
Sandia Advanced Personnel Locator Engine

A new way to search for Sandia people
and organizations

November 19, 2009

Mike Procopio, Ph.D. mjproco@sandia.gov
Cara W. Corey cwcorey@sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Sandia Unclassified Unlimited Release SAND #: 2009-7698C

SAND2009-7698C

annchav
Sticky Note

• Top-down directives, support, and funding to
improve the way we organize and retrieve
information at Sandia
– Support at the CIO office level

• Modernization of search capabilities
– General intranet search
– Directory search
– Related: Directory “Landing” page, etc.

• Leverage modern methods
– Computer science, algorithms focus

Significant Initiative
to Improve Search at Sandia

In Active Deployment

• SAPLE represents an
early success with search
infrastructure
modernization

• 10,000 search
queries daily

Tabular View

Standard View

Operational Goals

• Foundational premise: Improve the efficiency and accuracy in
personnel search
– Faster searches – find the right person the first time

• Reduce time it takes to find someone
– Recall results that were not available before

• Find people that couldn’t be found before
– Expose advanced search functionality more easily

• Natural language combination searches, like “v* building
758 oaa”

– More holistic and integrative search experience
• Integrate maps, user profile page, department homepage

– Improve overall user experience

SAPLE Uses Modern Search Architecture

Personnel Database TablesPersonnel Database Tables

Traditional: Queries Direct to DB SAPLE: Queries Against an Index

Search Index Held in Server MemorySearch Index Held in Server Memory

Personnel Database TablesPersonnel Database Tables

Artificial Intelligence and
Search Algorithms

Artificial Intelligence and
Search Algorithms

Three SAPLE Cornerstones

1. Inexact (approximate) string matching
2. Intelligent, compound query interpretation
3. Support of search analytics to improve results

over time

Examples of inexact string matching are
becoming increasingly common

Google: “Bernalilo country metr cort” Facebook: “Sharron Procopia”

Better User Experience with One Query

Traditional: User must choose where
to put query

SAPLE: Query is automatically
interpreted

Search Analytics

• Premise of Search Analytics
– Improve search quality over time by mining rich archive data logs of query

history
• Analyzing log data shows us:

– Usage trends
• Number of queries daily, peak search load times, etc.

– Where people are searching
• Techweb home page, re-searching in SAPLE header/footer, external

application hooks, SAPLE home page, etc.
– What people are searching for

• Last name only queries, wildcarded queries, org roster listings, compound
queries, user IDs, manager lookups, etc.

• Can take name-based queries and identify percentage that would have
previously failed due to misspellings

– How well SAPLE is performing computationally
• Average search response time

– How well SAPLE is performing algorithmically
• Percentage of the time people found who they looked for on the first query

Challenges with Deploying a
New Way to Search

• People are resistant to change…
– How do we improve search and other IT

infrastructure offerings without disrupting flow of
business activities?

• CIO supports this:
– We must continue to evolve our offerings and

progress our capabilities … but change is
uncomfortable. We must be cautious not to let
vocal minority impede progress.

– Tendency is do not improve capabilities for fear of
vocal minority

• Quantifiable search improvement can help make
the case

Making the Case for Change

• Existing code base and capabilities will not be
sustainable forever
– Legacy code, languages, paradigms, interfaces,

dependencies…

• Assumptions and dependencies of code will
change
– Changes in underlying personnel database

structure; e.g., imminent retirement of legacy SNL
Directory application

Lessons Learned

• (If at all possible) don’t rush to deployment – ensure that the tool
is thoroughly tested first
– While a supportive user base can tolerate advances in

functionality with minor glitches in the early stages, don’t
assume your users have endless sources of patience and
good will

• Be prepared for things to appear to be wrong – SAPLE exposed
underlying issues with the data (strange nicknames, compound
first names, data formatting)

• Edge cases can and will come up
– Searching for “Joe Nevada” shouldn’t return “Nevada Test

Site”
– Fast, agile software development with frequent minor updates
– Quick turnaround time to fix bugs
– Become comfortable with incremental, minor redeployments

More Lessons Learned

• It’s not easy for users to change their old habits
– Most searches are still in the “lastname, firstname” format

• Exploring the limits of the corporate computing
infrastructure
– SAPLE is a relatively high-volume application: 10,000

queries daily
– Each query associated with server-side algorithmic

computation (e.g., string matching algorithms), which can be
burdensome for a server

– Applications have many points of failure
• Database, Kerberos authentication, network hardware,
• And the WebLogic production server itself with 70+ other shared

applications

Still More Lessons Learned

• Increased demands on developer skill set, and it’s not a
simple process to transfer application support from one
developer set to another:
– Simple web-app front end that crafts SQL query from discrete

textbox fields, executes query, returns results in tabular form
– C, Perl

vs.
– String matching algorithms, regular expression matching for

query interpretation, advanced data structures, multi-
threading, algorithm optimization, logging and analytics,
advanced user interface with rich client interactions

– Java, Java Enterprise, Servlets, XML, algorithms, database
design, stored procedures, optimization

– Some advanced computer science concepts

