in December 2008 at
26 the Tennessee Valley Authority's Kingston Fossil Plant in east Tennessee, USA, prompted a
27 long-term, large-scale biological monitoring effort to determine if there are chronic effects of this
28 spill on resident biota. Because of the magnitude of the ash spill and the potential for exposure to
29 coal ash-associated contaminants (e.g., selenium (Se), arsenic (As), and mercury (Hg)) which are
30 bioaccumulative and may present human and ecological risks, an integrative, bioindicator
31 approach was used. Three species of fish were monitored— bluegill (*Lepomis macrochirus*),
32 redear sunfish (*L. microlophus*), and largemouth bass (*Micropterus salmoides*)— at ash-affected
33 and reference sites annually for five years following the spill. On the same individual fish,
34 contaminant burdens were measured in various tissues, blood chemistry parameters as metrics of
35 fish health, and various condition and reproduction indices. A multivariate statistical approach
36 was then used to evaluate relationships between contaminant bioaccumulation and fish metrics to
37 assess the chronic, sub-lethal effects of exposure to the complex mixture of coal ash-associated
38 contaminants at and around the ash spill site. This study suggests that while fish tissue
39 concentrations of some ash-associated contaminants are elevated at the spill site, there was no
40 consistent evidence of compromised fish health linked with the spill. Further, although
41 relationships between elevated fillet burdens of ash-associated contaminants and some fish
42 metrics were found, these relationships were not indicative of exposure to coal ash or spill sites.
43 The present study adds to the weight of evidence from prior studies suggesting that fish
44 populations have not incurred significant biological effects from spilled ash at this site: findings
45 that are relevant to the current national discussions on the safe disposal of coal ash waste.

46 **INTRODUCTION**

47 Creating strong linkages between environmental pollution exposure and health effects in
48 wild animal populations can be difficult (Rose 2000). When there is large release of a
49 contaminant and concomitant and conspicuous death of a large number of organisms these
50 linkages are fairly straightforward. However, in the bulk of contaminated ecosystems linking
51 environmental perturbations and sub-lethal population impacts often requires teasing apart
52 multiple conflating factors. For example, creating links between a released contaminant and an
53 animal population may require a combination of knowledge of the environmental history of the
54 contaminated area, the environmental history of surviving organisms, controlled exposures of
55 cell cultures or whole animals at one or multiple life stages to the released contaminant, and
56 modelling approaches that extrapolate sub-organismal and individual effects to a population
57 (Rose 2000). Unfortunately, controlled experimental studies aimed at mechanistically
58 cataloguing sub-lethal effects and scaling to see if these effects have population impacts can take
59 several years to decades to complete. As a result, many of the initial conclusions on the sub-
60 lethal effects of environmental contamination are based on relational data from uncontrolled field
61 and laboratory studies. These initial studies can be important for generating hypotheses for
62 further mechanistically-focused experimentation. Perhaps more importantly, management and
63 restoration decisions must be made on a much shorter time-scale than that allowed by controlled
64 experimentation. Frequently, relational studies represent the best information available on a
65 particular ecosystem for forming urgent policy decisions.

66 The effects of coal ash, the byproduct of coal combustion, on aquatic biota has become a
67 major concern to environmental regulators. Depending on the source of the coal used as fuel,

68 coal ash can contain high concentrations of contaminants such as arsenic (As), mercury (Hg),
69 and selenium (Se), which can be toxic to biota and can bioaccumulate. These contaminants can
70 then be transferred to humans consuming fish and other aquatic organisms, thereby creating
71 possible public health concerns. Because the chemical make-up of coal ash varies by coal source,
72 reported effects of coal ash on biota can be varied ranging from near complete reproductive
73 failure (Lemly 2002) to negligible and undetectable effects (Souza et al. 2013). Although the
74 exact mechanisms and toxic constituents of coal ash are not known, coal ash spills have been
75 linked to reduced nest success in birds (King et al. 1994) and skeletal deformities in fish (Lemly
76 2002).

77 Concerns about the effects of coal ash on aquatic organisms were again brought to the
78 fore following the rupture of a retention pond dike in 2008 at the Tennessee Valley Authority's
79 Kingston Fossil Plant (TVA KIF). This breach spilled coal ash into the Emory River, in east
80 Tennessee, USA resulting in the largest disaster of its kind in US history. While acute effects of
81 the TVA KIF coal ash spill to aquatic animals were conspicuous, including the killing of an
82 unknown number of fish, mussels, benthic macroinvertebrates, and other aquatic organisms
83 (Lemly and Skorupa 2013; Bryan et al. 2012; Otter et al. 2013; Souza et al. 2013), ongoing
84 monitoring of the spill site has not suggested any major threats to humans, fish or wildlife since
85 the initial incident: drinking water has remained safe and water quality has generally not
86 exceeded regulatory criteria.

87 In the present study, the effects of coal ash contamination on biota were further explored
88 through relating bioindicators of fish from three reference sites and three TVA KIF ash-affected
89 sites to assess the fish response to coal ash. This approach involved relating a suite of selected

90 biological responses including biochemical markers, condition indices and reproductive health
91 markers (Adams and Greeley 2000) to As, Hg, and Se burdens in fishes.

92 Since coal ash contains a number of potentially toxic contaminants and exposure to coal
93 ash contaminants at the KIF site has changed over time due to remediation efforts and riverine
94 hydrologic processes, the response of fish to ash-associated contaminants is likely complex.
95 Statistically relating fish metrics with bioaccumulation results from the KIF site can be a first
96 step towards understanding the response to coal ash exposure over time. To this end, the TVA
97 KIF coal ash fish health, reproduction and bioaccumulation monitoring data were used to
98 determine if there were relationships between contaminants in fish fillets and fish metrics and, if
99 these relationships exist, whether they were related to site and ash exposure. This study uses a
100 statistical approach to highlight links between fish health, reproduction and selected coal ash-
101 related contaminant burdens as an essential first step for generating hypotheses and associations
102 that can be further explored in the future using carefully designed studies that target a
103 mechanistic understanding of the effects of coal ash on aquatic animal health.

104 **MATERIALS AND METHODS**

105 *Study area*

106 The TVA KIF is located adjacent to the confluence of the Emory and Clinch rivers in east
107 Tennessee, USA (Figure 1). Approximately 90% of the ash spilled into the Emory River, some
108 of which was pushed up to Emory River mile 6 (TVA 2009). The remaining ~10% of the ash
109 spilled into an embayment to the north of the TVA KIF, and downstream into the Clinch River
110 (TVA 2009). Following the spill, fish were collected each spring for this study from 2009 to

111 2013 at three ash-affected sites—Emory River mile 3.0 (spill site; hereafter, S1), Emory River
112 mile 0.9 (approx. 2 mi or 3 km downstream of the spill site; hereafter S2) and Clinch River mile
113 1.5 (approx. 6 mi or 10 km downstream of the spill site; hereafter S3)— and three reference sites
114 that were unaffected by the spill— Emory River mile 8.0 (approx. 5 mi or 8 km upstream of the
115 spill site; hereafter R1), Little Emory River mile 2.0 (approx. 2 mi or 3 km upstream of the
116 confluence of the Emory and Little Emory rivers; hereafter R2), and Clinch River mile 8.0
117 (approx. 4 miles or 6 km upstream of the confluence of the Clinch and Emory rivers; hereafter
118 R3). Ash was dredged from the ash-affected Emory River sites (S1, S2) from 2009-2010 where
119 65% of the 4.1 million m³ of spilled coal ash were removed (Bartov et al. 2012). Site R1 was
120 used in this study as a reference site; however, it has received considerable environmental
121 contamination from a now-closed, upstream paper mill (Bartov et al. 2012). Site R3 has also
122 received considerable environmental contamination from an upstream Department of Energy
123 facility for many years (Bartov et al. 2012). While the reference sites chosen for this study are
124 far from pristine, all regionally proximate, and therefore, relevant, candidate reference sites have
125 been impacted by some form of legacy alteration or contamination. This region is one of high
126 freshwater biodiversity and geologic heterogeneity (Pracheil et al. 2014) thereby underscoring
127 the importance of choosing spatially proximate reference sites.

128 Pore-water leached from spill site sediments contained elevated levels of As, Se, Hg,
129 boron, strontium, barium, uranium, chromium , iron, and manganese (but not lead) compared
130 with non-impacted upstream sites (Ruhl et al. 2009; Ruhl et al. 2010; Bartov et al. 2012;
131 Deonarine et al. 2013). Concentrations of many elements were measured in these fishes (e.g.,
132 aluminum, antimony, As, barium, beryllium, boron, cadmium, calcium, chromium, cobalt,
133 copper, iron, lead, magnesium, manganese, Hg, molybdenum, nickel, potassium, Se, sodium,

134 strontium, thallium, vanadium, zinc). However, preliminary correlations with this suite of
135 elements showed only consistent significant trends with As, Hg, and Se, so the present study
136 focuses on these contaminants. Also, the focus was placed on As, Hg, and Se because of their
137 relative abundance in fillets analyzed (other contaminants had very few measurements above the
138 LOD) and extensive documentation in the literature of these three contaminants producing
139 biological effects on fishes and other aquatic organisms. A Hg source-apportionment study using
140 stable isotopes conducted after dredging was completed could not conclusively determine
141 whether Hg from sediment in ash-affected areas was a result of legacy contamination or the coal
142 ash spill, although it is certain that at least some of the Hg was sourced by the coal ash spill
143 (Bartov et al. 2012).

144 *Target fish species*

145 To assess impacts on aquatic biota, bioaccumulation and a variety of fish health metrics
146 were monitored in bluegill (*Lepomis macrochirus*), redear sunfish (*L. microlophus*), and
147 largemouth bass (*Micropterus salmoides*). These species were selected because they are
148 abundant in the Emory and Clinch rivers and are commonly caught and consumed by local
149 anglers. Furthermore, these species are relatively short-lived and generally have a limited home
150 range (Etnier and Starnes 1994), so fillet contaminant concentrations should be representative of
151 exposure at the site of collection (Peterson et al. 1996). These fish species also represent a
152 variety of trophic levels: bluegill and redear sunfish feed on a varied diet of insects, crustaceans,
153 and other zoobenthos (Etnier and Starnes 1994), but redear sunfish in this system have a
154 preference for mollusks (Otter et al. 2013). Largemouth bass, on the other hand, are top predators
155 eating fishes such as bluegill (Etnier and Starnes 1994). The effects of contaminants on the

156 health of fish of different trophic levels were examined because some contaminants, such as As,
157 Hg and Se, have been shown to biomagnify with increasing trophic position (Barwick and Maher
158 2003). That is, the higher the trophic level of the fish, the higher the contaminant concentration.
159 For spatial and temporal comparability and to minimize effects of covariance between size and
160 contaminant concentrations, fish only of sizes large enough to be caught by anglers (generally
161 50-150 g for sunfish, and 500-2500 g for largemouth bass, total weight) were collected for
162 bioaccumulation and fish health studies. Fish were collected using a boat electrofisher: bluegill
163 and largemouth bass during April-June of 2009-2013 and redear sunfish during April-June 2010-
164 2013. Numbers of fish per year for each site and species combination generally ranged from 10-
165 20.

166 *Sample processing and calculation of health and condition metrics*

167 Up to 1 mL of blood was collected from each fish while still in the field. Upon return to
168 the laboratory, all fish were euthanized with MS-222. Fish were then dissected and major organs
169 (liver, kidneys and ovaries) were removed prior to weighing. Metrics of fish health including
170 measures of bioenergetics, hematology and immune function, carbohydrate-protein metabolism,
171 electrolyte homeostasis, liver condition, and overall fish condition, were assessed for each fish.
172 Several metrics of fish condition (CI) were assessed including the liver-somatic, visceral-
173 somatic, and spleno-somatic indices and were calculated as

$$174 CI = \frac{M_o}{M_b} \times 100$$

175 where M_o = wet organ mass (g) and M_b = wet body mass (g). Overall condition factor C_f was
176 calculated as

177

$$C_f = \frac{M_T}{L_T^3} \times 100$$

178 where M_T = total wet mass (g) and L_T = total length (cm).

179 *Blood chemistry analyses*

180 Blood hematocrit and leucocrit were determined by the standard capillary tube and
181 centrifugation method. Fourteen blood chemistry metrics were analyzed with an Abaxis VetScan
182 II (Abaxis, Union City, CA, USA) clinical analyzer and tested for several analytes that are
183 known as indicators of physiological response in fish (Abaxis test rotor #500-0038). Analysis of
184 all 14 blood chemistry metrics (Table 1) required 100 μ L of blood from each fish.

185 *Reproductive condition assessment*

186 Representative pieces of ovarian tissue were placed in vials containing a half-strength
187 solution of Karnovsky's Fixative for later analysis of ovary stage, oocyte (immature developing
188 eggs) condition, and fecundity. Fish reproductive condition was quantified by sizing, staging and
189 counting all oocytes above size thresholds for active yolk accumulation (vitellogenesis) that were
190 contained in a weighed subsample of ovary. From these measurements, batch fecundity, numbers
191 of vitellogenic oocytes and numbers of atretic oocytes were estimated for each ovary.

192 Because the fish species examined had differing life history strategies required fecundity
193 estimates, accommodating species-specific patterns of oocyte development was a requirement.
194 Each species can spawn multiple times during the breeding season; therefore, fecundity estimates
195 consider only the most mature clutch of developing oocytes in pre-spawn fish, or post-ovulatory

196 follicles in immediately post-spawn fish, following methods outlined in Greeley et al. (2012).

197 Batch fecundities and the abundance of vitellenogenic and atretic oocytes were estimated as

198

$$N = \frac{N_e}{M_s} M_o$$

199 where N_e is the number of oocytes or post-ovulatory follicles in a clutch, the total number of
200 vitellogenetic oocytes, or the abundance of atretic oocytes in the analyzed ovary piece, M_s is the
201 mass of the ovarian subsample, and M_o is the mass of the entire ovary.

202 *Bioaccumulation analyses*

203 Fish samples were shipped frozen (< -10° C) to Pace Analytical Services, Inc. (Green
204 Bay, WI) for homogenization, moisture determination, and analysis of As, Hg, and Se. For As
205 and Se quantification, tissue aliquots were weighed (wet) and digested in nitric acid (EPA
206 method SW846-3050) prior to analysis using ICP-MS (EPA method SW846-6020). Tissue
207 samples were analyzed for Hg directly (EPA method SW846-7473) using a Direct Mercury
208 Analyzer (Milestone, Sorisole, Italy). All quality assurance procedures (e.g., blanks, matrix
209 spikes) were conducted as specified in the analytical method.

210 Method detection limits (MDL) for this project were calculated based on historical blank
211 concentrations as described by the following equation:

212
$$\text{Project MDL} = \text{avg} + 3\sigma$$

213 where avg is the mean of historical method blank concentrations and σ = standard deviation of
214 the population of historical method blank concentrations. The MDL (prior to sample-specific

215 adjustment to account for actual weight of the digested aliquot) was 0.0142 mg/kg for As, 0.0753
216 mg/kg for Se and 0.001 mg/kg for Hg. Standard reference materials (SRM) included lobster
217 hepatopancreas (TORT-2) and dogfish liver tissue (DOLT-4) from the National Research
218 Council in Canada (NRC) and Lake Michigan fish tissue from the National Institute of Standards
219 and Technology (NIST-1947). The TORT-2 SRM was digested and analyzed with each batch of
220 samples, while the DOLT-4 and NIST-1947 SRMs were alternated with every other sample
221 batch. Acceptance criteria for Se recovery in TORT-2 were 80-120% of the certified value of
222 5.63 mg/kg. In addition, chicken fillets were used as the matrix for the laboratory control spike
223 with each batch of samples, with acceptance criteria of 80-120% of the spike. All samples were
224 analyzed and reported on a wet-weight basis. Values below detection limits were excluded from
225 analyses. Frequencies of fillet concentrations below detection limits are shown in Appendix A
226 (This and all appendices are provided in online Supplemental Material).

227 *Data analysis*

228 Bioaccumulation values below the MDL were censored from all analyses. Although
229 fillet, ovary, and liver bioaccumulation data were collected, analyses used data from fillets
230 because that was the only appropriately-large dataset. The assumption of focusing on fillet
231 bioaccumulation data was that it was related to concentrations found in other organs. This
232 assumption was validated using Pearson's correlations between liver and fillet and ovary and
233 fillet concentrations to understand how well or whether fillet bioaccumulation was related to
234 bioaccumulation in other tissue types (Appendix B).

235 Fish health, reproduction, and bioaccumulation data were examined for normality by
236 comparing the median and mean of the data set (they were considered approximately normal if

237 they differed by a factor of < 3), and visually inspecting a normal-quantile plot of the data to see
238 if it differed substantially from a 1:1 line. Data that were not determined to be normal were \log_{10}
239 transformed and again examined for normality using the above methods. Just number of atretic
240 oocytes—a reproductive metric—was found to violate normality assumptions and was log-
241 transformed.

