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Remember these? h) e,

Knowing structure is POWER because it correlates with function




What is a Metal-Organic Framework? ) S

Crystalline (therefore ordered), self-assembled, nanoporous structure

Organic

Metal “linker”
“Node”

Zn*2(NO,),




Record surface areas ) S
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1 football field = 5350 m? rh)




MOFs are self-assembled, nanoporous materials ) s
with tunable pore size and properties




Guest molecule + MOF - ordered, tunable -
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Device applications: the new frontier for MOFs

= Optical &
= Luminescent
= Non-linear optical

= Electronic and magnetic

Intensity (a.u.)

2 nMOF Supercapacitor

= Dielectric
- Elecicalycondoeing LT R e
= |on conducting e '
" Ferroelectric Solid-state lighting
= Ferromagnetic D.F. Sava et al. JACS 2012, 134, 3983
= Antiferromagnetic o
= Spin crossover e
= |on conducting A h
= Mechanical flexibility AIIe?:jr:Jsr?restal.
% - JACS 2008, 130, 14404
Photovoltaics i o a
D.Y. Lee et al. B

Batteries and Fuel Cells
G. Shimizu et al. Chem. Soc. Rev. 2014,43, 5913

J. Phys. Chem. C 118, 16328




Our work
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Thin films

Energy transfer/photovoltaics
Radiation detection

Chemical sensing

Electrically conducting MOFs

Nanoreactors/catalysis
Hydrogen storage

— Today’s presentation

S—

Other areas of

Nanoparticle and nanowire templates research

—
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Disorder is the enemy of efficiency ) e

Bulk heterojunction

Donor
Acceptor

m\\m// NIIE=

C. Deibel et al. IEEE Journal Of Selected Topics In Quantum Electronics,
Vol. 16, No. 6, November/December 2010




Infiltrating MOF-177 pores with thiophenes and ) e
PCBM proceeds without an energy barrier
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MOF-guest spectral overlap = Fluorescence A i,
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Resonant Energy Transfer (FRET)
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Efficient energy transfer via “FRET cascade” is feasible
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The MOF has three functions:

= Confines/stabilizes donor and acceptor
=  Prevents phase segregation

=  Serve as a photon antenna

K. Leong et al. J. Mater. Chem. A, 2 (2014), 3389




New Donor-Acceptor IRMOF-74 linkers for improved rh)
solar coverage

Electron deficient: benzo[c][1,2,5]thiadiazole (BT)
Electron rich: thieno[3,2-b]thiophene (TT)
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Basics of radiation detection using organic scintillators

Typical luminescent MOF linkers
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Guest molecules in MOFs create new approach to radiation@ Sande.

detection
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triplets decay by non-radiative processes

I
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Fluorescence —I—\f-’— ; i
RN

MLCT luminescence
(strong, ps lifetime)

=

lonization creates singlet and triplet excitons, but typically most

~300% increase in
light yield
theoretically
possible




Triplet harvesting heavy-metal complexes are well ;) s,

known in OLED technology
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Extrinsic (Triplet) luminescence: Ir organometallic s,
Laboratories
guest molecules
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Radiation detection by spectral shape discrimination:

IRMOF-10 doped with Ir(quin), Lk
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Layer-by-layer MOF film growth: liquid-phase epitaxy(m) &,

HKUST-1

Automated MOF film growth with QCM capability




Layer-by-layer deposition: self-limiting growth with

controllable orientation
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Inkjet deposition of conducing MOF
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Practical TEs require thick, n- and p-elements
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Sensing platforms for detection by mass uptake

WD14 .6mm 20.0kV x200 200um

Quartz crystal microbalance
(QCM) (~1 ng/cm? sensitivity)

Piezoelectric

0 0
%)’QYPO Output IDT
7'y
Surface accoustic wave (SAW) sensors bstrat
(~ 0.1 ng/cm? sensitivity) supstrate Surface Acoustic Wave

Microcantilevers (fg sensitivity)

~1cm
+—

\\'\, M O F Input IDT
™~

Recognition chemistries are required to enhance sensitivity and impart
selectivity to the device




MOF-coated MEMS devices can compete with
state-of-the-art sensors

SAW sensor coated with HKUST-1 (Cu,;(BTC),)
Sensor response > 4 orders of magnitude in H,0 concentration
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Response to acetone: ZIF-8 vs. HKUST-1

