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Solid-State White Lighting Approaches

Approaches: Phosphor-converted

Multi-chip ( all LED)
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Advantages/limitations:

» Requires high performance LED only
in blue region

e Simpler operation ,

LED
* Inherent losses W PHOSPHORS
(pump absorption, 2 | | Energy AY\Y\%e
phosphor efficiency z | | Pehet
Stokes’ loss) Heat W

e Requires high performance green
and red phosphors (suitable for blue pump)

 Direct light emission from LEDs
- highest efficiencies

e Greater automation and color
control possibilities (“smart lighting”)

e Requires high performance from
LEDs across the spectrum

* More complex operation (drive
circuitry, disparate LED degradation)
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Phosphor-converted Warm White LED Power Flow

Lamp Efficiency ~ 11%
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Future White Lighting Performance

All LEDs
2.2X h

Phosp+Pkg1t
1.7x

L Blue LED?
2.7x

Incandescent
Total

O ) ) ()
Efficiency 3.9% 46% 61% 100%

1
}
1
1
1
1
1
}
1
1
1
1
Efficiencies R.G,B ! <
Driver 0O, 90% : e
Blue Pump Og 27% Ly o0
Phosph+Pkg 0O, 520% | L
Spectral g 79% : I : s
: : : 548 614
1 ' I
: | 48 [l 614 |
I I ! 456
! 615 ' 456 |
Power 440 538 615 ! j‘}\?ﬁsf"_\ : :
Spectra T | v | ) |

400 550 700 nm 400 550 700 nm 400 550 700 nm

More efficient More efficient RGB

Luxeon Rebel
Blue

phosphor,
700mA (01/09) Improved spectrum

No Phosphor Loss

Sandia
National
5 J.Y. Tsao, Sandia Laboratories



External Quantum Efficiency

/\

RGB LED performance limitations

Efficiency vs. Wavelength
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Materials Challenges of InGaN LEDs

The green-yellow efficiency loss is inextricably linked with the evolution of
InGaN materials properties with increasing indium composition of the alloy

InGaN

' Major materials issues related to high indium alloys:
A

e Thermal instability—=> require lower growth temperatures

p-GaN

QWs = —> potential for increased impurities,defects, 3D growth

n-GaN - compositional instabilities
= h - enhanced defect formation
appnire - piezoelectric polarization can

 Lattice-mismatch strain when grown on GaN epilayers
—> reduced indium incorporation efficiency

Impurities and point defects 3D growth modes Compositional instabilities “V- defects”

Spatial map of
InGaN QW
composition

Growth
direction

Wright et al., JAP 2002 Oliver et al., JAP 2005 Gerthsen, et al., Phys. Stat. Sol. A (2000) Scholz et al. Mat Sci & Eng B (1997)
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Polarization effects in InGaN LEDs

Hexagonal (Wurzite) GaN crystal structure

/" 10001] Ga Face Gallium "\

\[0001] N Face

Polarization
Vector

Nitrogen /

e Dominated by piezoelectric (strain-driven)
polarization for InGaN QWs on GaN

e Internal E-fields cause reduced electron-hole

overlap - reduced radiative efficiency

o E-fields shift emission to longer wavelengths;

Effect on InGaN quantum well

-~

- blue-shifts with current

» Significant band-bending creates barriers to
carrier flow and/or reduced carrier confinement

Role in the “green-yellow gap”?

GaN oQw GaN
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Non-polar
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Polar \

Lower energy
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Reduced wavefunction
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Full LED structure
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Piezoelectric polarization (C/m’)

Non-polar and Semi-polar Nitrides

Piezoelectric polarization vs.

crystal orientation
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Challenges and recent advances:

» Poor material quality: high stacking fault densities
in non-polar (e.g., a-plane GaN on r-plane sapphire)

cplane (0001)

—->Breakthrough:
high quality HVPE
c-plane GaN substrates;
Sectioned into alternative
orientations

* Indium_incorporation: higher compositions
needed than for c-plane (no red-shift); evidence
of 2-3X lower incorporation on non-polar planes

- Semipolar: (11-22), indium incorporation
efficiency may be similar to c-plane
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Non-Polar/Semi-polar LEDs and the Green-Yellow Gap