242 Multivariate analyses of covariance (MANCOVA; proc mixed, SAS) were used for each
243 species to detect differences among contaminants and fish length, site, and year of collection.
244 Upon conducting routine examinations of the data (e.g., Pearson's correlations), it was
245 discovered that As, Hg, and Se are correlated with each other. Due to the non-independence of
246 these data and influence of covariates, a MANCOVA was chosen to test for differences for each
247 species. The MANCOVA was also used for each fish species to determine relationships between
248 1. blood chemistry metrics and contaminants, 2. fish condition metrics and contaminants, 3.
249 reproductive health metrics and contaminants where length was used as a covariate in each test.
250 Post-hoc Tukey's honestly significant difference tests were used to evaluate differences between
251 sites for all MANCOVAs.

252 Because there are so many possible site, year and species combinations for each
253 measured variable (6 sites x 5 years x 3 species=90 possible combinations), individual pairwise
254 differences were not reported although specific comparisons between sites were highlighted that
255 help to illustrate conclusions. Instead, for measures of fish health (e.g., blood chemistry, fish
256 condition, reproduction) the critical, and consistent comparisons made across all sites, were that
257 made between reference sites and spill sites. These findings were presented as a summary of

258 least-squares (LS) means for each site type with associated p-values for the difference between
259 LS means.

260 **RESULTS**

261 *Bioaccumulation*

262 Across all sites, bluegill had the highest Se concentration in 2010 whereas redear sunfish
263 had the highest Se concentrations in 2011 (Figure 2). Across all species, spill sites generally had
264 higher Se burdens than reference sites. Fillet burdens of Se were highest in 2010 or 2011
265 depending on the site by species combination. Selenium concentrations in largemouth bass did
266 not show consistent patterns with respect to site. For Hg and As, the trends were quite different.
267 Reference sites, particularly R1 and R3 had the highest Hg values in nearly all sample periods
268 for all species except largemouth bass.

269 While Hg levels rose at all sites and species through the study period, the most dramatic
270 increases were found in largemouth bass at site R1. For largemouth bass, a post-hoc Tukey's test
271 showed that Hg concentrations from site R1 were significantly different from those from all other sites
272 and there were no significant differences between any other sites. Post-hoc Tukey's tests also
273 showed there were elevated concentrations of As in bluegill from spill sites in 2010 and in
274 largemouth bass from spill sites from 2010-2011—the first years following the spill.

275 Nearly all main-effects and their interactions were significant in the MANCOVA
276 examining the effect of site type (reference or ash-affected; Table 2). Year was only significant
277 for redear sunfish, although nearly so for bluegill. Tukey's tests showed that Se was significantly

278 higher in ash-affected sites for all three species, and largemouth bass had significantly higher Hg
279 at reference sites than at spill sites (Table 3).

280 *Bioaccumulation and blood chemistry functional response groups*

281 There were no consistent patterns in blood chemistry functional response groups over
282 years for any species (Appendix C). While all overall MANCOVA models for blood chemistry
283 were significant for all species, no main-effects were significant for any species (Table 4).
284 However, the interaction of main-effects were significant for largemouth bass, but not for other
285 species. Posthoc Tukey's tests showed no differences in functional response groups between
286 reference and spill sites (Appendix D).

287 *Bioaccumulation and fish condition metrics*

288 There did not appear to be distinct spatial or temporal trends in condition metric time-
289 series data (Figure 3). Overall MANCOVA models were significant for all three fish species
290 (Table 5). The main-effect of year as well as the interaction between condition factor type and
291 year was significant for bluegill and redear sunfish. No main-effects were significant in the
292 largemouth bass MANCOVA by themselves, although the interactions between year and site
293 type and condition factor type, year and site type were significant (Table 5). Post-hoc Tukey's
294 tests indicated that redear C_f was higher in reference sites (LS Means_{ref}=1.638, LS
295 Means_{spill}=1.594; P-val: 0.045; Appendix E), but no other comparisons between reference and
296 spill sites were significant.

297 *Bioaccumulation and reproductive health metrics*

298 Both redear and bluegill sunfish had decreases in atretic oocytes from 2010 to 2011 at
299 ash-affected sites (Figure 4). In these fish, the highest mean atretic oocytes were found at spill
300 sites in the years following the spill (2010 being the first year data were collected following the
301 spill for redear sunfish) and during/ immediately after dredging, although site S1 also had the
302 highest fecundity and the largest number of vitellogenetic oocytes reported. Redear sunfish
303 showed some additional spatial and temporal trends in reproductive metrics by site and year.
304 While overall MANCOVA models and main-effects of length were significant for all species, the
305 main-effect of Se was significant for both bluegill and redear as well as the main-effect of As for
306 redear (Table 6). Interaction effects of year and site type were additionally significant for bluegill
307 and largemouth bass and the three-way interaction of metric type, year and site type for bluegill.
308 No post-hoc Tukey's tests for differences in reproductive metrics between reference and ash-
309 affected sites were significant at the $\alpha=0.05$ level, although there was a significant difference
310 between reference and ash-affected sites in vitellenogenic oocytes of redear sunfish at the $\alpha=0.10$
311 level (LS Means_{ref}=17,694, LS Means_{spill}=14,740; P-value=0.0694; Appendix F).

312 **DISCUSSION**

313 This is the first study to explicitly relate fish bioaccumulation to biological endpoints at
314 the TVA KIF spill site, relating contaminant bioaccumulation data and a variety of fish
315 biological endpoints. Most importantly, this is the first study from the TVA KIF that draws
316 quantitative links between contaminants and reproductive endpoints: an essential component for
317 scaling biological effects to the population level. Even after looking at these data using multiple
318 approaches both in this study and in prior studies, the weight of findings suggests there is little
319 evidence of major long-term fish health effects of the TVA KIF coal ash spill. For example,

320 Bevelhimer et al. (2014) did not find associations between fish blood chemistry metrics and sites
321 of collection beyond the first years after the spill, finding that variation among years was greater
322 than variation among sites. In most cases, while site was often a significant effect in
323 MANCOVAs examining relationships between contaminant concentration and site (Table 2),
324 these differences did not translate to detectable differences between reference and spill sites.
325 Greeley et al. (2014) looked at the effects of coal ash contaminated sediments on fathead
326 minnow (*Pimephales promelas*) embryos and larvae and found no adverse effects of coal ash on
327 survival, incidence of developmental abnormalities, or hatching success. Studies of bird nesting
328 around the spill site similarly showed little evidence of physiological impairments, although they
329 have somewhat elevated levels of Se (Beck et al. 2014).

330 Among the foremost concerns with this ash spill was that long-term, elevated levels of Se
331 may cause reproductive failures or reduced fecundity in aquatic organisms as reported from other
332 Se-contaminated sites (Gillespie and Baumann 1986; Lemly 2002). Fillet Se concentrations were
333 higher at spill sites than reference sites for all three fish species, but this study found little
334 evidence of impending reproductive failure in fishes although there is some evidence of that ash-
335 affected sites experienced some short-term reproductive impairments following the spill. For
336 example, this study reports very low numbers of vitellenogenic oocytes in bluegill the spring
337 immediately following the spill at site S1 and higher numbers of atretic oocytes in redear sunfish
338 at sites S2 and S3 in the years following dredging (2010-2011; Figure 4). Also, there was not a
339 consistent pattern with respect to reference and spill sites with GSI (Table 5; Figure 3) or
340 significant differences in reproductive metrics at the $\alpha=0.05$ level for any species (Table 6;
341 Figure 4), further suggesting that long-term reproductive effects of this coal ash spill were
342 negligible.

343 It has been documented that coal ash from the TVA KIF spill contains a number of other
344 elements (N=23, in addition to As, Hg and Se) that can potentially produce toxic effects in fishes
345 such as cobalt, cadmium, and lead. However, due to the high frequency of non-detects and
346 quantities below detection limits, this study focuses solely on As, Hg and Se. Legacy
347 environmental contamination from now-defunct paper mills and other industry in the area has
348 potentially left a variety of other contaminants in the ecosystem that have the potential to
349 influence the fish health response and interact with the class of toxicants that were monitored.
350 Unfortunately, data on non-metal/ non-metalloid contaminants in fishes were not assessed as part
351 of the TVA KIF monitoring and assessment plan.

352 The lack of long-term effects of Se on fishes in the current study does not necessarily
353 point to an absence of fish health impacts of the TVA KIF coal ash spill as after effects can take
354 a decade or more to manifest. Selenium accumulates through the food chain, and it may take
355 several years to determine actual trends and effects. For instance, developmental deformities due
356 to Se contamination in Belews Lake, NC did not manifest for 10 years following contamination
357 by coal ash waste inputs as Se was transferred up the food chain from producers to consumers
358 (Lemly 1993). While sediment samples have lower Se than those in Belews Lake, aqueous
359 concentrations were similar between the two systems (Mathews et al. 2014); therefore it's
360 possible that harmful effects of Se have yet to come to light in the Emory and Clinch rivers.
361 However, hydrological differences between the TVA KIF spill area (a lotic ecosystem) and
362 Belews Lake (a lentic ecosystem) may be helping to mitigate effects of the coal ash spill at the
363 TVA KIF plant by continually moving coal ash sediments downstream. It is not possible at this
364 time to know whether the lack of demonstrated fish health impacts from the TVA KIF ash spill is

365 due to insufficient passage of time or to hydrological or other effects thus underscoring the need
366 for continued fish health monitoring in the TVA KIF spill area.

367 Another hypothesis warranting further examination in this system is that Se
368 concentrations and subsequent health effects have been much lower in this coal ash spill due to
369 the reported antagonistic interaction between Se and Hg and the abundance of Hg in the study
370 area (Southworth et al. 2000; Sackett et al. 2010). Mercury is a common constituent of coal ash,
371 but compared to legacy sources, there is not conclusive evidence that the ash spill is the major
372 source of Hg (Ruhl et al. 2009). Such interactions may also help to explain why fish tissue
373 concentrations of Se observed near the spill site are substantially lower than those reported
374 following other coal ash spills (e.g., Lohner et al. 2001; Lemly 2002; Lemly 2014).

375 Mercury contamination was generally higher at reference sites than ash-affected sites. In
376 particular, largemouth bass collected from site R1 had levels of Hg that were higher than all
377 other sites (Figure 2). Potential sources of this Hg at reference sites include a now-closed paper
378 mill upstream of R1 (USEPA 2012) in addition to nearby coal combustion at the TVA KIF site.
379 It is unclear how much of the Hg at ash-affected sites is sourced from the coal-ash spill itself.
380 Bartov et al. (2012) were not able to assign the percentage of Hg from the coal ash spill with
381 certainty from a sediment Hg isotope-speciation study. While some of the Hg at ash-affected
382 sites appears to be from the coal ash, the exact fraction is unclear.

383 Multigenerational effects of contaminant contaminants in other organisms and systems
384 have been shown, so it is possible that adverse effects of the TVA KIF spill have yet to manifest.
385 In particular, long-term studies examining possible effects beyond embryonic and larval stages
386 have not been conducted. There is a growing body of literature showing that effects of chronic

387 metal and metalloid contaminant exposure can vary over time whereby organisms can become
388 increasingly sensitive with successive generations (Stewart et al. 2010; Völker et al. 2013;
389 Jacobasch et al. 2014). For instance, the influence of Hg exposure has been shown to be passed
390 on to subsequent generations (Tsui and Wang 2005; Hammerschmidt and Sandheinrich 2005).
391 The three to five years of post-coal ash spill data for a fish species presented in this study may
392 therefore not be enough time to see multigenerational effects. Also, given that the highest
393 contaminant concentrations were recorded in 2010 or 2011 after dredging, when there was only
394 two years of data after the highest contaminant concentrations were observed in fish in 2010
395 (Figure 2). It is therefore possible that some of the most important fish health and reproductive
396 impacts of the coal ash spill have not yet become apparent or are of sufficiently low level that
397 they are not yet detectable, thus underscoring the importance for continued fish monitoring in the
398 study area.

399 CONCLUSIONS

400 These types of monitoring studies highlight the desperate need for a more mechanistic
401 understanding surrounding the impact of contaminants on biological systems. Relational studies,
402 as demonstrated here, are a good starting point, but can quickly be overwhelmed by the sheer
403 number of potential combinations and numbers of metrics. Also, as alluded to in this study,
404 effects could be masked by antagonistic interactions that occur at the molecular level which
405 cannot be teased-apart by statistics alone. While there was some suggestion that there may be
406 reproductive effects in redear sunfish, the relatively small sample size and the high degree of
407 individual variability reduced the ability of analyses to detect these differences with higher
408 certainty. Due to this uncertainty and the relational nature of this study, there is a need to follow

409 up this work with carefully designed experiments to determine how adverse effects measured at
410 sub-organism level translate to population effects using adverse outcome pathway framework
411 (Ankley et al. 2010).

412 **ACKNOWLEDGMENTS**

413 This research was sponsored by the Tennessee Valley Authority (TVA) and performed at Oak
414 Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, for the US Department
415 of Energy under contract DE-AC05-00OR22725. Special thanks to C. Brandt, J. Smith, K.
416 McCracken, C. Dunn, R. Vitale, K. Abbot, E. Rodgers, B. Rogers, M. Cagley, T. Baker, and N.
417 Carriker.

418 **LITERATURE CITED**

419 Adams, S. M., & Greeley, M. S. (2000). Ecotoxicological indicators of water quality: using
420 multi-response indicators to assess the health of aquatic ecosystems. *Water, Air, and Soil
421 Pollution*, 123(1-4), 103-115.

422 Ankley, G. T., Bennett, R. S., Erickson, R. J., Hoff, D. J., Hornung, M. W., Johnson, R. D., ... &
423 Serrrano, J. A. (2010). Adverse outcome pathways: a conceptual framework to support
424 ecotoxicology research and risk assessment. *Environmental Toxicology and Chemistry*, 29(3),
425 730-741.

426 Bartov, G., Deonarine, A., Johnson, T. M., Ruhl, L., Vengosh, A., & Hsu-Kim, H. (2012).
427 Environmental impacts of the Tennessee Valley Authority Kingston coal ash spill. 1. Source

428 apportionment using mercury stable isotopes. *Environmental Science & Technology*, 47(4),
429 2092-2099.

430 Barwick, M., & Maher, W. (2003). Biotransference and biomagnification of selenium copper,
431 cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie
432 Estuary, NSW, Australia. *Marine Environmental Research*, 56(4), 471-502.

433 Beck, M. L., Hopkins, W. A., Hallagan, J. J., Jackson, B. P., & Hawley, D. M. (2014). Exposure
434 to residual concentrations of elements from a remediated coal fly ash spill does not adversely
435 influence stress and immune responses of nestling tree swallows. *Conservation Physiology*, 2(1),
436 doi: 10.1093/conphys/cou018.

437 Bevelhimer, M. S., Adams, S. M., Fortner, A. M., Greeley, M. S., & Brandt, C. C. (2014). Using
438 ordination and clustering techniques to assess multi-metric fish health response following a coal
439 ash spill. *Environmental Toxicology and Chemistry*, 33(8), 1903-1913.

440 Bryan Jr., A. L., Hopkins, W. A., Parikh, J. H., Jackson, B. P., & Unrine, J. M. (2012). Coal fly
441 ash basins as an attractive nuisance to birds: Parental provisioning exposes nestlings to harmful
442 trace elements. *Environmental Pollution*, 161, 170-177.

443 Deonarine, A., Bartov, G., Johnson, T. M., Ruhl, L., Vengosh, A., & Hsu-Kim, H. (2013).
444 Environmental impacts of the Tennessee Valley Authority Kingston coal ash spill. 2. Effect of
445 coal ash on methylmercury in historically contaminated river sediments. *Environmental Science
& Technology*, 47(4), 2100-2108.

447 Etnier, D.A. and W.C. Starnes. 1994. Fishes of Tennessee. University of Tennessee Press,
448 Knoxville. 696pp.

449 Gillespie, R. B., & Baumann, P. C. (1986). Effects of high tissue concentrations of selenium on
450 reproduction by bluegills. *Transactions of the American Fisheries Society*, 115(2), 208-213.

451 Greeley Jr, M. S., Adams, M., & McCracken, K. (2012). *Evaluating the Effects of the Kingston*
452 *Fly Ash Release on Fish Reproduction: Spring 2009-2010 Studies* (No. ORNL/TM-2012/142).
453 Oak Ridge National Laboratory (ORNL).

454 Greeley Jr, M. S., Elmore, L. R., McCracken, M. K., & Sherrard, R. M. (2014). Effects of
455 Sediment Containing Coal Ash from the Kingston Ash Release on Embryo-Larval Development
456 in the Fathead Minnow, *Pimephales promelas* (Rafinesque, 1820). *Bulletin of Environmental*
457 *Contamination and Toxicology*, 92(2), 154-159.

458 Hammerschmidt, C. R., & Sandheinrich, M. B. (2005). Maternal diet during oogenesis is the
459 major source of methylmercury in fish embryos. *Environmental Science & Technology*, 39(10),
460 3580-3584.

