
Introduction

The major impetus for this work is to develop a platform-portable, cost-effective, scalable, and high
performance parallel software system for solving 3D computationally intensive Ground-based
Nuclear Explosion Monitoring Research & Development (GNEMRD) problems within a reasonable
time frame (minutes-hours). Our system is comprised of an arbitrary number of affordable modern
commodity, multi-core computers linked together in a parallel fashion using a simple two
component framework. These primary components include a processing node resource management
system that allocates physical processing nodes, memory, and I/O capabilities to one or more
requesting applications, and a task distribution system that handles computational work unit
assignment for each application. We use this system to perform a number of computationally
intensive geophysical problems including ray-path prediction, ray similarity/clustering

GLOBAL 3D SEISMIC TOMOGRAPHY USING MULTI-CORE DISTRIBUTED MEMORY PARALLEL COMPUTERS
James R. Hipp, Marcus C. Chang, Mark A. Gonzales, Benjamin J. Lawry, Andre V. Encarnacao, and Glenn T. Barker, Sandia National Laboratories

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Parallel Process (How the system works)

The basic computational problem is split into many sub-problems, or tasks, and calculated
independently on one of the many processing nodes comprising the system.

Performing this process efficiently involves three interacting subsystems.
• The Client Application (CA) – where the code starts (main()), processes results, and

ends.
• The Node Resource Manager (NRM) – which monitors system health, security, and

the status of requesting CAs. The NRM is responsible for allocating and assigning
processing node resources (CPUs and memory) to CAs.

• The parallel task distribution system – We use the Java Parallel Processing
Framework (JPPF, www.jppf.org) for this component. This system assigns the tasks
provided by the CA to the compute nodes assigned by the NRM. The JPPF system
is composed of three primary sub-components including the Client, which resides
with the CA and acts as the CAs interface with JPPF; the Driver, which lives on a
machine prescribed by the NRM and handles task distribution to the third
component; the Nodes, which processes each task and returns the results to the
Driver.

The parallel process occurs over three phases: Startup, Operation, and Shutdown. Each
phase is shown to the right.

Startup:
1. Client Application (CA) starts up.
2. CA requests processing nodes from NRM.
3. NRM starts JPPF Driver and assigns to CA.
4. NRM accumulates JPPF Nodes.
5. NRM assigns JPPF Nodes to JPPF Driver.

Shutdown:
1. Ultimately, CA finishes work and shuts down.
2. NRM senses CA has shut down.
3. NRM releases JPPF Nodes from Driver.
4. NRM shuts down JPPF Driver.

Operation:
1. Meanwhile, CA creates and assembles list of

parallel tasks.
2. CA submits list of parallel tasks to resident

JPPF client.
3. JPPF Client sends task list to JPPF Driver (over

network).
4. JPPF Driver distributes tasks across network to

JPPF Nodes.
5. JPPF Nodes execute tasks.
6. Upon completion, JPPF Nodes send results

back to JPPF Driver.
7. JPPF Driver forwards results back to JPPF

Client.
8. JPPF Client notifies CA of the arrival of new

results.
9. CA accumulates and processes the results.

JPPF
Driver

JPPF Node

...
3

4

6

6
7

5

5
Client
Application

Java Parallel Processing Framework (JPPF www.jppf.org)

• Java based platform-independent framework.
• Sandia designed front-end interface to support “sequential” and “concurrent” (multi-threaded) modes.
• Allows a single machine to process in multi-threaded mode or sequentially (helpful for debugging).
• JPPF Client is instantiated by the Client Application (CA) and passes submitted tasks to the JPPF Driver.
• JPPF Driver distributes tasks among JPPF Nodes as they become free (ready for a new task).
• JPPF Nodes execute tasks in parallel. Task written by user to perform necessary parallel calculation.
• JPPF can be executed in Data-Parallel manner with information shared between nodes.

Node Resource Manager (NRM)

• Developed by Sandia to perform automated resource management including starting and stopping
processing nodes and sharing node resources among multiple simultaneously executing
applications.

• Handles multiple Client Applications (CA) requesting simultaneous access to processing nodes.
• Configures, starts, and stops processing nodes.
• Starts and stops JPPF Drivers and assigns their processing nodes.
• Performs node balancing operations among competing CAs.
• Allows users to contribute their desktop systems as resource hosts (processing node host).
• Robust automated failure recovery (including NRM, JPPF Driver, and processing node).
• Platform independent (Windows, Linux, Unix, and Apple operating systems) and both 32- and

64-bit compatible.

