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Summary

Full Wavefield Seismic Inversion (FWI) estimates a 
subsurface elastic model by iteratively minimizing the 
difference between observed and simulated data. This 
process is extremely compute intensive, with a cost on the 
order of at least hundreds of prestack reverse time 
migrations. For time-domain and Krylov-based frequency-
domain FWI, the cost of FWI is proportional to the number 
of inverted seismic source gathers. We have found that the 
cost of FWI can be significantly reduced by applying it to 
data processed by encoding and summing individual source 
gathers, and by changing the encoding functions between 
iterations. The encoding step forms a single gather from 
many input source gathers. This gather represents data that 
would have been acquired from a spatially distributed set of 
sources operating simultaneously with different source 
signatures. We demonstrate, using synthetic data,
significant cost reduction by applying FWI to encoded 
simultaneous-source data.

Introduction

Due to the large number of model parameters estimated by 
FWI, the only practical optimization techniques are 
iterative gradient search methods (Nocedal et al., 2006). An 
iteration of gradient search requires a few evaluations of 
both the objective function and its gradient with respect to 
the model parameters. A majority of the ongoing FWI 
research is based on the work of Tarantola (1984), who 
showed that the gradient can be computed using the adjoint 
method for roughly the cost of 3Ns simulations. 

Most FWI methods, to date, are based on finite-difference 
simulators. These simulations can be computed in either the 
time domain or frequency domain. For time-domain FWI, 
each source response must be simulated individually, and 
therefore the cost for time-domain FWI is proportional to 
the number of sources. 

Frequency-domain FWI can potentially simulate all sources 
for the cost of one expensive matrix inversion followed by 
one inexpensive forward matrix multiply per source 
location (Marfurt, 1984). While this computational 
advantage can easily be realized in 2D, inversion of the 3D 
frequency-domain matrix is much more difficult. Krylov 
methods have been applied to 3D frequency domain 
simulation (Riyanti et al.,2006; Erlanga et al., 2006), but 
these methods must solve for each source individually, and 

thus the cost of FWI is proportional to the number of 
sources inverted.

Several authors have demonstrated methods for reducing 
the compute cost of FWI. Particularly noteworthy is work 
that demonstrates that frequency-domain FWI can yield 
very good results by inverting only a few frequencies 
(Sirgue et al., 2004). Other authors have suggested that 
efficiency of time-domain FWI could be improved by 
inverting coherent sums of sources (Berkhout, 1992), or by 
inverting sums of widely spaced sources (Mora, 1987; 
Capdeville et al., 2005). 

Encoded source sums have also been used to speed up 
seismic acquisition (Neelamani, 2008a), in wave-equation 
migration (Romero et al., 2000), and in seismic simulation 
(Neelamani, 2008b; Ikelle, 2007). All of these methods 
suffer from cross-talk noise between the encoded sources, 
which limits the number of sources that can be summed. 
Popular encoding methods include phase reversal, phase 
shifting, time shifting and convolution with random 
sequences. 

In this paper we demonstrate that the encoded summation 
method can achieve large efficiency gains for FWI, if the 
encoding of the sources is changed between iterations. In 
our implementation, this change is made by altering the 
random number seed used to generate the source encoding 
functions between iterations. The compute time needed to 
change coding is insignificant relative to the time needed 
for evaluating the objective function and its gradient. 
Changing the encoding between iterations changes the 
cross-talk noise between iterations in a manner that is 
incoherent from iteration to iteration. Thus, the cross-talk 
noise essentially stacks out of the inverted earth model, 
allowing summation of a large number of encoded sources. 
We call this method encoded simultaneous-source FWI 
(ESSFWI). 

Theory

FWI attempts to minimize, with respect to subsurface 
model parameters, an objective function that measures the 
difference between measured and simulated data. We
consider the simplest form of the FWI objective function:
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where:

h = the objective function,
c = the subsurface property model (e.g., density, C33…),
sn = a source function,
u(c,sn) = the simulated wavefield,
dn = measured seismic data for source sn, and
Ns = number of source gathers in the seismic survey.

For ESSFWI, we replace the objective function in Equation 
(1) with the following:
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where the encoding functions en are functions of time, and 
 represents time-domain convolution. For simplicity, we 
assume that all encoding functions en have the same 
number of time samples Tc. Note that in general enem for
nm.

Note that Equation (2) is actually only appropriate if 
receivers are fixed, and if all receivers record data from all 
sources. While this is true of many types of land and ocean 
bottom acquisition, it is not true of marine streamer 
acquisition. 