461 Jacobasch, C., Völker, C., Giebner, S., Völker, J., Alsenz, H., Potouridis, T., Heidenreich, H.,
462 Kayser, G., Oehlmann, & Oetken, M. (2014). Long-term effects of nanoscaled titanium dioxide
463 on the cladoceran *Daphnia magna* over six generations. *Environmental Pollution*, 186, 180-186.

464 King, K. A., Custer, T. W., & Weaver, D. A. (1994). Reproductive success of barn swallows
465 nesting near a selenium-contaminated lake in east Texas, USA. *Environmental Pollution*, 84(1),
466 53-58.

467 Lemly, A. D. (1993). Teratogenic Effects of Selenium in Natural Populations of Fresh Water
468 Fish. *Ecotoxicology and Environmental Safety*, 26(2), 181-204.

469 Lemly, A. D. 2002. Symptoms and implications of selenium toxicity in fish: The Belews Lake
470 case example. *Aquatic Toxicology* 57: 39-49.

471 Lemly, A. D. (2014). Teratogenic effects and monetary cost of selenium poisoning of fish in
472 Lake Sutton, North Carolina. *Ecotoxicology and Environmental Safety*, 104, 160-167.

473 Lemly, A. D., & Skorupa, J. P. (2013). Wildlife and the coal waste policy debate: proposed rules
474 for coal waste disposal ignore lessons from 45 years of wildlife poisoning. *Environmental
475 Science & Technology*, 46(16), 8595-8600.

476 Lohner, T. W., Reash, R. J., Willet, V. E., & Fletcher, J. (2001). Assessment of tolerant sunfish
477 populations (Lepomis sp.) inhabiting selenium-laden coal ash effluents: 3. Serum chemistry and
478 fish health indicators. *Ecotoxicology and Environmental Safety*, 50(3), 225-232

479 Mathews, T. and Fisher, N.S. (2009) Dominance of dietary intake of metals in marine
480 elasmobranch and teleost fish. *Science of the Total Environment*, 407(18), 5156-5161.

481 Mathews, T. J., Fortner, A. M., Jett, R. T., Morris, J., Gable, J., Peterson, M. J., & Carriker, N.
482 (2014). Selenium bioaccumulation in fish exposed to coal ash at the Tennessee Valley Authority
483 Kingston spill site. *Environmental Toxicology and Chemistry*, 33(10), 2273-2279.

484 Otter, R. R., Hayden, M., Mathews, T., Fortner, A., & Bailey, F. C. (2013). The use of
485 tetragnathid spiders as bioindicators of metal exposure at a coal ASH spill site. *Environmental
486 Toxicology and Chemistry*, 32(9), 2065-2068.

487 Peterson, M. J., Southworth, G. R., & Crumby, W. D. (1996). Monitoring mercury in fish in a
488 stream system receiving multiple industrial inputs. *Environmental Monitoring and*
489 *Assessment*, 40(1), 91-105.

490 Pracheil, B. M., Hogan, J. D., Lyons, J., & McIntyre, P. B. (2014). Using Hard-Part
491 Microchemistry to Advance Conservation and Management of North American Freshwater
492 Fishes. *Fisheries*, 39(10), 451-465.

493 Rose, K. A. (2000). Why are quantitative relationships between environmental quality and fish
494 populations so elusive?. *Ecological Applications*, 10(2), 367-385.

495 Ruhl, L., Vengosh, A., Dwyer, G. S., Hsu-Kim, H., Deonarine, A., Bergin, M., & Kravchenko, J.
496 (2009). Survey of the potential environmental and health impacts in the immediate aftermath of
497 the coal ash spill in Kingston, Tennessee. *Environmental Science & Technology*, 43(16), 6326-
498 6333.

499 Ruhl, L., Vengosh, A., Dwyer, G. S., Hsu-Kim, H., & Deonarine, A. (2010). Environmental
500 impacts of the coal ash spill in Kingston, Tennessee: an 18-month survey. *Environmental*
501 *Science & Technology*, 44(24), 9272-9278.

502 Sackett, D. K., Aday, D. D., Rice, J. A., Cope, W. G., & Buchwalter, D. (2010). Does proximity
503 to coal-fired power plants influence fish tissue mercury?. *Ecotoxicology*, 19(8), 1601-1611.

504 Souza, M. J., Ramsay, E. C., & Donnell, R. L. (2013). Metal accumulation and health effects in
505 raccoons (*Procyon lotor*) associated with coal fly ash exposure. *Archives of Environmental*
506 *Contamination and Toxicology*, 64(4), 529-536.

507 Southworth, G. R., Peterson, M. J., & Ryon, M. G. (2000). Long-term increased bioaccumulation
508 of mercury in largemouth bass follows reduction of waterborne selenium. *Chemosphere*, 41(7),
509 1101-1105.

510 Stewart, R., Grosell, M., Buchwalter, D., Fisher, N., Luoma, S., Mathews, T., Orr, P. and Wang,
511 W. (2010) Bioaccumulation and trophic transfer of selenium. SETAC Pellston Workshop. CRC
512 Press, pp 93-139.

513 Tsui, M. T., & Wang, W. X. (2005). Influences of maternal exposure on the tolerance and
514 physiological performance of *Daphnia magna* under mercury stress. *Environmental Toxicology
515 and Chemistry*, 24(5), 1228-1234.

516 Tennessee Valley Authority (TVA). 2009. Continuing Investigation of the Nature and Extent of
517 Ash in the Emory, Clinch and Tennessee River Bottoms; Tennessee Valley Authority: Knoxville,
518 TN, 2009

519 US Environmental Protection Agency (USEPA). 2012. Hazard Ranking System (HRS)
520 Documentation Record for Clinch River Corporation, Atlanta, GA. [cited 2014 March 1].
521 Available from: <http://www.epa.gov/superfund/sites/docrec/pdoc1873.pdf>.

522 Völker, C., Oetken, M., & Oehlmann, J. (2013). The biological effects and possible modes of
523 action of nanosilver. In *Reviews of Environmental Contamination and Toxicology* 223 (pp. 81-
524 106). Springer New York.

525 Table 1. Description of the physiologic relevance of bioindicator metrics (abbreviation) of fish
 526 health and condition by functional response group.

Functional Response Group	Bioindicator	Physiologic Indication
Bioenergetics Organ Function	Amylase (AMY) Alanine transferase (ALT)	Converts starch into sugars Liver function
	Blood urea nitrogen (BUN)	Kidney and gill function
	Creatinine (CREAT)	Kidney function
	Total bilirubin (TBIL)	Liver function
Carbohydrate-protein metabolism	Alkaline phosphatase (ALP) Glucose (GLU)	Bone formation Metabolic efficiency
	Blood protein (BPRO)	Liver and general inflammation
	Globulin (GLOB)	Liver and kidney function
	Albumin (ALB)	Liver and kidney function
	Phosphorus (PHOS)	Indicator of kidney, liver, bone disease
Electrolyte homeostasis	Calcium (Ca), Sodium (Na)	Function of most organs including liver and kidney
Fish Condition	Condition factor (C_f)	Index of plumpness
	Gonadosomatic index (GSI)	Index of reproductive potential
	Hepatosomatic index (LSI)	Index of energy reserves
	Spleen somatic index (SSI)	Index of immune response
	Visceral somatic index (VSI)	Index of overall condition
Reproductive health	Vitellogenic oocytes (VO)	Number of oocytes with yolk
	Atresia (ATR)	Number of atretic oocytes
	Batch fecundity (FEC)	Number of eggs produced per clutch

528 Table 2. Results for MANCOVAs examining the response of metal and metalloid contaminant
 529 (in this table, hereafter, metal) concentrations to effects of collection site (hereafter, spill,
 530 denoting reference or ash-affected site), year, metal x spill, metal x year, year x spill, and metal x
 531 site x year. Overall model results are shown in the row with effect “metal” and all results are
 532 given as numerator degrees of freedom, denominator degrees of freedom, F-value, and P-value.
 533 Significant P-values ($\alpha=0.05$) for each covariate from type III sum-of-squares are shown in bold.

Species	Effect	Num df	Denom df	F	P
Bluegill	Metal	2	421	2369.08	<0.0001
	Spill	1	421	185.95	<0.0001
	Year	4	421	2.39	0.0503
	Metal*Spill	2	421	198.39	<0.0001
	Metal*Year	8	421	4.96	<0.0001
	Year*Spill	4	421	3.33	0.0106
	Metal*Spill*Year	8	421	3.53	0.0006
Redear	Metal	2	379	1695.48	<0.0001
	Spill	1	379	121.31	<0.0001
	Year	3	379	7.28	<0.0001
	Metal*Spill	2	379	105.25	<0.0001
	Metal*Year	6	379	10.33	<0.0001
	Year*Spill	3	379	1.27	0.2860
	Metal*Spill*Year	6	379	2.58	0.0184
Lg.mouth Bass	Metal	2	484	521.56	<0.0001
	Spill	1	484	16.27	<0.0001
	Year	4	484	1.48	0.2072
	Metal*Spill	2	484	37.10	<0.0001
	Metal*Year	8	484	12.02	<0.0001
	Year*Spill	4	484	0.34	0.4417
	Metal*Spill*Year	8	484	2.41	0.0148

534

535

536 Table 3. Results of Tukey's post-hoc tests (completed following the MANCOVA shown in Table
 537 2) comparing metal and metalloid concentrations of least square means (LS Means and the SE of
 538 the LS Means) at reference and spill sites (P-value Diff LS Means). Significant P-values
 539 ($\alpha=0.05$) are shown in bold.

540

Species	Metal/ Metalloid	Site Type	LS Means	SE	P-value
Diff LS Means					
Bluegill	As	Reference	0.0426	0.0132	0.7671
		Spill	0.0654	0.0108	
	Hg	Reference	0.1036	0.0100	0.9032
		Spill	0.0895	0.0091	
	Se	Reference	0.4998	0.0100	<0.0001
		Spill	0.8407	0.0091	
Redear	As	Reference	0.1341	0.0151	0.1460
		Spill	0.1832	0.0133	
	Hg	Reference	0.1091	0.0138	0.7913
		Spill	0.0844	0.0133	
	Se	Reference	0.6375	0.0138	<0.0001
		Spill	0.9842	0.0132	
Largemouth Bass	As	Reference	0.1785	0.0127	0.3936
		Spill	0.2110	0.0112	
	Hg	Reference	0.2382	0.0116	0.0059
		Spill	0.1811	0.0112	
	Se	Reference	0.4548	0.0116	<0.0001
		Spill	0.5943	0.0112	

Table 4. Results for MANCOVAs examining the response of blood chemistry concentrations to effects of functional response group (hereafter, function: bioenergetics, carbohydrate-protein metabolism, electrolyte balance, hematology, organ function,), arsenic (As), mercury (Hg), selenium (Se), fish length (Length), spill (reference or ash-affected sites), year, function x spill, function x year, year x spill, and function x site x year. Overall model results are shown in the row with effect “function” and all results are given as numerator degrees of freedom, denominator degrees of freedom, F-value, and P-value. Significant P-values ($\alpha=0.05$) for each covariate from type III sum-of-squares are shown in bold.

Species	Effect	Num df	Denom df	F	P
Bluegill	Function	4	1585	80.97	<0.0001
	Spill	1	1585	0.14	0.7118
	Year	4	1585	2.01	0.0913
	Arsenic	1	1585	0.43	0.5134
	Mercury	1	1585	0.42	0.5193
	Selenium	1	1585	0.14	0.7067
	Length	1	1585	0.33	0.5662
	Function*Spill	4	1585	0.10	0.9828
	Function*Year	16	1585	0.56	0.9137
	Year*Spill	4	1585	0.14	0.9666
	Function*Spill*Year	16	1585	0.15	1.0000
	Function	4	1658	124.32	<0.0001
Redear	Spill	1	1658	0.06	0.8046
	Year	3	1658	2.00	0.3884
	Arsenic	1	1658	0.74	0.9512
	Mercury	1	1658	0.00	0.6332
	Selenium	1	1658	0.23	0.6388
	Length	1	1658	0.22	0.1119
	Function*Spill	4	1658	0.29	0.8836
	Function*Year	12	1658	1.26	0.2348
	Year*Spill	3	1658	0.74	0.5288
	Function*Spill*Year	12	1658	0.46	0.9395
	Function	4	2142	645.77	<0.0001
Lg.mouth Bass	Spill	1	2142	0.22	0.6371
	Year	4	2142	2.23	0.0636
	Arsenic	1	2142	0.28	0.5994
	Mercury	1	2142	0.07	0.7913
	Selenium	1	2142	0.45	0.5024
	Length	1	2142	0.32	0.5702
	Function*Spill	4	2142	0.51	0.7282
	Function*Year	16	2142	1.66	0.0477
	Year*Spill	4	2142	4.25	0.0020
	Function*Spill*Year	16	2142	2.31	0.0022

Table 5. Results for MANCOVAs examining the response of fish condition values to effects of fish condition (hereafter, condition: condition factor, gonado-somatic index, hepato-somatic index, spleno-somatic index, viscero-somatic index), arsenic (As), mercury (Hg), selenium (Se), fish length (Length), spill (reference or ash-affected site type), year, condition x spill, condition x year, year x spill, and condition x site x year. Overall model results are shown in the row with effect “condition” and all results are given as numerator degrees of freedom, denominator degrees of freedom, F-value, and P-value. Significant P-values ($\alpha=0.05$) for each covariate from type III sum-of-squares are shown in bold.

Species	Effect	Num df	Denom df	F	P
Bluegill	Condition	4	551	16815.9	<0.0001
	Spill	1	551	0.02	0.8784
	Year	4	551	2.56	0.0375
	Arsenic	1	551	0.13	0.7179
	Mercury	1	551	0.18	0.6689
	Selenium	1	551	1.87	0.1716
	Length	1	551	0.56	0.4532
	Condition*Spill	4	551	0.92	0.4504
	Condition*Year	16	551	1.83	0.0244
	Year*Spill	4	551	1.28	0.2750
	Condition*Spill*Year	16	551	0.59	0.8948
Redear	Condition	4	581	13666.0	<0.0001
	Spill	1	581	4.68	0.0309
	Year	3	581	6.84	0.0002
	Arsenic	1	581	1.93	0.1651
	Mercury	1	581	0.62	0.4325
	Selenium	1	581	2.27	0.1321
	Length	1	581	0.23	0.6289
	Condition*Spill	4	581	1.51	0.1965
	Condition*Year	12	581	7.30	<0.0001
	Year*Spill	3	581	0.98	0.4038
	Condition*Spill*Year	12	581	0.51	0.9066
Lg.mouth Bass	Condition	4	775	5540.29	<0.0001
	Spill	1	775	1.19	0.2755
	Year	4	775	1.61	0.1701
	Arsenic	1	775	0.26	0.6133
	Mercury	1	775	0.60	0.4380
	Selenium	1	775	0.21	0.6433
	Length	1	775	2.89	0.0893
	Condition*Spill	4	775	1.95	0.0996
	Condition*Year	16	775	1.42	0.1251
	Year*Spill	4	775	2.82	0.0241
	Condition*Spill*Year	16	775	2.17	0.0049

Table 6. Results for MANCOVAs examining fish reproduction to effects of reproductive metrics (hereafter, metric: atretic oocytes, batch fecundity, vitellogenic oocytes), arsenic (As), mercury (Hg), selenium (Se), fish length (Length), spill (reference or ash-affected sites), year, metrics x spill, metrics x year, year x spill, and metrics x site x year. Overall model results are shown in the row with effect “metric” and all results are given as numerator degrees of freedom, denominator degrees of freedom, F-value, and P-value. Significant P-values ($\alpha=0.05$) for each covariate from type III sum-of-squares are shown in bold.

