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Summary

Full Wavefield Seismic Inversion (FWI) estimates a
subsurface elastic model by iteratively minimizing the
difference between observed and simulated data. This
process is extremely compute intensive, with a cost on the
order of at least hundreds of prestack reverse time
migrations. For time-domain and Krylov-based frequency-
domain FWI, the cost of FWI is proportional to the number
of inverted seismic source gathers. We have found that the
cost of FWI can be significantly reduced by applying it to
data processed by encoding and summing individual source
gathers, and by changing the encoding functions between
iterations. The encoding step forms a single gather from
many input source gathers. This gather represents data that
would have been acquired from a spatially distributed set of
sources operating simultaneously with different source
signatures. We demonstrate, using synthetic data,
significant cost reduction by applying FWI to encoded
simultaneous-source data.

Introduction

Due to the large number of model parameters estimated by
FWI, the only practical optimization techniques are
iterative gradient search methods (Nocedal et al., 2006). An
iteration of gradient search requires a few evaluations of
both the objective function and its gradient with respect to
the model parameters. A majority of the ongoing FWI
research is based on the work of Tarantola (1984), who
showed that the gradient can be computed using the adjoint
method for roughly the cost of 3V, simulations.

Most FWI methods, to date, are based on finite-difference
simulators. These simulations can be computed in either the
time domain or frequency domain. For time-domain FWI,
each source response must be simulated individually, and
therefore the cost for time-domain FWI is proportional to
the number of sources.

Frequency-domain FWI can potentially simulate all sources
for the cost of one expensive matrix inversion followed by
one inexpensive forward matrix multiply per source
location (Marfurt, 1984). While this computational
advantage can easily be realized in 2D, inversion of the 3D
frequency-domain matrix is much more difficult. Krylov
methods have been applied to 3D frequency domain
simulation (Riyanti et al.,2006; Erlanga et al., 2006), but
these methods must solve for each source individually, and

thus the cost of FWI is proportional to the number of
sources inverted.

Several authors have demonstrated methods for reducing
the compute cost of FWI. Particularly noteworthy is work
that demonstrates that frequency-domain FWI can yield
very good results by inverting only a few frequencies
(Sirgue et al., 2004). Other authors have suggested that
efficiency of time-domain FWI could be improved by
inverting coherent sums of sources (Berkhout, 1992), or by
inverting sums of widely spaced sources (Mora, 1987,
Capdeville et al., 2005).

Encoded source sums have also been used to speed up
seismic acquisition (Neelamani, 2008a), in wave-equation
migration (Romero et al., 2000), and in seismic simulation
(Neelamani, 2008b; Ikelle, 2007). All of these methods
suffer from cross-talk noise between the encoded sources,
which limits the number of sources that can be summed.
Popular encoding methods include phase reversal, phase
shifting, time shifting and convolution with random
sequences.

In this paper we demonstrate that the encoded summation
method can achieve large efficiency gains for FWI, if the
encoding of the sources is changed between iterations. In
our implementation, this change is made by altering the
random number seed used to generate the source encoding
functions between iterations. The compute time needed to
change coding is insignificant relative to the time needed
for evaluating the objective function and its gradient.
Changing the encoding between iterations changes the
cross-talk noise between iterations in a manner that is
incoherent from iteration to iteration. Thus, the cross-talk
noise essentially stacks out of the inverted earth model,
allowing summation of a large number of encoded sources.
We call this method encoded simultaneous-source FWI
(ESSFWI).

Theory

FWI attempts to minimize, with respect to subsurface
model parameters, an objective function that measures the
difference between measured and simulated data. We
consider the simplest form of the FWI objective function:
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where:

h = the objective function,

¢ = the subsurface property model (e.g., density, Css...),
s, = a source function,

u(c,s,) = the simulated wavefield,

d, = measured seismic data for source s,, and

N, = number of source gathers in the seismic survey.

For ESSFWI, we replace the objective function in Equation
(1) with the following:
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where the encoding functions e, are functions of time, and
® represents time-domain convolution. For simplicity, we
assume that all encoding functions e, have the same
number of time samples 7,. Note that in general e,#e,, for
n#m.

Note that Equation (2) is actually only appropriate if
receivers are fixed, and if all receivers record data from all
sources. While this is true of many types of land and ocean
bottom acquisition, it is not true of marine streamer
acquisition.