HKUST-1 (~100 nm film on SiO,) ZIF-8 (450 nm film on SiO,)
Response to acetone pulse Response to humidity
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* Fast response to H,O
* H,OLOD:<1ppm
* Noresponse to N,, CH,, CO,

* Acetone LOD: ~ 30 ppm
* No response to water vapor (above)
* Noresponse to N,, CH,, CO,




MOFs as electronic materials combine features of S

inorganic and organic conductors

LUf-
Crystalline inorganic semiconductor
High mobility
Stability
High cost
Non-flexible

Radiation damage

Disordered organic +
semiconductor

Flexible

Tunable w/ chemistry
Low cost fabrication
Poor mobility
Instability

Low free carrier densities

MOF semiconductor

Crystalline MOF semiconductor
» Structurally flexible

* Tunable w/ chemistry

* Scalable to nanometers

* Low cost fabrication

* Reconfigurable electronics
 Rad-hard

* Novel electronic material




Most MOFs are Insulators, Lack Delocalized p- e,
Network
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Zn*2(NO,), + Z»_@__«Z (a) * Q@

5a" o8 M. D. Allendorf, A. Schwartzberg, V. Stavila, A. A. Talin,
""" Chemistry — A European Journal 17, 11372 (2011).
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C. H. Hendon, D. Tiana, A. Walsh, Phys.
~! Chem. Chem. Phys., 2012, 14, 13120 26




Can a ‘guest’ provide coupling between SBUs to ) s,
create a conduction path?
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* Open metal sites

RG qu1I’€m€IltS . * Delocalized m-electrons

* Strong ligand-metal coupling
27




Guest@MOF: Emergent properties by infiltrating =1
with guest molecules? o

(222)
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TCNQ-> Cu,(BTC), leads to color change... ) e,

MOF film grown by layer-by- MOF film on SiO, with Pt
layer method _’ electrodes

<z

MOF growth

<

!

MOF film + TCNQ

Molecule infiltration

>4
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... and >107 increase in conductivity, air stable > 1 year ) fetoral
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What is the mechanism?




Proposed conductivity mechanism: Cu,(btc), paddlewheels ) e
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Percolation model

Continuous TCNQ@CuBTC pathway is achievable with 4 TCNQs
Experimental loading = 8 TCNQs/unit cell 2 two continuous pathways are possible




S, O increase with temperature
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K. J. Erickson, F. Léonard, V. Stavila, M. E. Foster, C. D. Spataru, R. E. Jones, B. M.
Foley, P. E. Hopkins, M. D. Allendorf, and A. A. Talin, Advanced Materials, accepted
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Thermal conductivity measured by Time Domain =
ThermoReflectance (TDTR) (P. Hopkins group)

Hopkins ef al., J. Heat Trans. 132, 081302 (2010)
Cahill, Rev. Sci. Instr. 75, 5119 (2004)

| Probe Schmidt ef al., Rev. Sci. Instr. 74, 114902 (2008)
_ 10 r r r
nl SP Tsunami TDTR data. 117 nm AUSi
I 3.0 W, 80 MHz ot
M4 90 fs pulse width [N
Delay line (*7 ns) = 4l
'\ Thermal model

Camerato A\ \ £ 6}
image r{ E.O. Modulator ¥ E Sl
sample ” Bﬁo Pump E al
|J V E 3 o
Blue Red 2t
filter filter 1}

N\ 0% : " " : ;

| N\ 0 1 2 3 4 5

Photodiode Dichroic Pump-probe time delay (ns)

*Can measure thermal conductivity of thin
films and substrates (x) separately from
thermal boundary conductance (/1)

*Nanometer spatial resolution (~10’s of nm)

*Femtosecond to nanosecond temporal
resolution

*Noncontact

33




Large Seebeck, low x, but o still too low... ) Moo
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G. H. Kim, L. Shao, K. Zhang, K
P. Pipe. Nat. Mater. 2013, 12,719
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Four basic roles for MOFs in devices ) fet

= Adsorbant: provide sensitivity and selectivity (sensing)
= Electronic: passive (low-k dielectric)
= Electronic: active (sensing; thermoelectrics; logic)

= Light absorbing/emitting: energy harvesting, radiation
detection

= Template or scaffold: ordered structures for improving
exciton harvesting
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