Species	Effect	Num df	Denom df	F	P
Bluegill	Metric	2	317	538.03	<0.0001
	Spill	1	317	0.42	0.5196
	Year	4	317	1.74	0.1401
	Arsenic	1	317	2.31	0.1295
	Mercury	1	317	1.54	0.2149
	Selenium	1	317	11.82	0.0007
	Length	1	317	76.34	<0.0001
	Metric*Spill	2	317	2.68	0.0698
	Metric*Year	8	317	0.83	0.5754
	Year*Spill	4	317	4.58	0.0013
Redear	Metric*Spill*Year	8	317	3.06	0.0025
	Metric	2	341	411.39	<0.0001
	Spill	1	341	8.64	0.0035
	Year	3	341	8.34	0.0611
	Arsenic	1	341	10.24	0.0015
	Mercury	1	341	1.79	0.1823
	Selenium	1	341	10.99	0.0010
	Length	1	341	79.66	<0.0001
	Metric*Spill	2	341	0.21	0.8093
	Metric*Year	6	341	5.68	<0.0001
Lg.mouth Bass	Year*Spill	3	341	2.43	0.0650
	Metric*Spill*Year	6	341	2.40	0.0278
	Metric	2	434	208.49	<0.0001
	Spill	1	434	0.09	0.7614
	Year	4	434	2.60	0.0354
	Arsenic	1	434	0.12	0.7316
	Mercury	1	434	0.22	0.6430
	Selenium	1	434	0.11	0.7398
	Length	1	434	52.92	<0.0001
	Metric*Spill	2	434	0.09	0.9146
	Metric*Year	8	434	1.28	0.2519
	Year*Spill	4	434	3.33	0.0105
	Metric*Spill*Year	8	434	1.05	0.3978

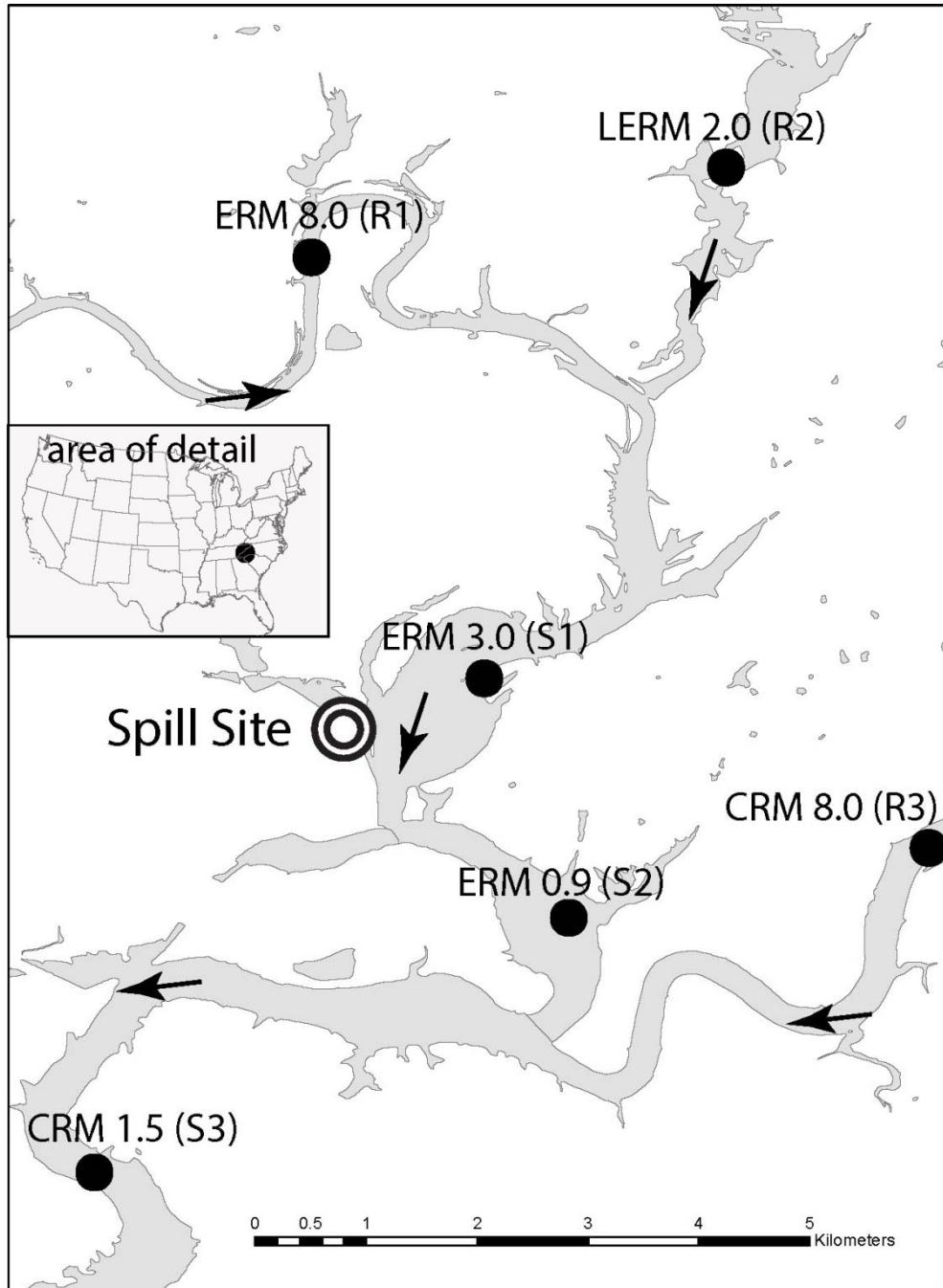


Figure 1. Map of study area showing locations of ash-affected (S) and reference (R; not affected by ash) monitoring sites where fish were collected including ash-affected sites Emory River mile 3.0 (ERM 3.0, S1), Emory River mile 0.9 (ERM 0.9, S2), and Clinch River mile 1.5 (CRM 1.5, S3) and reference sites Emory River mile 8.0 (ERM 8.0, R1), Little Emory River mile 2.0 (LERM 2.0, R2), and Clinch River mile 8.0 (CRM 8.0, R3). Arrows indicate the direction of flow.

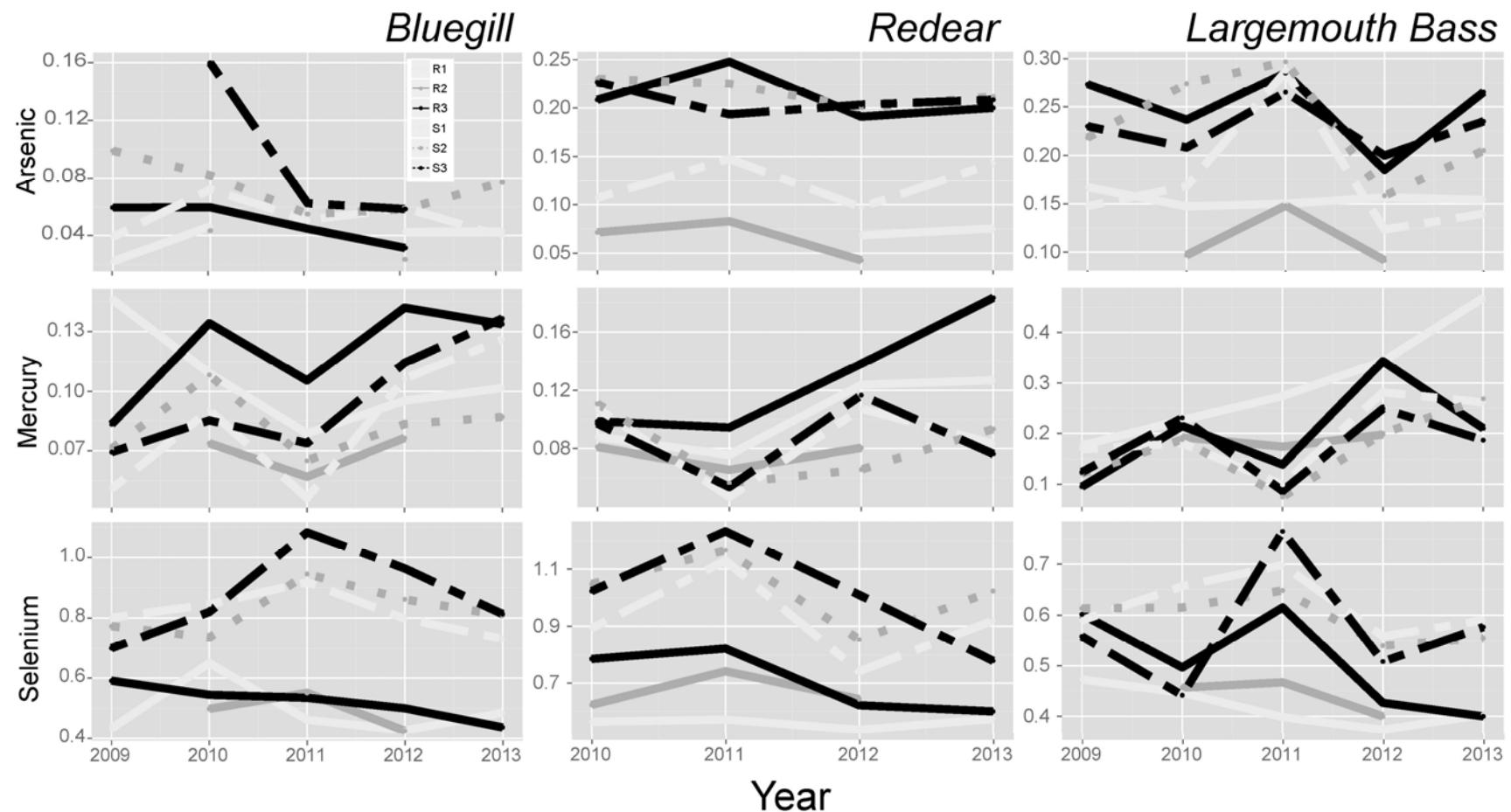


Figure 2. Time-series of mean arsenic, mercury and selenium fillet concentrations (mg/kg wet-weight) by site and species. Error bars are omitted for clarity. Sites abbreviations are as shown in Figure 1.

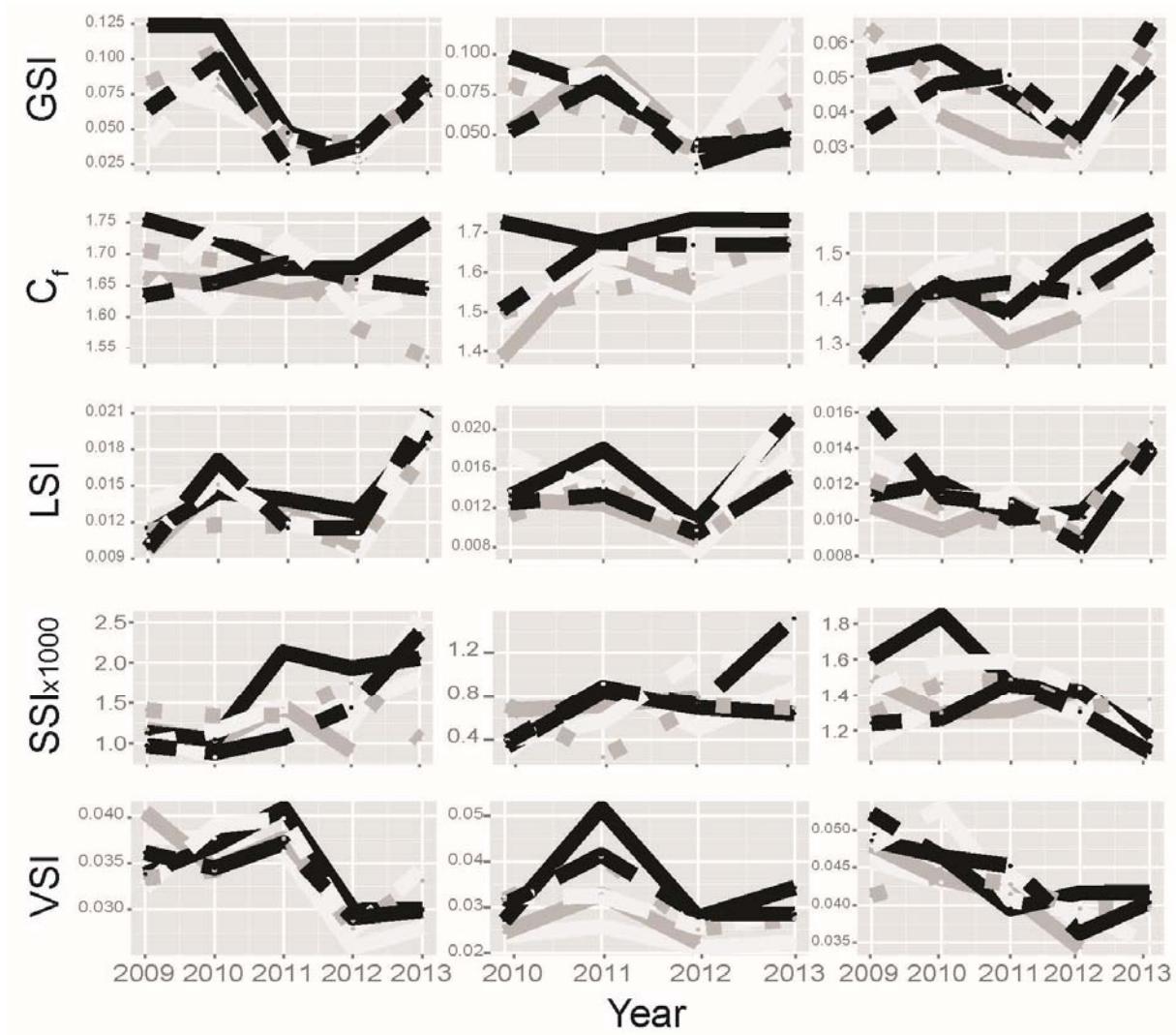


Figure 3. Time-series of gonadosomatic index (GSI), condition factor (C_f), hepatosomatic index (LSI), splenosomatic index (SSI), viscerosomatic index (VSI). Error bars are omitted for clarity. Legend is as in Figure 2 and sites are as in Figure 1.

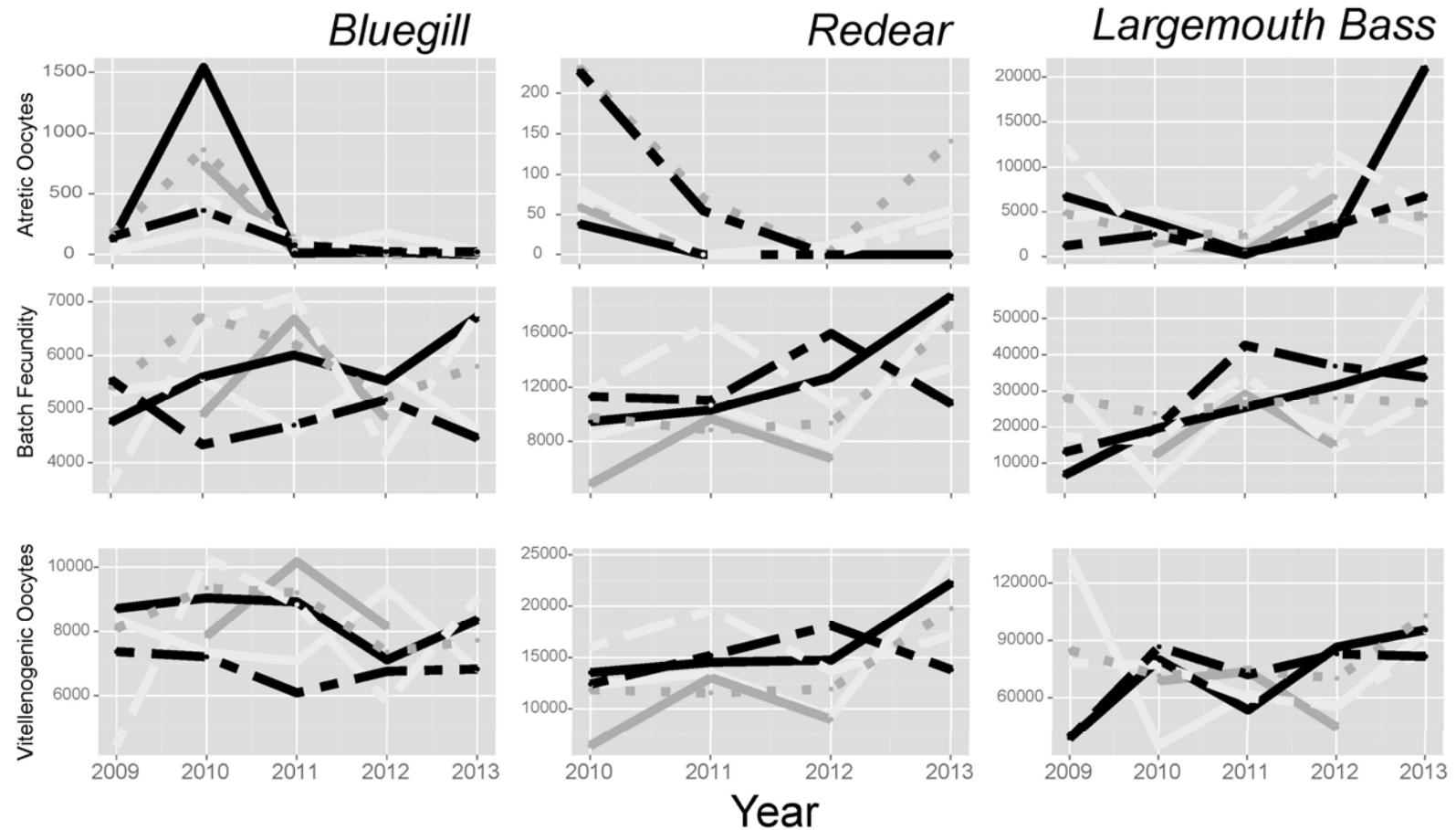


Figure 3. Time-series of mean number atretic oocytes, mean number vitellogenic oocytes, and mean batch fecundity by site and species. Largemouth bass are not shown because analysis of covariance results showed no significant effect of any metal/ metalloid or of site. Error bars are omitted for clarity. Legend is as in Figure 2 and sites are as in Figure 1.