Equation (2) has the advantage that only one seismic
simulator run is needed to compute u, as opposed to the N;
simulator runs needed for the conventional FWI objective
function in Equation (1). On the other hand, the new
encoded source signatures have 7y + T, — I time samples.
Therefore, the simulator must run for 7, more time steps to
evaluate Equation (2) than are necessary in Equation (1).
The compute efficiency gain for evaluating Equation (2)
(Nevar) 1s then given by:

T

N

T’eval = N

s m . Equation (3)

Importantly, since objective function gradients are
computed using a few simulations, Equation (3) also gives
the compute efficiency for evaluating gradients.

The ESSFWI objective function can be evaluated very
efficiently. However, inversion using this objective
function is more efficient only if this efficiency gain in
objective function evaluation is not offset by a reduced
convergence rate relative to the FWI objective function.
We show in the following synthetic examples that the
convergence rate of ESSFWI is close to that of

conventional FWI, if the encoding functions are changed
between iterations.

A high-level flow chart for our implementation of ESSFWI
is shown in Figure 1. Note, the data and source signatures
are re-encoded between update direction iterations.
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Figure 1: Typical flow for gradient search ESSFWI.

Method

For simplicity, all examples are 2D constant-density
acoustic inversions of a modified version of the Marmousi
II (Martin, 2004) model (see Figure 2a), with constant
density and shear-wave velocity equal to zero. The model
was first sub-sampled from 3400x700 (horizontal x
vertical) cells at 5 m cell size to 850x175 cells at 20m cell
size. The top 400 m of the model was then stripped off,
corresponding to removal of most of the water layer. This
left a model with 850x155 cells. Finally, a variable near-
surface was added to the top 100 m of the model to
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simulate an earth that would require application of static
corrections. The near-surface perturbation was created by
smoothing a random model using a smoother with
dimensions 200m x 60m. The velocity perturbation range
of this model was -500 m/s to 0 m/s. These modifications
make the model more challenging for inversion, because
there are significant errors in the starting model, especially
near the sources and receivers.

All computations were performed using a 2D finite-
difference time-domain acoustic simulator. The simulator is
second order in time and 14™ order in space. Perfectly
matched layer (PML) boundary conditions (Marcinkovich
et al., 2003) were used at the sides and bottom of the
model. A free-surface boundary condition was used at the
top of the model so that our inversions use not just primary
reflections and interbed multiples, but also surface-related
multiples.

The data to be inverted in these examples were generated
using the same simulator that was used to perform the
inversion. A uniform fixed-spread geometry was simulated
having the following parameters:

Number of receivers = 850  Receiver interval = 20 m
Number of sources = 850 Source interval = 20 m
Receiver depth = 50 m Source depth =30 m
Source wavelet = 15 Hz Ricker wavelet

Trace length = 8 sec

Random noise with a uniform frequency spectrum was
added to the simulated measured data before encoding or
inversion. The noise level was chosen to mimic the S/N
spectrum (with respect to ambient noise) of an actual OBC
seismic survey from the Gulf of Mexico.

After adding random noise with a uniform spectrum to the
data the S/N below 5 Hz and above 30 Hz is very low. We
applied a Butterworth bandpass filter having both high and
low cuts of 5 Hz and high and low slopes of 36 dB/octave
to both the seismic data and to the source signatures. The 5
Hz low-cut frequency was chosen to reduce the weight of
very noisy low-frequency components in the inversion. The
5 Hz high-cut frequency was chosen to mitigate the cycle-
skipping problems in the inversion (Bunks et al., 1995);
therefore, these examples actually only represent the initial
phase of inversion, with later phases having increased
values of the high-cut frequency. The only other pre-
processing applied to the measured data was to mute the
ambient noise above the first arrival.

Although 850 shots were acquired, not all shots are used in
all the inversions, since these data are highly over-sampled
for the purposes of inverting the low frequencies that are
used in these examples. For conventional FWI, we found

that only 50 sources (340 m source interval) were necessary
for avoiding operator aliasing artifacts in the inverted
model. Using more sources for FWI increases the cost of
FWI while yielding no improvement in the inverted image.
On the other hand, we found that it is slightly advantageous
to use all sources for ESSFWI. Therefore, when comparing
FWI to ESSFWI, we use 50 sources for FWI and all 850
sources for ESSFWI so that both methods were run in the
most efficient manner possible.