Coarse-Grained/Fine-Grained Parallelism
Task Parallelism Data Parallelism

Distributes execution tasks across
multiple processing nodes

Distributes data across multiple
processing nodes

Possesses large flop count / memory
access ratio (>> 1)

Possesses small flop count / memory
access ratio ( 1)

Each node may execute a different task
operation

Every node executes the same
operation over a different range of the
data

Requires defining tasks Requires breaking down the data into
subsets that can be operated on in
parallel

Typically has no inter-node
communication requirements

May require significant inter-node
communication

Optimal for "embarrassingly parallel"
problems that are easily formulated
into independent tasks

Optimal for large data problems that
undergo a small set of repeatable
operations

Example: Predicting independent ray
paths through an Earth model

Example: Solving a large (multi-GB)
system of simultaneous equations

computations, 3D regional and world Earth tomography calculations, event location, and waveform
correlation event detection processing. Our eventual goal is to refine this software system into a
deployable package that can be easily installed at other sites where GNEMRD research products
are developed to improve the overall U.S. monitoring capability.

In this report we describe the current system developed at Sandia including the two primary
components mentioned above. We also describe the basic process of how parallel tasks are solved
using this system and how different problem types are categorized into coarse- and fine-grained
solution methodologies.

1 2

89

JPPF
Driver

Client
Application

JPPF
Node

NRM

JPPF
Node

JPPF
Node

2

1
33

5 5 5

444

……

JPPF
Driver

Client
Application

JPPF
Node

NRM

JPPF
Node

JPPF
Node

2

1
4

3 3 3

……

End

End

JPPF Node

Start
Start

Conclusions and Future Direction

• Computational parallelism spans a broad range of granularity from very
coarse-grained (e.g. ray-prediction, ray similarity and clustering) to
extremely fine-grained (e.g. LSQR, Cholesky decomposition) solutions.

• Coarse-grained parallelism is often referred to as “Task” parallelism.
• Fine-grained parallelism is often referred to as “Data” parallelism.

Multi-core CPU versus GPU:

• Multi-core CPU (Central Processing Unit) … Optimally used for “Task” parallel problems.
• Traditional computer processor used in everything from laptops to servers.
• Each processor can contain multiple processing cores (typically up to 4 or 6).

• Multi-core GPU (Graphics Processing Unit) … Optimally used for “Data” parallel problems.
• Traditionally viewed as part of the video card, used by computers to render

graphics. Can now be exploited to perform mathematical computations.
• Program using Nvidia’s CUDA language (C-based extensions).
• Nvidia Tesla Card contains 240 cores per GPU, with up to 4 GPUs in a single machine

(960 total cores).
• A single machine can contain multiple CPUs and GPUs.

API/GUI

• Easy-to-use API for connecting
CAs to the distributed system.

• Contains many features including:
• Start/stop JPPF Drivers.
• Request/release JPPF Nodes.
• Configuration management.
• CA processing node allocation
• Various monitoring

capabilities.

Host Installer

• Uses a database to identify and track
what hosts (and associated resources)
are available for use by the system.

• Facilitates end-user resource sharing
by allowing their own computing
resources to be connected to system.

• Defines a policy based approach for
defining host usage configuration.

Application node balancing

• Fairly shares processing nodes among
multiple users in a transparent fashion.

• NRM maintains a weighted node count
metric based on:

• Application priority.
• Performance weight for each node

used by the application.
• Certain events can unbalance system.
• Dynamic reassignment is used to

rebalance system.

Example illustrating node balancing when a
new application starts up.
a) Application 3 (green) at initial startup has

no nodes (160 nodes shared evenly by
applications 1 (red) and 2 (blue)).

b) Application 3 at ~20 seconds from startup
has 16 assigned nodes.

c) 38 assigned nodes after ~ 40 seconds.
d) Balance achieved ~ 1 minute after

startup.

(a) (b)

(c) (d)

Development of this distributed parallel processing framework has reduced the computational time required to solve complex three
dimensional geophysical problems at Sandia from months to hours. If 3D calculations are to remain practical and cost-effective
then they will only be so if multi-core and GPU hardware are used extensively in their solution. In the future we plan on exploring
the GPU as a resource for speeding up fine-grained (data) parallel problems.

Communication

Communication

Tasks
Queue

Class
Provider

Class
Provider

Class Server







Class
Loader

Execution
Service

Communication

Class
Loader

Execution
Service

Communication

  

Task
Interface

Client
Application

JPPF Driver
(Marshal Distributed
Tasks and Results)

JPPF Nodes
(Execute Distributed
Tasks)

Submit Tasks

Receive
Results

Execute
Sequential or
Concurrent Tasks
(multi-threaded)

Distributed
Tasks &
Results

Network

JPPF
Client

SAND2009-5843C