Site	Year	N	As	Hg	Se
Bluegill					
R1	2009	6	0.02 ± 0.14	0.43 ± <0.01	0.03 ± 0.03
R1	2010	4	0.05 ± 0.11	0.65 ± 0.01	0.02 ± 0.15
R1	2011	5	--	--	0.016 ± 0.01
R1	2012	6	0.04 ± 0.10	0.43 ± 0.01	0.01 ± 0.06
R1	2013	6	0.043 ± 0.10	0.49 ± 0.01	0.01 ± 0.09
R2	2010	6	0.04 ± 0.08	0.50 ± 0.01	0.01 ± 0.03
R2	2011	7	--	0.55	<0.01 ± 0.02
R2	2012	6	0.02 ± 0.08	0.43 ± <0.01	0.01 ± 0.02
R3	2009	6	0.06 ± 0.09	0.59 ± <0.001	0.01 ± 0.03
R3	2010	6	0.06 ± 0.13	0.55 ± 0.01	0.01 ± 0.02
R3	2011	6	0.05 ± 0.10	0.54 ± <0.01	0.01 ± 0.03
R3	2012	6	0.03 ± 0.14	0.50 ± 0.01	0.01 ± 0.03
R3	2013	6	--	0.44	0.01 ± 0.02
S1	2009	6	0.04 ± 0.06	0.80 ± <0.01	0.01 ± 0.04
S1	2010	6	0.07 ± 0.09	0.85 ± 0.01	0.01 ± 0.06
S1	2011	6	0.05 ± 0.06	0.92 ± 0.01	<0.01 ± 0.04
S1	2012	6	0.06 ± 0.11	0.80 ± 0.01	0.01 ± 0.08
S1	2013	6	0.04 ± 0.12	0.73 ± 0.01	0.02 ± 0.04
S2	2009	6	0.10 ± 0.08	0.77	0.01 ± 0.03
S2	2010	5	0.08 ± 0.11	0.74 ± 0.02	0.03 ± 0.06
S2	2011	6	0.06 ± 0.07	0.95 ± 0.01	<0.01 ± 0.03
S2	2012	6	0.06 ± 0.09	0.86 ± 0.01	0.01 ± 0.06
S2	2013	6	0.08 ± 0.09	0.81 ± 0.01	0.01 ± 0.05
S3	2009	6	--	0.70	0.01 ± 0.07
S3	2010	6	0.16 ± 0.09	0.82 ± 0.04	0.01 ± 0.06
S3	2011	6	0.06 ± 0.08	1.08 ± 0.01	<0.01 ± 0.06
S3	2012	6	0.06 ± 0.11	0.96 ± 0.01	0.01 ± 0.08
S3	2013	6	--	0.81	0.02 ± 0.06
Redear					
R1	2010	6	0.07 ± 0.09	0.56 ± 0.01	0.02 ± 0.02
R1	2011	7	--	0.57	0.01 ± 0.04
R1	2012	6	0.07 ± 0.12	0.54 ± 0.02	0.01 ± 0.04
R1	2013	6	0.08 ± 0.13	0.573 ± 0.01	0.02 ± 0.11
R2	2010	6	0.07 ± 0.08	0.62 ± 0.01	0.01 ± 0.02
R2	2011	7	0.08 ± 0.07	0.74 ± 0.02	<0.01 ± 0.05
R2	2012	6	0.04 ± 0.08	0.64 ± 0.01	0.01 ± 0.05
R3	2010	6	0.21 ± 0.10	0.79 ± 0.03	0.02 ± 0.04
R3	2011	6	0.25 ± 0.09	0.82 ± 0.06	0.02 ± 0.07
R3	2012	6	0.19 ± 0.14	0.62 ± 0.03	0.01 ± 0.02
R3	2013	6	0.20 ± 0.18	0.6 ± 0.02	0.02 ± 0.03
S1	2010	6	0.11 ± 0.11	0.89 ± 0.01	0.02 ± 0.07

Site	Year	N	As	Hg	Se
S1	2011	6	0.15 \pm 0.05	1.13 \pm 0.02	0.01 \pm 0.04
S1	2012	6	0.10 \pm 0.11	0.74 \pm 0.02	0.02 \pm 0.07
S1	2013	6	0.14 \pm 0.08	0.92 \pm 0.03	0.02 \pm 0.06
S2	2010	5	0.23 \pm 0.11	1.05 \pm 0.02	0.01 \pm 0.07
S2	2011	6	0.23 \pm 0.06	1.17 \pm 0.04	0.01 \pm 0.031
S2	2012	6	0.20 \pm 0.07	0.85 \pm 0.02	0.01 \pm 0.04
S2	2013	6	0.21 \pm 0.09	1.02 \pm 0.02	0.02 \pm 0.11
S3	2010	6	0.23 \pm 0.10	1.02 \pm 0.03	0.01 \pm 0.12
S3	2011	6	0.19 \pm 0.05	1.23 \pm 0.02	0.01 \pm 0.11
S3	2012	6	0.20 \pm 0.12	1.01 \pm 0.02	0.01 \pm 0.08
S3	2013	6	0.21 \pm 0.08	0.78 \pm 0.02	0.01 \pm 0.02
LMBass					
R1	2009	11	0.17 \pm 0.03	0.18 \pm 0.02	0.477 \pm 0.04
R1	2010	6	0.15 \pm 0.01	0.23 \pm 0.02	0.457 \pm 0.02
R1	2011	7	0.15 \pm 0.02	0.27 \pm 0.04	0.40 \pm 0.01
R1	2012	6	0.16 \pm 0.01	0.34 \pm 0.09	0.37 \pm 0.02
R1	2013	6	0.15 \pm 0.02	0.47 \pm 0.07	0.40 \pm 0.01
R2	2010	6	0.10 \pm 0.02	0.19 \pm 0.04	0.46 \pm 0.03
R2	2011	7	0.15 \pm 0.02	0.17 \pm 0.02	0.47 \pm 0.03
R2	2012	6	0.09 \pm 0.01	0.20 \pm 0.04	0.40 \pm 0.02
R3	2009	6	0.27 \pm 0.02	0.10 \pm 0.01	0.60 \pm 0.07
R3	2010	6	0.24 \pm 0.03	0.21 \pm 0.02	0.50 \pm 0.03
R3	2011	6	0.29 \pm 0.03	0.14 \pm 0.02	0.62 \pm 0.06
R3	2012	6	0.19 \pm 0.03	0.34 \pm 0.05	0.43 \pm 0.03
R3	2013	6	0.27 \pm 0.01	0.21 \pm 0.02	0.40 \pm 0.05
S1	2009	5	0.15 \pm 0.02	0.17 \pm 0.05	0.59 \pm 0.05
S1	2010	6	0.17 \pm 0.01	0.18 \pm 0.03	0.66 \pm 0.06
S1	2011	6	0.29 \pm 0.02	0.10 \pm 0.02	0.70 \pm 0.07
S1	2012	6	0.12 \pm 0.04	0.28 \pm 0.07	0.56 \pm 0.04
S1	2013	6	0.14 \pm 0.01	0.26 \pm 0.04	0.59 \pm 0.06
S2	2009	6	0.22 \pm 0.03	0.12 \pm 0.02	0.61 \pm 0.04
S2	2010	6	0.27 \pm 0.05	0.19 \pm 0.06	0.62 \pm 0.03
S2	2011	6	0.30 \pm 0.04	0.08 \pm 0.02	0.65 \pm 0.10
S2	2012	6	0.16 \pm 0.01	0.2 \pm 0.02	0.54 \pm 0.07
S2	2013	6	0.21 \pm 0.03	0.27 \pm 0.06	0.56 \pm 0.07
S3	2009	6	0.23 \pm 0.02	0.12 \pm 0.02	0.56 \pm 0.03
S3	2010	6	0.21 \pm 0.04	0.23 \pm 0.09	0.447 \pm 0.02
S3	2011	6	0.27 \pm 0.03	0.09 \pm 0.01	0.77 \pm 0.05
S3	2012	6	0.20 \pm 0.03	0.25 \pm 0.04	0.513 \pm 0.07
S3	2013	6	0.24 \pm 0.02	0.19 \pm 0.01	0.58 \pm 0.04

Environmental Monitoring Data for Fish Species														
Site	Year	N	alb	alp	amy	bpro	bun	ca	creat	glob	glu	na	phos	tbil
Bluegill														
R1	2009	30	15.89 ± 29.96	30.36 ± 37.01	2.48 ± 14.49	0.08 ± 21.85	65.04 ± 149.64	10.21 ± 0.49	1.69 ± 0.08	0.011 ± <0.01	0.04 ± 1.45	2.26 ± 4.10	2.67 ± 0.22	0.79 ± 0.02
R1	2010	15	20.47 ± 29.20	38.6 ± 40.67	2.87 ± 17.31	0.03 ± 20.13	60.67 ± 153.53	11.12 ± 0.73	1.61 ± 0.07	0.02 ± <0.01	0.04 ± 1.09	3.83 ± 2.84	1.26 ± 0.24	0.80 ± 0.01
R1	2011	16	21.36 ± 24.07	48.143 ± 40.93	2.86 ± 15.82	0.04 ± 19.50	49.57 ± 148.14	10.09 ± 0.78	1.72 ± 0.04	0.01 ± <0.01	0.04 ± 1.04	7.96 ± 7.72	1.37 ± 0.23	0.75 ± 0.02
R1	2012	17	20.88 ± 17.29	30.24 ± 39.71	1.76 ± 15.78	0.01 ± 18.82	46.53 ± 149.29	0.69 ± 0.93	1.65 ± 0.03	0.01 ± <0.01	0.03 ± 0.74	1.26 ± 2.95	1.06 ± 0.22	0.78 ± 0.01
R1	2013	9	24.89 ± 29.22	54.89 ± 46.78	3.00 ± 19.36	--	56.00 ± 149.11	0.63 ± 0.69	1.65 ± 0.08	0.01 ± <0.01	0.03 ± 0.96	4.47 ± 2.71	1.19 ± 0.37	0.25
R2	2009	10	16.7 ± 22.2	21.40 ± 35.60	2.20 ± 12.19	0.12 ± 18.9	39.10 ± 149.10	0.70 ± 0.70	1.66 ± 1.65	0.01 ± <0.01	0.04 ± 0.50	0.98 ± 2.08	0.6 ± 0.25	0.33 ± 0.02
R2	2010	18	20 ± 26.41	45.65 ± 39.65	2.59 ± 17.41	0.08 ± 19.94	45.94 ± 148.59	0.52 ± 0.52	1.64 ± 0.09	0.01 ± <0.01	0.03 ± 0.64	3.34 ± 5.72	1.05 ± 0.15	0.86 ± 0.02
R2	2011	18	24.33 ± 15.83	47.33 ± 41.78	2.17 ± 16.70	0.01 ± 17.56	54.67 ± 150.67	0.73 ± 10.42	1.64 ± 0.04	0.01 ± <0.01	0.04 ± 0.83	2.26 ± 5.40	1.29 ± 0.19	0.75 ± 0.01
R2	2012	17	19.82 ± 20.59	33.35 ± 38.65	2.24 ± 15.75	0.01 ± 18.65	50.06 ± 152.00	0.95 ± 0.95	0.04 ± 0.7	0.01 ± <0.01	0.03 ± 0.76	2.04 ± 2.57	0.84 ± 0.16	0.72 ± 0.01
R3	2009	23	15.33 ± 31.81	34.19 ± 38.48	3.19 ± 16.59	0.04 ± 23.45	62.24 ± 151.43	0.44 ± 0.44	0.12 ± 0.12	0.01 ± <0.01	0.03 ± 0.70	1.75 ± 3.19	1.09 ± 0.18	0.73 ± 0.01
R3	2010	17	19.5 ± 25.06	45.0625 ± 40.1875	2.25 ± 17.93	0.06 ± 20.75	44.38 ± 150.31	0.44 ± 10.68	0.12 ± 1.72	0.01 ± 0.01 ±	0.04 ± 0.74	1.54 ± 4.35	1.19 ± 0.21	1.11 ± 0.02
R3	2011	19	19.21 ± 24.05	45.00 ± 39.63	1.74 ± 16.6	0.01 ± 20.42	52.42 ± 153.16	0.65 ± 10.91	0.05 ± 1.68	0.01 ± <0.01	0.04 ± 0.89	2.48 ± 6.40	0.74 ± 0.17	0.78 ± 0.01
R3	2012	18	21.22 ± 21.722	37.44 ± 40.50	2.17 ± 14.92	0.01 ± 19.28	48.50 ± 151.06	0.64 ± 10.19	0.03 ± 1.68	0.01 ± <0.01	0.03 ± 0.79	2.67 ± 3.55	0.98 ± 0.20	0.66 ± 0.01
R3	2013	9	22.78 ± 25.44	56.33 ± 46.22	2.67 ± 19.28	--	60.44 ± 149.00	0.54 ± 8.56	0.08 ± 1.63	0.01 ± <0.01	0.03 ± 1.26	3.05 ± 4.06	1.84 ± 0.24	0.39
S1	2009	19	14.75 ± 25.88	36.63 ± 35.56	2.57 ± 14.11	0.05 ± 21.13	47.19 ± 148.00	0.41 ± 11.10	0.04 ± 1.74	0.01 ± <0.01	0.03 ± 0.66	1.11 ± 5.06	1.20 ± 0.26	0.83 ± 0.02
S1	2010	20	19.80 ± 27.40	39.10 ± 40.35	2.35 ± 17.45	0.07 ± 20.65	67.60 ± 150.00	0.50 ± 11.64	0.09 ± 1.72	0.01 ± <0.01	0.04 ± 0.60	4.03 ± 3.86	0.95 ± 0.13	0.73 ± 0.02
S1	2011	19	22.28 ± 13.33	37.22 ± 41.06	2.28 ± 16.70	0.03 ± 18.56	58.67 ± 151.33	0.59 ± 10.84	0.04 ± 1.60	0.01 ± <0.01	0.04 ± 0.51	2.87 ± 4.33	0.88 ± 0.18	0.69 ± 0.01
S1	2012	16	18.00 ± 16.50	31.82 ± 37.44	2.50 ± 16.01	0.04 ± 18.31	57.19 ± 147.63	0.67 ± 12.63	0.03 ± 1.64	0.02 ± <0.01	0.03 ± 1.18	0.97 ± 2.97	1.13 ± 0.26	0.61 ± 0.02
S1	2013	9	21.38 ± 24.50	41.63 ± 43.63	2.13 ± 19.28	0 ± 22.13	64.00 ± 147.63	0.41 ± 11.84	0.07 ± 1.71	0.01 ± <0.01	0.03 ± 1.05	1.94 ± 4.50	1.15 ± 0.13	0.39
S2	2009	22	16.06 ± 32.81	37.56 ± 39.81	2.94 ± 16.68	0.08 ± 23.75	75.25 ± 155.44	0.46 ± 10.74	0.08 ± 1.69	0.01 ± <0.01	0.03 ± 0.58	2.15 ± 4.86	0.56 ± 0.27	0.69 ± 0.03
S2	2010	17	19.75 ± 29.13	44.69 ± 39.88	1.81 ± 16.46	0.08 ± 20.19	52.88 ± 151.50	0.38 ± 10.81	0.11 ± 1.68	0.01 ± <0.01	0.03 ± 0.67	4.12 ± 5.98	0.82 ± 0.25	0.84 ± 0.02
S2	2011	20	23.82 ± 19.06	45.41 ± 44.18	2.65 ± 17.47	0.04 ± 20.41	53.53 ± 153.65	0.53 ± 10.62	0.04 ± 1.58	0.01 ± <0.01	0.04 ± 0.69	3.89 ± 6.33	0.88 ± 0.28	0.61 ± 0.01
S2	2012	17	19.06 ± 15.63	26.31 ± 38.31	2 ± 15.42	0.01 ± 19.44	43.19 ± 146.69	0.48 ± 0.48	0.04 ± 0.04	0.01 ± <0.01	0.03 ± 0.69	2.04 ± 3.20	1.00 ± 0.18	0.97 ± 0.01

