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Abstract. The mission of the Personalized Energy Reduction Cyber-physical 
System (PERCS) is to create new possibilities for improving building operating 
efficiency, enhancing grid reliability, avoiding costly power interruptions, and 
mitigating greenhouse gas emissions. PERCS proposes to achieve these out-
comes by engaging building occupants as partners in a user-centered smart ser-
vice platform. Using a non-intrusive load monitoring approach, PERCS uses a 
single sensing point in each home to capture smart electric meter data in real 
time. The household energy signal is disaggregated into individual load signa-
tures of common appliances (e.g., air conditioners), yielding near real-time ap-
pliance-level energy information. Users interact with PERCS via a mobile 
phone platform that provides household- and appliance-level energy feedback, 
tailored recommendations, and a competitive game tied to energy use and be-
havioral changes. PERCS challenges traditional energy management approach-
es by directly engaging occupant as key elements in a technological system. 

Keywords:  Keywords: games · gamification · psychology · energy efficiency 
· human factors · cyber-physical systems  

1 Introduction  

Smart grid systems are rapidly being deployed across the world. They provide oppor-
tunities for improving the reliability, efficiency, and adaptability of the electric grid. 
Among an array of hardware and software upgrades, smart grid systems include high-
resolution meters to measure electricity use. For example, advanced metering infra-
structure (AMI) technology involves meters that collect near real-time usage data 
(“smart meters”). However, the meters alone do not generate electricity savings.  
   Changing end-user behavior is key to an optimally functioning smart grid system. A 
variety of technologies and programs already exist to involve end-users in power sys-



tems, but consumers are often not central considerations in technology design. Tech-
nologies that consider end-users as key players in power systems are urgently needed.  

Leveraging behavioral science can improve our understanding of how to partner 
with consumers in the smart grid to develop these technologies, and ultimately lead to 
more efficient uses of energy. A wealth of research supports the effectiveness of vari-
ous tools in changing end-user energy behaviors. For instance, the provision of real-
time energy feedback to customers has proven to be a reliable strategy for achieving 
conservation. Energy savings tend to be higher for more granular feedback, which has 
been greatly facilitated by smart meters. However, granularity in terms of specific 
behaviors remains on the frontier of the field: no systematic study to date has had the 
ability to provide real-time, personalized behavioral recommendations to reduce ener-
gy use—they have been limited to providing household-level data, leaving end users 
to contemplate which behavioral changes might result in large savings. Separately, 
recent advances in non-intrusive load monitoring (NILM) research are enabling the 
provision of appliance-level feedback, though training NILM algorithms has proven 
challenging and applications have not been widely tested. Involving end-users in the 
training process offers one potential for addressing NILM research challenges. 

To this end, the Personalized Energy Reduction Cyber-physical System (PERCS) 
aims to promote energy efficiency and peak load curtailment by engaging building 
occupants as partners in a user-centered smart service platform. PERCS uses a single 
sensing point--a Wi-Fi-enabled service gateway-installed in end-user homes-- to cap-
ture smart meter data in real time. Machine-learning algorithms disaggregate the 
household energy signal into individual load signatures of common appliances (e.g., 
air conditioners), yielding near real-time appliance-level energy information, and cre-
ating a smart home area network without the requirement of purchasing smart appli-
ances. This level of customization marks a substantial innovation from the status quo 
of whole-house feedback. It eliminates the need for consumers to generate a mental 
list of what is using energy in their home, which can be overwhelming and inhibit 
action. Building additional opportunities for utility-customer engagement, users inter-
act with PERCS via a mobile phone platform that provides household- and appliance-
level energy feedback and timely, tailored recommendations. The user experience is 
tied to a competitive game that leverages social influence. The system also solicits 
feedback directly from end-users to improve disaggregation results. Finally, PERCS 
joins anomaly detection approaches with NILM to enable appliance fault detection.  

In the remainder of this paper, we describe shifting priorities in energy systems, 
and describe how PERCS is designed to achieve future energy efficiency and demand 
response (DR) goals. We also discuss how this system has been informed by and 
makes contributions to the fields of computer science and behavioral science.  

2 Literature Review  

2.1 Shifting Priorities in Energy Systems   

Despite the growing availability of renewable energy resources, current demand for 
electricity, particularly at peak times of day, contributes substantially to greenhouse 



gas (GHG) emissions, which are associated with rising global temperatures [1] and 
negative public health outcomes, including increased mortality rates [2]. The residen-
tial and commercial sector is a major consumer of electrical energy and contributor to 
electric power-related GHG emissions: from 1990-2012, the residential and commer-
cial sector accounted for the largest portion (35%) of electric power-related GHG 
emissions of any sector [3]. In addition to environmental and health impacts, even 
relatively brief lapses in electric power reliability, which often occur when an over-
stressed grid cannot meet peak demand, have significant economic consequences. 
Annual losses from power interruptions range from 150 billion Euros among Europe-
an Union businesses [4] to $80 billion in the U.S. [5]. Accordingly, electric utilities 
allocate considerable resources to avoiding such interruptions and historically, have 
invested in additional peak generating capacity (e.g., “peaker plants”), which general-
ly relies on traditional, higher-polluting generation sources (e.g., coal; [6]). Although 
these strategies can help accommodate increasing demand, the associated economic 
and environmental costs are substantial. As an alternative, growing efforts are being 
made to manage demand by curtailing peak loads [6]. Advances in “smart grid” tech-
nologies have facilitated this approach by improving demand predictions (e.g., [7]). 
However, solving the problem of how to reduce demand merits further attention. 