Highlights of nonpolar/semipolar LEDs:

* Near-UV (402 nm) m-plane LED EQE~45% (comparable
to c-plane); blue (468 nm) EQE ~16.8%@ 20 mA

* Yellow (563 nm) Semipolar (11-22) LED; 5.9mW@ 20 mA
-> reportedly most efficient LED at this A (EQE~13%)

m-plane (non-polar) LED output vs. A

Kim et al., PSS RRL, 2007 (UCSB)

Sato et al., Appl. Phys. Lett, 2008 (UCSB)
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Figure: Yamada et al., Appl. Phys. Express, 2008
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» Study of m-plane LEDs as a function
of emission wavelength

» Similar to c-plane LEDs, peak efficiency
in near-UV / Violet; dropping at longer A

Efficiency loss toward green seen even
in the absence of polarization
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Additional Strain Effects in InGaN LEDs

—> Strain limits indium incorporation, important for longer wavelengths

Gas-phase compaosition

~100-nm-thick
0.34 0.51 0.60
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©
= 03+} \ |
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£ i i
 cend
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u:' 0.1} Coherently | InGaN
= Strained
- T, = 760°C | GaN
00 1 1
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TMIn flow rate , umoles/min.

e Elimination of strain enables higher indium
incorporation at a given growth condition

e Reduced strain may help to avoid lower growth
temperatures and related detrimental
effects (impurity/defect incorporation, 3D

growth modes)

S. R. Lee and D. D. Koleske, Sandia

11

TEM of partially-relaxed
InGaN

InGatl GUZren thack

- unsuitable for devices

To enable long wavelength InGaN QW LEDs
with reduced strain:

Possible to develop a strain-relaxed
InGaN substrate with high crystalline
guality and a smooth surface?

Related observations: Z. Liliental-Weber, et al., J. Electron. Mat. 30 (2001) 439. Sandia
S. Pereira, et al., APL 80 (2002) 3913,; Shimizu, et al., JJAP 36 (1997) 3381.
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Grooved: 1  }

GaN
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Emerging InGaN Template/Substrate Solutions

Strain-relaxed InGaN-on-GaN

InGaN overgrowth on Grooved GaN\ ﬁaN growth on ZnO substr@

o . ’

& & &

grooves in low defect
GaN epi-layer

substrate

Starting template
m-plane GaN with grooves

etched along <0001>

- strain-relaxed 7 um thick Ingo7,Gag 93N
- < 1x108 cm2 threading dislocation density

- Growth on m-plane key to planar InGaN
m-plane

InGaN c-plane a-plane

.......

Alternative Approaches

e Lattice match for Ing5GaggoN

 Challenge: ZnO requires lower growth
temperatures (< 650°C); leads to
inferior InGaN crystalline quality

» Progress: Non-polar ZnO, pulsed
laser deposition

InGaN HVPE Substrates and LEDs

* High growth rate, low cost technique;
yields high quality GaN templates

» InGaN significantly more challenging

« On-going development by TDI, Inc.

\i\lext presentation (A. Syrkin) /

Sandia
National

Figures: Meijo University, Ilwaya et al., J Crystal Growth, 2008; Senda et al., Japan. J. Appl. Phys, 2007 @ Laboratories



Nanostructured InGaN Materials

GaN nanowires No threading defects Strain Accomodation Broad range of emission A
(nanorods) Photoluminescence

- ‘5011111

InGaN
CEEC
- <
GaN
«Self-assembly or directed-

assembly approaches (0001) AL,O; substrate

Kishino et al., Proc. SPIE 2007 400 500 600 700 800
Wavelength (nm)

e Compatible with a wide range of substrates ( including Si)
- lower cost, integration possibilities

980nm

Intensity (a.u.)