Performance Metrics for Various Components and Years																		
Category	Year	Series	Series A		Series B		Series C		Series D		Series E		Series F		Series G			
			Value	SD	Value	SD	Value	SD	Value	SD	Value	SD	Value	SD	Value	SD		
Redear	S2	2013	8	19.13 \pm 18.00	51.88 \pm 39.63	2.75 \pm 17.49	0.04 \pm 20.50	56.63 \pm 146.38	0.38	1.53 \pm	0.02 \pm	0.03 \pm 0.55	1.98 \pm 2.73	0.89 \pm 0.16	0.55 \pm 0.02			
	S3	2009	29	14.68 \pm 30.21	24.14 \pm 35.57	2.04 \pm 14.85	0.08 \pm 21.00	70.18 \pm 150.04	0.45	1.63 \pm	0.01 \pm	0.04 \pm 1.00	2.43 \pm 2.60	1.28 \pm 0.20	0.65 \pm 0.015			
	S3	2010	20	19.47 \pm 31.05	42.95 \pm 38.63	2.00 \pm 17.26	0.09 \pm 18.26	68.53 \pm 151.11	0.53	1.01	<0.01	0.03 \pm 0.94	3.00 \pm 3.85	1.21 \pm 0.17	0.68 \pm 0.025			
	S3	2011	18	21.67 \pm 17.67	45.72 \pm 41.06	1.89 \pm 16.59	0.03 \pm 19.50	59.617 \pm 151.218	0.50	1.69 \pm	0.01 \pm	0.04 \pm 0.88	3.70 \pm 6.04	1.06 \pm 0.23	0.67 \pm 0.01			
	S3	2012	19	19.16 \pm 26.21	35.32 \pm 37.42	1.74 \pm 15.06	0.02 \pm 18.32	63.11 \pm 148.58	0.54	1.66 \pm	0.01 \pm	0.03 \pm 0.61	6.43 \pm 2.59	0.83 \pm 0.23	0.66 \pm 0.01			
	S3	2013	9	19.78 \pm 28.56	43.78 \pm 43.33	2.44 \pm 19.77	--	65.78 \pm 151.67	0.57	1.65 \pm	0.02 \pm	0.03 \pm 1.12	2.281 \pm	3.70	1.78 \pm 0.24	0.21		
S1	Redear	R1	2010	13	11.33 \pm 0.68	21.167 \pm 2.55	75.75 \pm	10.02	36.08 \pm 0.77	6.25 \pm 0.30	18.12 \pm	0.09 \pm	16.33 \pm	67.58 \pm	154.67 \pm	10.43 \pm 0.90	0.43 \pm 0.04	
		R1	2011	9	17.33 \pm 1.04	5.67 \pm 1.3	108.22 \pm	15.03	40.22 \pm 1.68	7.56 \pm 0.60	18.06 \pm	--	22.67 \pm	74.56 \pm	152.22 \pm	10.79 \pm 0.79	0.51 \pm 0.21	
		R1	2012	17	15.88 \pm 0.62	11.47 \pm 1.80	137.35 \pm	21.12	38.18 \pm 0.63	3.88 \pm 0.33	15.65 \pm	--	22.06 \pm	73.35 \pm	153.18 \pm	10.34 \pm 0.70	0.54 \pm 0.06	
		R1	2013	8	18.00 \pm 0.85	13.88 \pm 1.25	106.50 \pm	12.49	42.75 \pm 0.94	6.25 \pm 0.25	18.44 \pm	--	24.88 \pm	61.63 \pm	150.50 \pm	10.38 \pm 0.79	0.41 \pm 0.02	
		R2	2010	12	10.25 \pm 0.88	25.13 \pm 4.65	43.63 \pm 5.07	89.00 \pm	35.75 \pm 1.06	4.88 \pm 0.79	0.52	0.02	4.78	12.63 \pm	92.25 \pm	155.50 \pm	14.13 \pm 1.69	0.46 \pm 0.06
		R2	2011	10	16 \pm 1.07	10.20 \pm 0.94	12.18	179.828 \pm	38.20 \pm 0.98	6.20 \pm 0.44	0.52	--	1.07	22.20 \pm	73.40 \pm	153.40 \pm	9.68 \pm 0.84	0.32 \pm 0.02
	S1	R2	2012	17	14.76 \pm 0.60	13.29 \pm 1.48	29.59	78.14 \pm	37.35 \pm 0.85	4.59 \pm 0.31	0.60	0.01	0.55	3.63	1.45	9.23 \pm 0.48	0.59 \pm 0.07	
		R3	2010	7	15.14 \pm 1.74	12.43 \pm 1.25	11.72	102.56 \pm	41.00 \pm 2.36	7.71 \pm 0.92	1.00	0.03	0.91	4.04	1.66	11.44 \pm 1.02	0.33 \pm 0.03	
		R3	2011	9	19.44 \pm 1.96	8.22 \pm 2.01	14.21	146.59 \pm	46.33 \pm 2.69	6.44 \pm 1.04	0.30	--	1.14	8.55	1.77	14.19 \pm 0.74	0.81 \pm 0.10	
		R3	2012	17	19.06 \pm 1.07	10.76 \pm 1.52	32.39	14.659 \pm	46.12 \pm 1.87	5.47 \pm 0.52	0.68	0.01	0.84	4.07	1.86	10.65 \pm 0.79	0.71 \pm 0.07	
		R3	2013	8	16.63 \pm 2.40	11.75 \pm 1.33	75.38 \pm 5.45	45.13 \pm 3.48	5.38 \pm 0.75	0.17	--	3.76	4.63	2.17	10.89 \pm 0.89	0.60 \pm 0.11		
		S1	2010	8	7.25 \pm 1.19	9.88 \pm 0.85	68.38 \pm 8.40	32.75 \pm 1.67	3.63 \pm 0.26	0.35	0.04	9.63 \pm 4.73	3.70	1.03	10.41 \pm 0.60	0.21 \pm 0.01		
S2	S1	S1	2011	8	19.5 \pm 0.82	8.13 \pm 0.69	16.97	42.13 \pm 1.32	4.75 \pm 0.45	0.47	--	22.75 \pm	58.13 \pm	153.25 \pm	9.45 \pm 0.90	0.44 \pm 0.05		
		S1	2012	17	15.18 \pm 0.72	10.41 \pm 1.13	30.18	127.88 \pm	38.71 \pm 0.79	4.94 \pm 0.30	0.33	0.01	1.50	7.02	0.85	10.66 \pm 0.42	0.56 \pm 0.08	
		S1	2013	8	20.88 \pm 2.75	12.38 \pm 1.18	18.24	48.63 \pm 5.85	5.63 \pm 0.89	0.42	--	3.07	8.93	4.34	12.74 \pm 1.02	0.40 \pm 0.02		
		S2	2010	10	11.78 \pm 1.10	12.89 \pm 1.11	46.78 \pm 3.93	38.11 \pm 1.51	6.78 \pm 0.55	0.71	0.02	3.94	9.65	3.36	11.77 \pm 1.45	0.48 \pm 0.08		
	S2	S2	2011	9	17.78 \pm 2.31	8.44 \pm 0.96	86.11 \pm	18.13	42.56 \pm 3.54	6.67 \pm 0.69	18.42 \pm	0.02 \pm	22.78 \pm	55.89 \pm	148.11 \pm	9.61 \pm 1.07	0.48 \pm 0.06	
		S2	2012	18	17.72 \pm 0.56	11.56 \pm 1.19	154.17 \pm	20.36	42.11 \pm 0.81	5.33 \pm 0.29	16.12 \pm	0.03 \pm	24.33 \pm	68.61 \pm	154.11 \pm	10.10 \pm 0.54	0.58 \pm 0.05	

Performance Metrics for Various Models Across Multiple Years																
Category	Year	Model Type	Model A			Model B			Model C			Model D			Model E	
			Value	Min	Max	Value	Min	Max	Value	Min	Max	Value	Min	Max	Value	Min
S2	2013	9	20.33 ± 0.71	12.22 ± 1.14	103.56 ± 11.30	46.22 ± 0.81	5.56 ± 0.444	19.71 ± 0.18	--	25.89 ± 0.26	74.44 ± 4.32	158.44 ± 1.65	11.40 ± 0.57	0.5 ± 0.06		
	2010	9	9.67 ± 1.38	23.78 ± 3.85	45.22 ± 6.77	37.33 ± 1.46	6.33 ± 0.41	19.93 ± 0.17	0.10 ± 0.03	12.44 ± 4.93	102.33 ± 8.09	155.67 ± 1.55	12.36 ± 1.22	0.6 ± 0.06		
	2011	8	12.75 ± 2.14	12.38 ± 0.94	68.25 ± 11.13	40.75 ± 3.01	5.50 ± 0.57	18.25 ± 0.72	--	21.00 ± 4.80	60.63 ± 9.73	151.75 ± 1.86	11.00 ± 0.75	0.38 ± 0.04		
	2012	16	17.06 ± 1.12	12.81 ± 1.65	212.88 ± 53.71	41.50 ± 1.27	4.50 ± 0.37	15.762 ± 0.502	0.01 ± 0.01	22.94 ± 1.61	68.75 ± 5.54	153.94 ± 1.47	9.90 ± 0.50	0.54 ± 0.05		
	2013	8	18.00 ± 1.51	9.13 ± 1.49	65.00 ± 9.68	44.63 ± 1.85	5.88 ± 0.40	19.54 ± 0.23	--	26.38 ± 0.80	86.25 ± 10.66	159.50 ± 2.10	13.29 ± 1.49	0.61 ± 0.07		
LMBass																
R1	2009	26	20.50 ± 37.83	182.17 ± 50.33	1.83 ± 17.48	0.18 ± 29.83	57.83 ± 156.50	7.98 ± 0.30	1.28 ± 0.02	0.01 ± <0.01	0.04 ± 1.54	4.634 ± 39.27	3.57 ± 0.17	0.87 ± 0.06		
	2010	16	19.64 ± 32.72	210.08 ± 47.96	2.12 ± 15.40	0.10 ± 28.29	65.60 ± 153.40	9.46 ± 0.36	1.37 ± 0.06	0.01 ± <0.01	0.05 ± 0.94	1.36 ± 15.95	1.47 ± 0.25	0.64 ± 0.02		
	2011	16	20.00 ± 24.88	215.25 ± 46.75	2.44 ± 16.13	0.11 ± 26.88	50.50 ± 151.13	8.40 ± 0.36	1.33 ± 0.04	0.01 ± <0.01	0.04 ± 0.94	2.06 ± 25.42	1.84 ± 0.22	0.96 ± 0.04		
	2012	17	21.20 ± 23.73	201.20 ± 48.27	2.40 ± 17.05	0.14 ± 27.13	61.00 ± 150.40	0.35	0.02	<0.01	0.04 ± 1.05	2.43 ± 17.40	1.75 ± 0.21	0.83 ± 0.04		
	2013	8	22.82 ± 28.06	228.88 ± 48.41	1.94 ± 14.78	0.07 ± 25.59	55.47 ± 151.35	0.36	0.02	<0.01	0.04 ± 0.69	1.08 ± 18.69	1.36 ± 0.39	0.59 ± 0.02		
R2	2009	8	22.13 ± 20.75	200.63 ± 50.75	2.75 ± 17.98	0.23 ± 28.88	58.37 ± 150.13	0.33	0.06	<0.01	0.04 ± 1.16	1.57 ± 18.48	1.81 ± 0.31	0.45 ± 0.07		
	2010	16	18.75 ± 26.63	204.50 ± 44.50	2.00 ± 13.23	0.09 ± 25.75	36.00 ± 148.88	0.48	1.37	<0.01	0.05 ± 0.98	1.23 ± 30.32	2.16	0.91 ± 0.03		
	2011	17	20.81 ± 24.69	191.31 ± 47.75	2.38 ± 16.67	0.11 ± 27.00	60.13 ± 152.81	0.35	0.04	<0.01	0.04 ± 0.96	1.04 ± 15.85	1.52 ± 0.22	1.03 ± 0.04		
	2012	16	22.00 ± 29.06	234.00 ± 48.71	3.24 ± 15.86	0.09 ± 26.82	64.41 ± 151.35	0.33	0.03	<0.01	0.04 ± 0.90	1.94 ± 23.12	1.52 ± 0.33	1.24 ± 0.034		
	2009	15	23.80 ± 26.53	210.33 ± 50.73	1.80 ± 15.43	0.02 ± 26.67	61.00 ± 152.53	8.473 ± 0.373	1.36 ± 0.03	0.01 ± <0.01	0.03 ± 0.72	1.90 ± 14.76	1.46 ± 0.34	0.71 ± 0.01		
R3	2010	16	16.17 ± 35.25	154.83 ± 47.83	3.00 ± 14.9	0.08 ± 32.27	60.58 ± 151.83	0.32	0.05	<0.01	0.05 ± 1.01	1.04 ± 14.10	1.98 ± 0.43	0.99 ± 0.04		
	2011	17	21.13 ± 38.94	221.75 ± 54.13	3.00 ± 16.84	0.23 ± 33.13	78.50 ± 154.81	0.35	1.44	0.01 ± <0.01	0.05 ± 0.96	2.48 ± 18.32	2.18 ± 0.29	0.71 ± 0.03		
	2012	17	18.75 ± 26.75	195.25 ± 44.63	2.44 ± 14.11	0.09 ± 25.88	44.81 ± 151.38	0.29	0.04	<0.01	0.684	1.351	1.22 ± 0.33	0.41 ± 0.03		
	2013	8	21.24 ± 24.76	199.47 ± 48.88	1.82 ± 15.07	0.12 ± 27.47	51.12 ± 151.65	0.35	0.03	<0.01	0.044 ± 0.74	1.62 ± 15.52	1.15 ± 0.27	0.68 ± 0.03		
	2009	16	21.88 ± 27.88	229.88 ± 54.50	1.88 ± 17.53	0.07 ± 32.75	70.88 ± 150.25	0.33	0.05	<0.01	0.044 ± 0.77	2.10 ± 22.65	2.60 ± 0.30	0.79 ± 0.03		
S1	2010	16	18.40 ± 33.07	162.73 ± 48.73	3.00 ± 16.29	0.05 ± 30.27	77.07 ± 154.00	0.31	0.05	<0.01	0.05 ± 0.82	2.79 ± 14.22	1.85 ± 0.20	0.94 ± 0.02		
	2011	17	22.14 ± 30.14	194.93 ± 53.43	2.07 ± 17.25	0.07 ± 31.29	109.14 ± 154.86	0.38	0.05	<0.01	0.05 ± 1.00	2.29 ± 14.67	1.92 ± 0.16	0.94 ± 0.03		
	2012	17	21.59 ± 26.41	224.76 ± 49.24	4.47 ± 16.39	0.12 ± 27.47	87.18 ± 152.71	0.33	0.05	<0.01	0.04 ± 0.66	3.07 ± 13.33	1.17 ± 0.36	0.61 ± 0.03		
	2013	8	22.38 ± 29.50	182.63 ± 49.82	2.31 ± 15.79	0.11 ± 27.50	58.44 ± 151.94	0.40	0.03	<0.01	0.04 ± 0.88	2.051	1.66 ± 0.27	0.73 ± 0.03		

S2	2009	21	21.714 ± 26.86	218.29 ± 50.71	2.29 ± 17.27	0.06 ± 28.86	57.00 ± 145.00	$7.46 \pm$ 0.31	$1.45 \pm$ 1.41 \pm	$0.01 \pm$ 0.01 \pm	0.03 ± 1.38	$4.99 \pm$ 13.68	2.58 ± 0.36	0.43 ± 0.03
S2	2010	16	19.32 ± 35.47	207.11 ± 52.58	3.37 ± 16.48	0.18 ± 33.16	98.68 ± 157.95	$10.53 \pm$ 0.32	$1.41 \pm$ 0.06	<0.01	0.04 ± 0.85	13.06	1.49 ± 0.16	0.50 ± 0.031
S2	2011	16	20.56 ± 34.81	259.06 ± 54.25	2.69 ± 16.12	0.20 ± 29.13	90.38 ± 154.50	0.41 $9.39 \pm$	0.05 1.41 \pm	<0.01	0.04 ± 1.67	28.97	2.50 ± 0.24	1.24 ± 0.04
S2	2012	16	22.25 ± 26.44	259.00 ± 50.25	3.50 ± 16.31	0.10 ± 27.88	70.50 ± 150.88	0.35 $8.16 \pm$	0.05 1.42 \pm	<0.01	0.04 ± 0.77	22.334	1.34 ± 0.43	0.72 ± 0.03
S2	2013	10	21.56 ± 24.25	186.63 ± 47.88	2.19 ± 15.42	0.08 ± 26.13	52.13 ± 149.88	0.44 $9.67 \pm$	0.03 1.46 \pm	<0.01	0.04 ± 0.76	14.19	1.42 ± 0.16	0.68 ± 0.03
S3	2009	26	25.56 ± 31.11	309.44 ± 59.33	2.78 ± 18.3	0.16 ± 33.67	89.67 ± 154.56	0.38 $9.34 \pm$	0.06 1.40 \pm	<0.01	0.04 ± 1.72	43.82	3.46 ± 0.32	0.74 ± 0.05
S3	2010	15	18.12 ± 29.33	189.38 ± 50.21	2.20 ± 16.00	0.11 ± 31.36	60.68 ± 152.38	0.34 $11.95 \pm$	0.04 1.42 \pm	<0.01	0.05 ± 1.20	20.19	1.86 ± 0.29	0.75 ± 0.02
S3	2011	16	21.50 ± 34.58	257.33 ± 52.00	2.58 ± 16.85	0.17 ± 30.42	102.67 ± 155.08	0.34 $7.15 \pm$	0.05 1.43 \pm	<0.01	0.05 ± 1.28	28.31	2.25 ± 0.29	1.18 ± 0.06
S3	2012	17	22.56 ± 29.13	237.44 ± 52.06	3.81 ± 16.36	0.17 ± 29.63	77.00 ± 150.50	0.34 $6.99 \pm$	0.05 1.41 \pm	<0.01	0.05 ± 0.66	22.25	1.26 ± 0.36	0.81 ± 0.04
S3	2013	9	21.53 ± 25.20	177.53 ± 47.67	2.40 ± 14.67	0.09 ± 26.13	54.47 ± 150.60	0.32 $7.79 \pm$	0.03 1.52 \pm	<0.01	0.04 ± 1.06	20.60	1.88 ± 0.41	0.83 ± 0.02
			23.33 ± 26.89	231.78 ± 53.33	3.00 ± 18.14	0.03 ± 30.00	59.22 ± 151.33	0.33	0.06	<0.01	0.04 ± 0.73	17.43	1.35 ± 0.33	0.37 ± 0.02