The initial model (shown in Figure 2b) was created by
smoothing the true model (Figure 2a), without the near-
surface perturbation. The smoothing was performed in the
slowness domain in an attempt to preserve traveltimes. The
size of the smoothing operator increased from 0.5 km x 1.0
km (vertical x horizontal) at zero depth to 2.0 km x 4.0 km
at the bottom of the model. The size of the smoothing
operator was chosen to be the largest that would produce
good convergence given the S/N of the low frequencies in
the measured data.

The gradient of the objective function was computed using
the adjoint-state method (Tarantola, 1984). The search
direction was computed using the Hestenes-Stiefel
conjugate gradient algorithm (Nocedal et al., 2006). We
multiplied the search direction vector by the square root of
depth plus 100m to approximately account for spherical
divergence.

We used a line-search method to find an updated model.
The line search evaluated the objective function for five
models that were produced by adding uniformly scaled
versions of the search direction to the model from the
previous iteration. The velocities in these line search
models were clipped to be between 1,000 m/s and 5,000
m/s. We then selected the model that gave the lowest
objective function value as the current iteration’s updated
model. Finally, we adjusted the line-search scale such that
the picked model would have been in the center of the line
search. This updated scale was used to perform the line
search during the next iteration.

We tested several different encoding schemes, but found
that random phase encoding (Romero, 2000) provided the
best convergence rates. We normalized the random phase
codes so that they all had the same total power. We tested
several different lengths for the encoding function, and
found that a code having only one sample gave the most
efficient inversion. Note that using a normalized random
phase code having only one sample is equivalent to
randomly multiplying the shot gathers by either one or
minus one. We changed e,’s between iterations by simply
changing the seed of the uniform random number generator
used for generating the random phase code. Using short
codes with 7,=1 maximizes the T/(7T,+7,1) factor in
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Equation (3) to a value of one, yielding larger overall
efficiency gains.

Since ESSFWI involves random encoding, the inverted
result can depend on the encoding functions chosen during
an inversion run. In particular, since we generate our
encoding functions using a random number generator, the
inversion result can depend on the seed provided to the
random number generator. We found that, when ESSFWI
converges, there are only very subtle differences between
inversions from different random number generator seeds.

Example

In this example we demonstrate ESSFWI’s computational
efficiency. FWI and ESSFWI were performed using the
measured data and starting model discussed above. The
only difference between these tests is whether the encoded
simultaneous-source method was employed. The ESSFWI
inversion was performed with a code length of one.

Comparing Figure 2¢ (FWI inverted model for iteration
300) with Figure 2d (ESSFWI inverted model for iteration
300) shows that ESSFWI yields an inverted image that is
very close to that produced by FWI. Both images are close
to the true model (Figure 2a), except that these inverted
images do not resolve the smallest scale features of the true
model due to the limited bandwidth of the measured data.
Both inversions are considerably less accurate below 2.5
km. Some of this inaccuracy can be explained by poor
illumination of the steep dips in this region. However, the
inaccuracy of the inversion near the center of the model is
more likely caused by inaccuracy of the starting model.
Note that the ESSFWI inversion was computed with one-
fiftieth the compute effort of the FWI inversion.

The main difference between the conventional FWI and
ESSFWI images is the presence of some low-amplitude and
short-wavelength noise in the ESSFWI images. This noise
is caused by cross talk between the encoded sources and is
much stronger in early iterations.

Conclusions

We have demonstrated, using 2D acoustic synthetic-data
inversions, a factor of fifty increase in efficiency of full-
wavefield inversion by using ESSFWI. Our testing
indicates that both encoding the sources and changing the
code between iterations are very important not only for
increasing efficiency, but also for achieving a satisfactory
inversion from ESSFWI.

Distn ce [ k)]
5 10 15

700
400

1 Ho
-400
-300

dw [mfs)

(a) Depth [I(m]
Distan ce [ km]

0 5 10 15

(b) Depth [km)

Distan ce [ km)
1

-
(d) Depth [km)
Figure 2: Comparison of FWI and ESSFWI. The true
model (a), was smoothed to make the starting model (b).
Conventional FWI resulted in (c¢) and ESSFWI is shown in
(d). Result (d) was obtained with 50x less computational
effort than the conventional result (c). The color scale is
velocity relative to a very smooth background model.