Li et al., Appl. Phys. Lett. (2008)

« highly aligned “ 1D” structures

» Can be g_rown Wlt_h n_o th regd_lng defects Growth by Halide Chemical Vapor Deposition
2 hlgher radiative efﬂCIenCy Kuykendall et al., Nat Mat. 2007
 Lateral structure allows strain accommodation Potential for solvin
- greater indium composition/color range possible * red problem a|sof)g

» 1D geometry may provide light extraction benefits
—> higher external quantum efficiency @ ﬁgﬂgﬁm
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Nanostructured InGaN LEDs

Axial LED Geometries Radial (Core-Shell) LED Geometries
Self-assembled Nanorods, p- GaN Planarization n-GaN/InGaN/p-GaN core/shell Nanowires
Kishino et al., Proc. SPIE 2007 Qian et al., Nat Mat. 2005
Light SEN e P-GaN 3 A
p-transparent contact A \ ;:1‘80'
@ 500um . -
p-GaN : Mg E
A (0.6 pm ) il
TEIIITE InGaN/GaN MQD ‘T 20
(2nm/ 3nm ) s E .-

2 - 8 wells
e— n-GaN - Si
(0.9pum) 500nm

300 400 500 600 700
Wavelength (nm)

n-Si - Sb

S bk ik Molecular Beam Epitaxy Single NW:
. . . EQE=3.9%
—~>Indium composition variations between nanorods; @ 540 nm

leads to broad spectra
Iso, Spin-on-glass planarization Kim etal., Nanolett. 2004

Outstanding Issues:

« NW uniformity for InGaN

composition and color control
- Selective area growth

b DeVice arCh itectu reS Abdbbd : o 50KV X30,000 WD 16.7mm I('Drv_n. San[“a
Kishino et al., JCG 2009 Hersee et al., Electron. Lett. 2009@ National
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Avenues for Green Phosphor Advances

Nanostructured YAG:Ce Alternatives to YAG:Ce Phosphor
- Reduced scattering losses LED or Phosphor Luminous Efficiency
of Radiation
Green LED: FWHM 35 nm, A;,=535 nm............ 569 Im/W,,
Commercial YAG:Ce....ooovviviiiiiiii i 394 Im/Wgp,
SrGayS i EUZT et 564 Im/W,,
SrSi,0,N, Eu®t, FWHM 78 nm, A,,=538 nm...... 506 Im/W,
B-SIAION:Eu?" ,FWHM 55 nm, Ap=938 nm......... 556 Im/W,,
Ternary Sulfides Covalent Nitrides
Dispersed ‘ ‘ ' ool ‘ ‘
nanopartICIeS " 332]2”1 lumensi'Watt emitted
facilitates 0.8 +§:g b o SrSip0gNzEu?* lumensiWalt emitted
encapsulation z g 533
Excitation Emission ; T £ T pswmoney
e ' ' i ; | % 04+ Iezf:ge Green InGaN % 0.4
z o 2 -—Green pc-LEDs g

3& g o6 0.2 3 02z

2 i /

£ E i 0.0 [ il

"wm MMMMMMMMMM ] : 30 i wav:ISe?'lmh (::-,l)] 0%0 o i Sultlluavelength(nmﬁ)uu o
e " T ™ * PC-LEDs using SrGa,S,:Eu?* « PC-LEDs using nitride phosphors
- QY~ 80% 2>QY~90%, small Stokes’ shift

* Bulk optical properties preserved - Moisture sensitivity >Good stability
* Quantum Yield ~45%-> promising - Strong thermal quenching - Manufacturing challenges

M. Nyman, Chemistry of Materials, (2009) strontium thiogallate pc-LED: @ Sandia

(Sandia) R. Mueller-Mach et al., IEEE JSTQE 2002 National
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Conclusions

» Focus on blue LED efficiency improvements is yielding impressive
performance advances for phosphor-converted white LEDs

» Multi-chip white LEDs hold tremendous promise for achieving ultra-efficient

solid-state white lighting, but must overcome the green-yellow gap in
LED efficiency

 Emerqging approaches for InGaN LEDs in the green-yellow gap:

Semipolar LEDs (up to 563 nm yellow)
—> reduced polarization and sufficient indium incorporation

Strain relaxed InGaN templates
—> extension of lateral overgrowth approaches to non-polar InGaN
for strain relief in concert with defect reduction and planar surfaces

Nanostructured LEDs
- Advantages in strain accommodation and defect reduction, axial and
radial LED geometries for green, yellow and red being explored
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