Equation (2) has the advantage that only one seismic 
simulator run is needed to compute u, as opposed to the Ns

simulator runs needed for the conventional FWI objective 
function in Equation (1). On the other hand, the new 
encoded source signatures have Ts + Tc – 1 time samples. 
Therefore, the simulator must run for Tc more time steps to 
evaluate Equation (2) than are necessary in Equation (1). 
The compute efficiency gain for evaluating Equation (2)
(eval) is then given by:
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Importantly, since objective function gradients are 
computed using a few simulations, Equation (3) also gives 
the compute efficiency for evaluating gradients.

The ESSFWI objective function can be evaluated very 
efficiently. However, inversion using this objective 
function is more efficient only if this efficiency gain in 
objective function evaluation is not offset by a reduced 
convergence rate relative to the FWI objective function. 
We show in the following synthetic examples that the 
convergence rate of ESSFWI is close to that of 

conventional FWI, if the encoding functions are changed 
between iterations. 

A high-level flow chart for our implementation of ESSFWI 
is shown in Figure 1. Note, the data and source signatures 
are re-encoded between update direction iterations.

Method

For simplicity, all examples are 2D constant-density 
acoustic inversions of a modified version of the Marmousi 
II (Martin, 2004) model (see Figure 2a), with constant 
density and shear-wave velocity equal to zero. The model 
was first sub-sampled from 3400x700 (horizontal x 
vertical) cells at 5 m cell size to 850x175 cells at 20m cell 
size. The top 400 m of the model was then stripped off, 
corresponding to removal of most of the water layer. This 
left a model with 850x155 cells. Finally, a variable near-
surface was added to the top 100 m of the model to 

Figure 1:  Typical flow for gradient search ESSFWI.
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simulate an earth that would require application of static 
corrections. The near-surface perturbation was created by 
smoothing a random model using a smoother with 
dimensions 200m x 60m. The velocity perturbation range 
of this model was -500 m/s to 0 m/s. These modifications 
make the model more challenging for inversion, because 
there are significant errors in the starting model, especially 
near the sources and receivers.

All computations were performed using a 2D finite-
difference time-domain acoustic simulator. The simulator is 
second order in time and 14th order in space. Perfectly 
matched layer (PML) boundary conditions (Marcinkovich 
et al., 2003) were used at the sides and bottom of the 
model. A free-surface boundary condition was used at the 
top of the model so that our inversions use not just primary 
reflections and interbed multiples, but also surface-related 
multiples. 

The data to be inverted in these examples were generated 
using the same simulator that was used to perform the 
inversion. A uniform fixed-spread geometry was simulated 
having the following parameters:

Number of receivers = 850 Receiver interval = 20 m
Number of sources = 850 Source interval = 20 m 
Receiver depth = 50 m Source depth = 30 m
Source wavelet = 15 Hz Ricker wavelet 
Trace length = 8 sec

Random noise with a uniform frequency spectrum was 
added to the simulated measured data before encoding or 
inversion. The noise level was chosen to mimic the S/N 
spectrum (with respect to ambient noise) of an actual OBC 
seismic survey from the Gulf of Mexico.

After adding random noise with a uniform spectrum to the 
data the S/N below 5 Hz and above 30 Hz is very low. We 
applied a Butterworth bandpass filter having both high and 
low cuts of 5 Hz and high and low slopes of 36 dB/octave 
to both the seismic data and to the source signatures. The 5 
Hz low-cut frequency was chosen to reduce the weight of 
very noisy low-frequency components in the inversion. The 
5 Hz high-cut frequency was chosen to mitigate the cycle-
skipping problems in the inversion (Bunks et al., 1995); 
therefore, these examples actually only represent the initial 
phase of inversion, with later phases having increased 
values of the high-cut frequency. The only other pre-
processing applied to the measured data was to mute the 
ambient noise above the first arrival. 

Although 850 shots were acquired, not all shots are used in 
all the inversions, since these data are highly over-sampled 
for the purposes of inverting the low frequencies that are
used in these examples. For conventional FWI, we found 

that only 50 sources (340 m source interval) were necessary 
for avoiding operator aliasing artifacts in the inverted 
model. Using more sources for FWI increases the cost of 
FWI while yielding no improvement in the inverted image. 
On the other hand, we found that it is slightly advantageous 
to use all sources for ESSFWI. Therefore, when comparing 
FWI to ESSFWI, we use 50 sources for FWI and all 850 
sources for ESSFWI so that both methods were run in the 
most efficient manner possible.