cf	gsi	lsi	ssi	vsi
1.67 + 5.20	1.69 + 0.75	0.0514198405 + 0.0311851775	0.0080790974 + 0.0010373031	0.0000908616 + 0.0010879156
0.56 + 11.26	1.73 + 0.54	0.1388615846 + 0.0393596471	0.004360654 + 0.0018746539	0.0001177914 + 0.0029337136
0.53 + 3.45	1.54 + 0.85	0.1105324632 + 0.0322207969	0.0126250385 + 0.0014063943	0.0003028121 + 0.0014215348
0.72 + 4.37	1.31 + 0.81	0.0669077245 + 0.0254847325	0.0085147165 + 0.0008355596	0.0001447257 + 0.0007344819
0.85 + 7.04	1.45 + 1.27	0.0552770798 + 0.0411849473	0.0113945824 + 0.0012679708	0.0002079944 + 0.0014992817
0.41 + 1.32	1.56 + 0.33	0.2097617696 + 0.0426146283	+ 0.0008003847 0.0681883713 +	0.0003518192 + 0.0025876959
0.61 + 2.54	1.29 + 0.51	0.0688577721 + 0.0376930225	0.00088577721 + 0.001696328	0.0000722765 + 0.0013805341
0.66 + 3.19	1.95 + 0.59	0.0866235019 + 0.0462936917	0.0100264954 + 0.0014084264	0.0002250784 + 0.0018743371
0.53 + 4.45	1.27 + 0.70	0.0804399667 + 0.0295894752	0.0085730945 + 0.0008306322	0.0001025242 + 0.0017388376
0.61 + 5.49	1.16 + 0.61	0.0439542124 + 0.0312753728	0.0082543654 + 0.0007212738	0.0001564305 + 0.0016484741
0.70 + 2.31	1.34 + 0.93	0.0455292946 + 0.0339857654	0.00055170721 + 0.0016122053	0.0001758619 + 0.0007869291
0.57 + 3.3789127542	1.11 + 0.65	0.0762300385 + 0.0275762619	0.0104593991 + 0.0013632913	0.0002052645 + 0.0021285389
0.47 + 3.62	1.84 + 0.66	0.0600774131 + 0.0294896618	0.0074544405 + 0.0012312621	0.0002752462 + 0.0008956656
0.71 + 8.87	1.20 + 1.05	0.0293972368 + 0.0467174973	0.0124862414 + 0.0010520999	0.0001428303 + 0.0019803116
0.68 + 3.22	2.79 + 0.66	0.0280902563 + 0.029304156	0.0052774417 + 0.0007970338	0.0001634111 + 0.0017031283
0.56 + 5.94	1.31 + 0.57	0.0656946685 + 0.0365091464	0.0056327189 + 0.0014921382	0.0001230362 + 0.0020527583

0.60 + 5.24	1.20 + 0.75	0.0774971595 + 0.0299399963 0.0820156235 + 0.0411044812 0.0440677239 + 0.0250785993 0.1052279272 + 0.0299269678	0.0096840877 + 0.0011243309 0.0073124069 + 0.0009008282 0.007670067 + 0.0008542013 0.005132726 + 0.0008557771	0.0001776761 + 0.0017646277 0.0001837666 + 0.0011951144 0.0003621226 + 0.0012394717 0.0005262771 + 0.0011157531 0.0001823304 +
0.56 + 4.84	1.36 + 0.79	0.025 + 0.0363975323 0.063457203 + 0.0231033757 0.0378800189 + 0.0197643109 0.0163663418 + 0.0465035988 0.0422577127 +	0.005757346 + 0.001237825 0.0088361911 + 0.0009179858 0.0087220474 + 0.0006914983 0.0050295252 + 0.0011647935 0.0046209683 +	0.0014037998 0.0002249425 + 0.0009434817 0.0002207917 + 0.0011192259 0.0001478619 + 0.000606573 0.0000905334 +
0.51 + 4.53	1.93 + 0.86	0.0155 + 0.033757 0.0378800189 + 0.0197643109 0.0163663418 + 0.0465035988 0.0422577127 + 0.0242923534 0.0670349936 +	0.0009179858 0.0087220474 + 0.0006914983 0.0050295252 + 0.0011647935 0.0046209683 + 0.0005736081 0.0068809821 +	0.0009434817 0.0002207917 + 0.0011192259 0.0001478619 + 0.000606573 0.0000905334 + 0.0014307663 0.0000968254 +
0.94 + 2.06	1.55 + 0.72	0.0155 + 0.033757 0.0378800189 + 0.0197643109 0.0163663418 + 0.0465035988 0.0422577127 + 0.0242923534 0.0670349936 +	0.0009179858 0.0087220474 + 0.0006914983 0.0050295252 + 0.0011647935 0.0046209683 + 0.0005736081 0.0068809821 +	0.0009434817 0.0002207917 + 0.0011192259 0.0001478619 + 0.000606573 0.0000905334 + 0.0014307663 0.0000968254 +
0.57 + 7.07	0.78 + 0.31	0.0155 + 0.033757 0.0378800189 + 0.0197643109 0.0163663418 + 0.0465035988 0.0422577127 + 0.0242923534 0.0670349936 +	0.0009179858 0.0087220474 + 0.0006914983 0.0050295252 + 0.0011647935 0.0046209683 + 0.0005736081 0.0068809821 +	0.0009434817 0.0002207917 + 0.0011192259 0.0001478619 + 0.000606573 0.0000905334 + 0.0014307663 0.0000968254 +
0.73 + 13.47	2.01 + 0.62	0.0155 + 0.033757 0.0378800189 + 0.0197643109 0.0163663418 + 0.0465035988 0.0422577127 + 0.0242923534 0.0670349936 +	0.0009179858 0.0087220474 + 0.0006914983 0.0050295252 + 0.0011647935 0.0046209683 + 0.0005736081 0.0068809821 +	0.0009434817 0.0002207917 + 0.0011192259 0.0001478619 + 0.000606573 0.0000905334 + 0.0014307663 0.0000968254 +
1.08 + 18.44	1.32 + 1.28	0.0155 + 0.033757 0.0378800189 + 0.0197643109 0.0163663418 + 0.0465035988 0.0422577127 + 0.0242923534 0.0670349936 +	0.0009179858 0.0087220474 + 0.0006914983 0.0050295252 + 0.0011647935 0.0046209683 + 0.0005736081 0.0068809821 +	0.0009434817 0.0002207917 + 0.0011192259 0.0001478619 + 0.000606573 0.0000905334 + 0.0014307663 0.0000968254 +
0.52 + 6.45	1.19 + 0.69	0.0155 + 0.033757 0.0378800189 + 0.0197643109 0.0163663418 + 0.0465035988 0.0422577127 + 0.0242923534 0.0670349936 +	0.0009179858 0.0087220474 + 0.0006914983 0.0050295252 + 0.0011647935 0.0046209683 + 0.0005736081 0.0068809821 +	0.0009434817 0.0002207917 + 0.0011192259 0.0001478619 + 0.000606573 0.0000905334 + 0.0014307663 0.0000968254 +
0.66 + 11.89	1.21 + 0.57	0.0155 + 0.033757 0.0378800189 + 0.0197643109 0.0163663418 + 0.0465035988 0.0422577127 + 0.0242923534 0.0670349936 +	0.0009179858 0.0087220474 + 0.0006914983 0.0050295252 + 0.0011647935 0.0046209683 + 0.0005736081 0.0068809821 +	0.0009434817 0.0002207917 + 0.0011192259 0.0001478619 + 0.000606573 0.0000905334 + 0.0014307663 0.0000968254 +
0.91 + 10.25	1.26 + 0.92	0.0155 + 0.033757 0.0378800189 + 0.0197643109 0.0163663418 + 0.0465035988 0.0422577127 + 0.0242923534 0.0670349936 +	0.0009179858 0.0087220474 + 0.0006914983 0.0050295252 + 0.0011647935 0.0046209683 + 0.0005736081 0.0068809821 +	0.0009434817 0.0002207917 + 0.0011192259 0.0001478619 + 0.000606573 0.0000905334 + 0.0014307663 0.0000968254 +
1.48 + 0.02	0.08 + 0.01	0.0137418225 + 0.0006320598 0.0141659563 + 0.0011864187 0.0075548781 + 0.0008263314 0.0174425798 +	0.0002908866 + 0.0000556346 0.0009166628 + 0.0001145112 0.0005059874 + 0.0000747687 0.000875333 +	0.0237052242 + 0.0010215366 0.0257782915 + 0.0026115327 0.0211462076 + 0.0006780738 0.0222798164 +
1.60 + 0.03	0.09 + 0.0	0.0137418225 + 0.0006320598 0.0141659563 + 0.0011864187 0.0075548781 + 0.0008263314 0.0174425798 +	0.0002908866 + 0.0000556346 0.0009166628 + 0.0001145112 0.0005059874 + 0.0000747687 0.000875333 +	0.0237052242 + 0.0010215366 0.0257782915 + 0.0026115327 0.0211462076 + 0.0006780738 0.0222798164 +
1.54 + 0.03	0.04 + 0.01	0.0137418225 + 0.0006320598 0.0141659563 + 0.0011864187 0.0075548781 + 0.0008263314 0.0174425798 +	0.0002908866 + 0.0000556346 0.0009166628 + 0.0001145112 0.0005059874 + 0.0000747687 0.000875333 +	0.0237052242 + 0.0010215366 0.0257782915 + 0.0026115327 0.0211462076 + 0.0006780738 0.0222798164 +
1.62 + 0.04	0.12 + 0.01	0.0137418225 + 0.0006320598 0.0141659563 + 0.0011864187 0.0075548781 + 0.0008263314 0.0174425798 +	0.0002908866 + 0.0000556346 0.0009166628 + 0.0001145112 0.0005059874 + 0.0000747687 0.000875333 +	0.0237052242 + 0.0010215366 0.0257782915 + 0.0026115327 0.0211462076 + 0.0006780738 0.0222798164 +

		0.0009233511	0.0001077062	0.0007008804
1.38 + 0.03	0.05 + 0.01	0.0128576869 + 0.0005942357	0.0006692727 + 0.000068078	0.0245524941 + 0.0013501137
1.65 + 0.04	0.20 + 0.01	0.0124132955 + 0.0006117832	0.0007168164 + 0.0000882576	0.0327918482 + 0.0027521939
1.56 + 0.02	0.04 + 0.01	0.0007919866	0.0001135188	0.001248892
1.73 + 0.06	0.10 + 0.01	0.0132443163 + 0.0007823854	0.0003419272 + 0.0000721904	0.0270688561 + 0.0021310982
1.67 + 0.04	0.08 + <0.01	0.0011289111	0.000843317 + 0.000169421	0.0026732993
		0.0106831603 +	0.0006960064 +	0.0277791463 +
1.73 + 0.03	0.042 + 0.01	0.0009427461	0.0001469818	0.0011278727
1.73 + 0.07	0.05 + 0.01	0.0211273303 + 0.00065225	0.0000497118	0.0017317641
		0.0174492974 +	0.0003975025 +	0.0321635587 +
1.47 + 0.05	0.08 + 0.01	0.001704999	0.0000899634	0.0022858079
		0.0133541287 +	0.0005704619 +	0.0324578864 +
1.64 + 0.06	0.09 + 0.02	0.0006558167	0.0000894605	0.0027912359
		0.009736271 +	0.0011500833 +	0.0256161843 +
1.61 + 0.02	0.04 + 0.01	0.0009602309	0.0001594918	0.001274093
		0.0217425203 +	0.0010629149 +	0.0287144153 +
1.61 + 0.05	0.10 + 0.01	0.0012844307	0.0002770104	0.0010854344
		0.0112571163 +	0.0007171868 +	0.0316459751 +
1.50 + 0.03	0.08 + 0.01	0.0005325621	0.0000765368	0.002259957
		0.0147265607 +	0.0002431525 +	0.0410615081 +
1.55 + 0.03	0.06 + 0.01	0.000948005	0.000100515	0.0020291013
		0.008498382 +	0.000721518 +	0.0251463217 +
1.60 + 0.02	0.04 + 0.01	0.0007588681	0.0000742157	0.0008131643
		0.0158297241 +	0.0006921604 +	0.0274477199 +
1.68 + 0.04	0.07 + 0.01	0.0007155499	0.0001122083	0.0008325346
		0.0125595454 +	0.0003808637 +	0.0305871144 +
1.51 + 0.04	0.05 + 0.01	0.0004561014	0.0000413598	0.001788346
1.68 + 0.07	0.08 + 0.01	0.0133775171 +	0.0008833153 +	0.0414488938 +

1.67 + 0.03	0.03 + 0.01	0.0004904775 0.009454344 + 0.0009553966 0.0152549285 +	0.0001249213 0.000718171 + 0.0000942699 0.0015141917 +	0.0044050217 0.0285634966 + 0.0007745024 0.0284970643 +
1.67 + 0.05	0.05 + <0.01	0.0007114228	0.000150293	0.0022053705
2.26 + 7.84	1.77 + 1.20	0.025819889 + 0.0269395512 0.0245492702 +	0.0037498736 + 0.0012309221 0.0074910875 +	0.000127687 + 0.0028490636 0.0000587032 +
0.88 + 9.09	1.33 + 0.74	0.028153566 0.042787021 +	0.0007304857 0.0058624737 +	0.0016565308 0.0001251907 +
1.16 + 3.20	1.04 + 0.79	0.0230403808 0.0350056685 +	0.0008797403 0.0049632206 +	0.0025168736 0.0001575927 +
1.05 + 6.45	1.37 + 0.76	0.0378077414 0.0382918134 +	0.0010818674 0.0063895404 +	0.0026348559
0.93 + 3.71	1.20 + 0.52	0.0353675003	0.0005861827 0.0054313294 +	0.000143499 + 0.000975933 0.0002255833 +
1.01 + 8.03	0.58 + 0.69	0.0163663418 + 0.06572168 0.0526104281 +	0.0007179032	0.0015577334 0.0001343597 +
1.47 + 1.71	0.69 + 0.60	0.0622867702 0.0418330013 +	+ 0.0013720083 0.0050164386 +	0.0039003008 0.000150849 +
0.788 + 4.67	0.97 + 0.51	0.0838846919 0.0294117647 +	0.0008893482 0.0060813431 +	0.0022608526 0.0001376921 +
1.82 + 6.77	0.92 + 0.45	0.0400996216 0.0371184291 +	0.0010547975 0.0065838898 +	0.0020978031 0.0001047175 +
1.08 + 7.67	1.13 + 0.61	0.0211079517	0.0005647628 0.0062892872 +	0.002445197 0.0001466293 +
1.57 + 6.99	3.67+ 0.45	0.03217691 + 0.056926109 0.0273861279 +	0.0013005009 0.0046303216 +	0.0044782672 0.0003677304 +
1.61 + 15.92	1.30 + 0.67	0.0466881865 0.0295363477 +	0.0015150089 0.0110535049 +	0.0018396257 0.0001187279 +
0.80 + 1.42	0.73 + 0.36	0.031827934	0.0011240654 0.0070753069 +	0.0015733419 0.0001129782 +
0.80 + 4.44	1.04 + 0.43	0.032218974 + 0.112741376	0.0004816292	0.0017079578

2.11 + 10.26	0.88 + 0.55	0.0163663418 + 0.0457432403 0.025572803 + 0.0375633657 0.0470895469 + 0.0344335918 0.0498266893 + 0.1177485788 0.0508265023 + 0.0303767012 0.0142857143 + 0.0331272116 0.0344235384 + 0.0404878241 0.0543666181 + 0.0367825229 0.0540061725 + 1.55 + 0.93 0.0618928846 + 0.0357082762 0.0222222222 + 2.00 + 1.49 0.0376242705 0.0293711877 + 0.0248306357 0.0287579589 + 1.23 + 1.32 0.0280868309 0.041801864 + 1.40 + 0.41 0.0574356266 0.0279455252 + 0.77 + 0.20 0.0400681076 0.0166666667 + 0.05362473	0.0054900327 + 0.0008334346 0.0063628246 + 0.0014676442 0.0046050677 + 0.0007383563 0.0119117404 + 0.0010147212 0.0052070367 + 0.0006769587 0.0044517616 + 0.0010017467 0.0038114051 + 0.0012474416 0.0039105514 + 0.000985633 0.0111133736 + 0.0010307185 0.0069300329 + 0.0005924784 0.0054863534 + 0.0005738005 0.0032973526 + 0.0013700966 0.0049524679 + 0.0012141927 0.0115577942 + 0.0013331872 0.0070606251 + 0.000636449 0.0047453464 + 0.0007435198	0.0000793165 + 0.0009685844 0.000116312 + 0.0019326767 0.0001982819 + 0.0025769088 0.0001808844 + 0.002245701 0.0001957985 + 0.0017505817 0.0001299873 + 0.0021859336 0.0000952665 + 0.0016544992 0.0001528414 + 0.0030718983 0.0001577464 + 0.00204843 0.0001280367 + 0.0015001723 0.0001410464 + 0.0015253355 0.0001026239 + 0.001996418 0.0001301728 + 0.0024183456 0.0001370293 + 0.0022458437 0.0001492483 + 0.0015023038 0.0000895233 + 0.0013323897
--------------	-------------	--	--	--

COMMENTS TO THE AUTHOR:

Comments from the Associate Editor:

Dear Dr. Pracheil,

Please find appended below the reports from the two reviewers for your revised manuscript. While the comments are generally positive, both reviewers agree that the manuscript should still benefit from several amendments. After examining the revised manuscript and the response to review, I must agree with this appraisal. Therefore, I call you and your co-authors to prepare a second revised manuscript and its respective response-to-review letter. In particular, I urge to consider seriously the issues raised by Reviewer #1, with which I concur. Seemingly, there are many questions that may have not been entirely addressed or clarified during the revision, even if mentioned in the response letter.

On my behalf, I acknowledge effort to render the work of interest outside its area of origin, among other issues. Still, I suggest that, in Discussion and Conclusions, the remarks on the novelty of the study and the need for future work is reduced to a minimum, or even removed, in order to keep the manuscript objective and unbiased.

We have removed the last paragraph of the conclusions to address this comment.

Also, I find the changes to the statistical approach to have improved the manuscript. However, some measure of deviation should be given in the charts. I suggest reducing the thickness of the lines and perhaps offsetting the data series to better allocate error bars.

We have reconstructed our figures to accommodate error bars.

We look forward to receive your revised manuscript.

Pedro M. Costa
Associate Editor, Ecotoxicology
(Aquatic Ecotoxicology)

Reviewer #1

General Comments

There remains quite a bit of revision needed for this manuscript, some of which was pointed out in previous comments.

The title should be changed to say "Contaminant" instead of "Metal" for reasons given in comments below.

Changed as recommended.

My previous comment said "Also, Hg is a metal, while As and Se are metalloids, rather than metals. This distinction should be maintained throughout the paper, or possibly explained early in the Introduction (first paragraph) if the generic term "metal" is to be used for convenience when meaning is general for all three elements. But As and Se should not be called metals when referring specifically to them."

Authors' response says "We have added text in Line 73 to address this concern "...coal ash can contain high concentrations of metals such as arsenic (As), mercury (Hg), and selenium (Se) (hereafter, generally, as metals)"

However, text at 68-69 (not 73) says "coal ash can contain high concentrations of metals such as arsenic (As), mercury (Hg), and 69 selenium (Se), all can be toxic to biota and can bioaccumulate. These metals

can then be . . ." This is not responsive to my previous comment about the metalloids and revision is required. Throughout, the word "metal" is not used correctly; if used it should be only when meaning Hg.

We apologize for this oversight in our submission of the final revision. This comment has been now been addressed recommended in this revision.

The word "only" is frequently misplaced, as noted in previous comments. It should be placed just before what is/was limited.

Changed as recommended.

In Tables 2, 4, 5, and 6, the wording "site type" should be used instead of "spill" throughout the table titles and body, matching word usage in text.

"Spill" was used for brevity and is defined in the caption. No change made.

Lines in Figures 2 through 4 (one of which is called a second "Figure 3") are difficult to see and relate to the particular sites; they should be done much more clearly.

Figures have been reconstructed for clarity.

As in previous comments, suggestions are provided to improve readability of the paper in addition to notations of non-grammatical/writing errors. I again suggest authors consider those corrections and suggestions and read their revised manuscript before submitting it to avoid obvious errors and problems such as those noted in this review.

Specific Comments

34: Change "metal" to "contaminant" or say "As, Hg, and Se." Wording of sentence should be changed because "were measured" applies only to tissue analyses for these constituents as stated now (no verb for the other metrics).

Changed as recommended.

44-45: This could be better stated as "at this site; these findings are relevant . . ."

This merely changes our words into the reviewer's words. No change needed or made.

50: Delete extra space and first comma. Suggest changing "the bulk of" to "most" to simplify wording.

We have deleted the comma.

This merely changes our words into the reviewer's words. No change needed or made.

68-69: My previous comment (in part) said "53-55: This part of the text should be rewritten to correct that error and clarify the metal/metalloid classification of the three elements (as well as deleting mention of "heavy"). The three elements should not be referred to collectively as "These metals . . ." because only Hg is a metal [emphasis added].

Authors' response says "Changed as recommended. See additional text in Line 73"

As noted in my response above relative to the similar previous General Comment, the revision is not responsive to the comment; it still calls all three "metals."

See above response.

72-73: Why is "(in what species?)" in the paper? This seems to be an internal note that should be resolved.

We have deleted this material.

76: The King (1988) reference is still missing from Literature Cited (omission noted in previous comments).

We have removed this citation.

97: Change "was" to "were" ("data" is plural term).

Changed as recommended.

98 and 101: Reword to say "contaminant" or "As, Hg, and Se;" they are not all metals.

Changed as recommended.

112-117: As noted in my previous comment on this text "In each of the five instances where "approx." is used, it would be preferable to say "about" (simpler wording is OK)."

Authors' response says "This was not incorrect. No change made."

That's true; it was not incorrect, but the suggestion was offered to make for easier reading and change is still recommended.

We disagree that this makes the wording simpler or the reading easier; this merely changes our words into the reviewer's words. No change needed or made.

119: Change "was" to "were" (subject is "4.1 million m³").

Changed as recommended.

135-136: The word "only" is out of place; reword as "elements showed consistent trends only with . . ."

Change "these metals" to "these contaminants" or some word other than "metals."

138 and 149: Again, they're not "metals."

Changed as recommended.

153: My previous comment said "126: Reference is missing or there is an error in year."

Authors' response says "Changed as recommended"

However, there was no change, and there is still a mis-match of year with Literature Cited section.

154-155, 157: Again, they're not "metals."

Changed as recommended.

173-176: The equation for condition factor shows "Mo" instead of "Mt." If the condition factor was "Cf" why does the equation say "K ="?

Changed as recommended

187: Fix spelling of "vitellinogenesis" to "vitellogenesis."

Changed as recommended.

189: Fix spelling of "vitellenogenic" to "vitellogenetic."

Changed as recommended.

192-193: My previous comment on this text (at 160 in that draft) said "Reword as "estimates consider only the . . ."

Authors' response says "Information was removed from manuscript"

However, text was not removed or changed and still says "estimates only consider the . . ." Word order should be changed, as previously suggested, and comma after "season" should be a semicolon.

Changed as recommended.

195: Fix spelling of "vitellenogenic" to "vitellogenetic."

Changed as recommended.

227: Reword as "analyses used only data . . ."

Changed as recommended.

241, 246, and 247: Reword "metals."

Changed as recommended.

250: Seems you should insert "x 3 species" after "years" based on first part of the sentence. 6 sites x 5 years x 3 species would = 90, not 720; what are other factors (e.g., As, Hg, Se?) to get the total of 720 combinations? Please indicate in parentheses the factors on which the number 720 is based.

We had calculated this through a permutation analysis, which was clearly not the right way of doing things. We have corrected this in our current draft to read 90.

258-264: To allow readers to easily see in Figure 2 the patterns described in text, the scale should be the same across species for each element. Varying the scale makes it difficult to see the similarities and differences among species. In the figure it is not apparent how the overall mean selenium concentration is higher in 2010 than in 2011, for example - what are the means, and are they significantly different? It does not look like they would differ. As noted below in reference to the figure, the lines in the figure do not stand out well, so it is difficult to see the patterns described in text.

While we agree that using the same axis range for these graphs would theoretically help to compare among values among species, the values are different enough among species that some element x species graphs have fairly low values that preclude comparisons among sites to be made. We were very careful in determining how to display these graphs and have also displayed these multiple ways and have found the current view the best for illustrating our points. We have, however, reduced the line size as recommended for clarity. While we did not mark significant differences among sites using letters or other common notations, we have redone our graphs at the suggestion of the AE to include standard error bars that can be used to infer significant differences among sites.

272-273: Table 2 does not show year to be significant for bluegill or bass; this is true only for redear, and nearly so for bluegill but clearly not so for bass.

Changed as recommended.

296: Fix "the most recent year data was collecte3d" to say "first year data were collected."

Changed as recommended.

306: Fix spelling of "vitellenogenic" to "vitellogenetic."

Changed as recommended.

314: Change "this data" to "these data."

Changed as recommended.

320: Change "examining relationships metal concentration and site" to something like "examining relationships between As, Hg, or Se concentration and site."

Was changed to "examining relationships contaminant concentration and site"

328: Delete the comma.

Changed as recommended.

330: Reverse word order for "Selenium fillet" (intended meaning seems to be fillet concentrations of selenium, so word order is now incorrect).

Changed as recommended.

334: Fix spelling of "vitellenogenic" to "vitellogenetic."

Changed as recommended.

338: Should Table 5 be referenced here for the GSI? It is not in Table 6 (which does show reproductive metrics). There is no Figure 5 - is that supposed to say "Figure 3?" Fix as needed.

Table and figure citations have been corrected and replaced here as needed.

343: Reword as "focuses only on . . ."

Changed as recommended.

347: Reword "data . . . was . . ." to "data . . . were . . ."

Changed as recommended.

349: Change "lack of effects" to "lack of long-term effects."

Changed as recommended.

350: Suggest changing "as after effects can take a decade or more to manifest" to something like "because such effects may not be measurable in short-term studies."

Given the direct regulatory and disciplinary implications of this project, our intent here was to provide a specific number of years so as to be unambiguous to regulators and power producers.

353: The meaning of "did not occur for 10 years following mitigation" does not seem consistent with the context of the previous two sentences; please clarify.

This sentence now reads "For instance, developmental deformities due to Se contamination in Belews Lake, NC did not manifest for 10 years following contamination by coal ash waste inputs as Se was transferred up the food chain from producers to consumers (Lemly 1993)."

361: Change "are due" to "is due" (the subject is "lack").

Changed as recommended.

377: Change "was" to "were."

Changed as recommended.

379: Fix wording of "sites is appears."

Changed as recommended.

390: Change "was" to "were" ("data" [to which this refers] is plural term).

Changed as recommended.

393: Insert "are" to say "or are of."

Changed as recommended.

407: Add period for "et al."

Changed as recommended.

412: Wording of "because they are uncontrolled phenomenon that . . ." might more properly stated as "because such impacts . . ." If not worded like that, some other wording should be used (at least, change to "phenomena" to match plural subject [which is "impacts"]).

This paragraph has been deleted at the suggestion of the AE.

417: Insert coma after "data."

This paragraph has been deleted at the suggestion of the AE.

419-420: The intended meaning of "contaminants and other environmental contaminants such as coal ash" is unclear; please clarify.

This paragraph has been deleted at the suggestion of the AE.

440: Fix initial caps of journal name.

Changed here and throughout Literature Cited

447-448: Should this say "10.1093/conphys/cou018?"

Yes. *Corrected as suggested.*

484: Fix initial caps of journal name.

522-523: Citation for this book chapter is incomplete.

Changed as recommended.

526: Fix initial caps of journal name.

534: Delete "Volume."

Changed as recommended.

Table 2: Fix "metal" in lines 539-542 of title and in table body to say "contaminant" or some other alternative, as it is not only Hg that is assessed.

Changed as recommended.

The meaning of "collection site (hereafter, spill, denoting reference or ash-affected site)" in line 540 and table body is unclear - suggest changing to just say "collection site type."

We have left this as is because "collection site type" is too long to fit into table.

Table 3: "shown in Table 3" is in error (it should say Table 2); this is Table 3.

Changed as recommended.

Table 4: Saying "Site Type" would be preferable to saying "Spill" (in title and table body) to designate spill vs. reference sites. Fix spacing in third line of title.

See above response.

Table 5: It would be preferable to say "site type" instead of "spill" throughout the table title and body, matching word usage in text at 288-292.

See above response.

Table 6, line 6-7: Fix spelling of "vitellogenin."

Changed as recommended.

Also, on this line it seems "hereafter, metric:" could be deleted without loss of clarity. It would be preferable to say "site type" instead of "spill" throughout the table title and body, matching word usage in text at 302-304.

See above response.

Figure 2: The lines for different sites do not show well in the figure; different kinds of lines are needed (especially for those other than R3 and S3). See also comments on figure at 258-264. Word order for "and selenium fillet concentrations (mg/kg wet-weight) by . . ." would be better as "and selenium concentrations (mg/kg wet-weight) in fillet by . . ."

We have split this figure into one that shows reference and spill sites on different graphs to address this comment. We have reconstructed this figure several different ways with several different line types, and this configuration was the most easily discernable without going to a color figure which is very expensive for a project with a limited budget. Unfortunately, this reconstruction comes at the cost of making easy comparisons between reference and spill sites.

Figure 3 (first one): Fix spelling of "indie" in first line of title.

Changed as recommended.

As in Figure 2, the lines for different sites are not easily discerned; alternative types of lines would be helpful.

See above comment.

Figure 3 (second one): Fix spelling of "vitellenogenic" to "vitellogenin" in y-axis label. This should be Figure 4. Figure title says bass are not shown, but they are. Fix "metal" in the title if bass are kept in the figure.

Changed as recommended/ see above comments.

Reviewer #2

The authors have submitted a greatly improved manuscript. They should take further care to make minor revisions to improve punctuation and remove some "hang-overs" from earlier versions of the paper, as detailed below). There are also still two Figures titled "Figure 3"

I have one new criticism that I regret I did not spot at the initial review, and that is that the authors have omitted data that was below the detection limits (<DL) from their statistical analysis. Ignoring such data naturally biases the data to higher concentrations. Up to 40% of arsenic data were below the DL for bluegill (Appendix A) and, as it is not clear if there were more non-detects at the reference sites than at the spill sites, this could be a source of inaccuracy in estimates of the mean concentrations for this element in bluegill. I suggest to substitute values of DL/2 for results <DL and repeat the statistical analysis, although I doubt it will change the main findings of the paper.

We appreciate the reviewers sentiment here. As the reviewer states, the exclusion of values <DL would bias data to higher concentrations, so the estimates we present in this manuscript are effectively worst case scenario estimates. These As values reported are well-below regulatory limits and biological thresholds, so really, even if it made a statistical difference among sites, it would not change the storyline that As values are very low. Furthermore, while it would be interesting to examine these relationships and we may find additional significance, given the regulatory and policy implications of this study and our need for conservatism in presenting only values above detection limits, we have not repeated this analysis as suggested.

Details

The abstract states (line 33) that the sites were sampled bi-annually - this should be removed as data are only presented for one sampling per year.

Changed as recommended.

Please amend punctuation to remove extraneous commas from lines 50 and 64

Changed as recommended.

Line 69: suggest to change "all" to "which"

Changed as recommended.

Line 72/72: there is a comment in brackets that does not belong in the paper

Changed as recommended.

Lines 73-76 - this section is poorly worded and should be redrafted

Changed to "Although the exact mechanisms and toxic constituents of coal ash are not known, coal ash spills have been linked to reduced nest success in birds (King et al. 1994) and skeletal deformities in fish (Lemly 2002)."

Line 175: "MO" in this equation should be "MT"

Changed as recommended.

Line 190 is poorly worded and should be redrafted

Changed to, "From these measurements, batch fecundity, numbers of vitellogenic oocytes and numbers of atretic oocytes were estimated for each ovary."

Lines 212-214: why did only Se require this "sample specific adjustment"? Also, the presentation of units here (mg*kg-1) does not match that of the title of Fig 2 (mg/kg wet wt; which I prefer)

Changed as recommended.

Line 296: typo - "collecte3d"

Changed as recommended.

Line 320: should read "relationships BETWEEN metal concentration and site"

Changed as recommended.

Lines 327-328: punctuation should be corrected to make this sentence easier to read

We were unsure what punctuation should be corrected in this sentence, however, we have revised it to enhance clarity.

Line 338: a comma is required after "(Table 6; Figure 5)"

Changed as recommended.

Line 370: pls amend "sites is appears"

Changed as recommended.