The initial model (shown in Figure 2b) was created by 
smoothing the true model (Figure 2a), without the near-
surface perturbation. The smoothing was performed in the 
slowness domain in an attempt to preserve traveltimes. The
size of the smoothing operator increased from 0.5 km x 1.0 
km (vertical x horizontal) at zero depth to 2.0 km x 4.0 km 
at the bottom of the model. The size of the smoothing 
operator was chosen to be the largest that would produce 
good convergence given the S/N of the low frequencies in 
the measured data.

The gradient of the objective function was computed using 
the adjoint-state method (Tarantola, 1984). The search 
direction was computed using the Hestenes-Stiefel 
conjugate gradient algorithm (Nocedal et al., 2006). We
multiplied the search direction vector by the square root of 
depth plus 100m to approximately account for spherical 
divergence.

We used a line-search method to find an updated model. 
The line search evaluated the objective function for five
models that were produced by adding uniformly scaled 
versions of the search direction to the model from the 
previous iteration. The velocities in these line search 
models were clipped to be between 1,000 m/s and 5,000 
m/s. We then selected the model that gave the lowest 
objective function value as the current iteration’s updated 
model. Finally, we adjusted the line-search scale such that 
the picked model would have been in the center of the line 
search. This updated scale was used to perform the line 
search during the next iteration. 

We tested several different encoding schemes, but found 
that random phase encoding (Romero, 2000) provided the 
best convergence rates. We normalized the random phase 
codes so that they all had the same total power. We tested 
several different lengths for the encoding function, and 
found that a code having only one sample gave the most 
efficient inversion. Note that using a normalized random 
phase code having only one sample is equivalent to 
randomly multiplying the shot gathers by either one or 
minus one. We changed en’s between iterations by simply 
changing the seed of the uniform random number generator 
used for generating the random phase code. Using short 
codes with Tc=1 maximizes the Ts/(Ts+Tc-1) factor in 
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Equation (3) to a value of one, yielding larger overall 
efficiency gains.

Since ESSFWI involves random encoding, the inverted 
result can depend on the encoding functions chosen during 
an inversion run. In particular, since we generate our 
encoding functions using a random number generator, the 
inversion result can depend on the seed provided to the 
random number generator. We found that, when ESSFWI 
converges, there are only very subtle differences between 
inversions from different random number generator seeds.

Example

In this example we demonstrate ESSFWI’s computational 
efficiency. FWI and ESSFWI were performed using the 
measured data and starting model discussed above. The 
only difference between these tests is whether the encoded 
simultaneous-source method was employed. The ESSFWI 
inversion was performed with a code length of one.

Comparing Figure 2c (FWI inverted model for iteration 
300) with Figure 2d (ESSFWI inverted model for iteration 
300) shows that ESSFWI yields an inverted image that is 
very close to that produced by FWI. Both images are close 
to the true model (Figure 2a), except that these inverted 
images do not resolve the smallest scale features of the true 
model due to the limited bandwidth of the measured data. 
Both inversions are considerably less accurate below 2.5 
km. Some of this inaccuracy can be explained by poor 
illumination of the steep dips in this region. However, the 
inaccuracy of the inversion near the center of the model is 
more likely caused by inaccuracy of the starting model. 
Note that the ESSFWI inversion was computed with one-
fiftieth the compute effort of the FWI inversion.

The main difference between the conventional FWI and 
ESSFWI images is the presence of some low-amplitude and 
short-wavelength noise in the ESSFWI images. This noise 
is caused by cross talk between the encoded sources and is 
much stronger in early iterations.

Conclusions

We have demonstrated, using 2D acoustic synthetic-data 
inversions, a factor of fifty increase in efficiency of full-
wavefield inversion by using ESSFWI. Our testing 
indicates that both encoding the sources and changing the 
code between iterations are very important not only for 
increasing efficiency, but also for achieving a satisfactory 
inversion from ESSFWI. 

(a)     

(b)     
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Figure 2:  Comparison of FWI and ESSFWI. The true 
model (a), was smoothed to make the starting model (b). 
Conventional FWI resulted in (c) and ESSFWI is shown in 
(d). Result (d) was obtained with 50x less computational 
effort than the conventional result (c). The color scale is 
velocity relative to a very smooth background model.