The U.S. Federal Energy Regulatory Commission (FERC) calls for DR programs 
that encourage electric customers to make behavioral changes to curtail energy use 
[8]. Such programs can be effective in promoting overall energy conservation, with 
home energy savings as high as 21% [9]. With regards to peak demand and load-
shifting programs, however, the literature is relatively sparse. Despite the prevalence 
of these programs, many have not been evaluated or published, and among those that 
have, methodological limitations suggest areas for improvement (e.g., [10]). 

Achieving the load reduction objectives of the coming decades will require higher 
levels of customer engagement. The California Energy Commission (CEC) found that 
the state’s DR programs have not met load reduction goals [11]. With DR program 
participation rates estimated at less than 10%, and actual compliance rates likely low-
er [8], the CEC recommends focusing on customer engagement to move closer to DR 
targets [11]. Toward this end, utility-consumer connectivity must be enhanced. Pro-
grams must shift from a one-way, utility-to-consumer approach to a more interactive 
relationship. Research suggests that “gamified” programs may be better equipped to 
attract users and sustain program engagement [12] and energy savings, over time. 
With recent advances in human interface platforms, smart building infrastructures, 
and real-time mobile technology, now is the time to focus on the rapidly developing 
area of technology-enabled behavior change.  

Building occupants need actionable energy feedback (i.e., information about their 
building’s energy use) in order to make informed energy management decisions. 
Feedback has been found to be most effective when it is tailored, accompanied by 
specific recommendations for reductions, and delivered digitally at the appliance-
level in an interactive manner [13, 14]. However, monitoring individual loads (e.g., at 
the appliance level) is cost prohibitive [15, 16]. Instead, a solution that gathers highly 
granular information while minimizing instrumentation is needed. PERCS offers the-
se features using a single sensing point, making it cost-effective and scalable.  



2.1 Computer Science Foundations  

Energy disaggregation describes a set of statistical approaches to identify individual 
loads (e.g., appliances’) within a whole-building energy signal. Two primary methods 
have been applied to electric energy disaggregation: (1) distributed direct sensing, 
which involves monitoring individual appliance loads; and (2) single-point sensing, 
also known as non-intrusive load monitoring (NILM), which uses statistical algo-
rithms to determine the state and energy use of individual appliances based on meas-
urements collected (e.g., voltage, current, frequency, harmonics, real and reactive 
power) via a single sensing point on the incoming building power feed. Because load 
metering requires more instrumentation and tends to be expensive, limiting its scala-
bility, much work has focused on NILM.  

NILM approaches emerged in the 1980s [17]. As power data are collected, statisti-
cal approaches identify “events”, which represent state changes, and cluster them into 
groups, which represent individual appliances. Correctly classifying appliances with 
similar signatures presents a challenge. One recent advance for improving classifica-
tion accuracy is to increase sampling rates, which addresses noise in the signal, there-
by improving multi-event discrimination and detection of state changes [15, 16]. To 
this end, studies suggest leveraging data streams from installed AMI meters [15, 16], 
in part because such solutions can be cost-effective and scalable, given that electric 
utilities have deployed millions of smart meters globally that provide whole-home 
power measurements in intervals of seconds to minutes. Other studies have achieved 
improvements in classification accuracy by considering non-power data, such as time 
of day and temperature (e.g., [18]). It is noteworthy that approaches for advancing 
algorithm performance have relied on pattern detection using non-human inputs.  

A major limitation of this work is minimizing the human factors element, a missed 
opportunity that has resulted in the limited training of algorithms [16], [19, 20]. The 
few studies that have considered user input and behavioral data have found a direct 
relationship between behavior and device usage [21] and have increased classification 
accuracy [22]. These findings suggest that incorporating direct user input into the 
NILM process can improve NILM results, and point to new research directions.  

Also relevant to NILM is the issue of appliance performance degradation over 
time. NILM can deliver an additional service by identifying, tracking, and addressing 
suboptimal appliance performance (i.e., appliance fault detection). To this end, anom-
aly detection, which has been extensively studied among the signal intelligence 
(SIGINT) community [23], offers a viable model. For example, Hidden Markov 
Models have proven successful in detecting changes in observed behaviors [24]. 
However, little, if any, of this research has been applied to the NILM context, in 
which there is opportunity to improve equipment operating efficiency. For instance, in 
a typical household, anomalies can result from innocuous changes in end-user behav-
ior (e.g., change in frequency of opening/closing refrigerator door) or due to appliance 
performance problems (e.g., fan bearing failure, etc.). A primary innovation of the 
current study is to extend NILM research by leveraging SIGINT approaches.   

Finally, little work has leveraged NILM to investigate real-world potential for en-
ergy savings. The few studies that have done so have been on limited scales (e.g., 



[16], [19]) with the exception of Chakravarty’s study [25], which showed promising 
results of 14% energy savings following provision of disaggregated energy feedback 
via web and mobile interfaces among a sample of California households. Limitations 
in the methodology of this latter study underscore the need for additional research.  

PERCS extends NILM research in three fundamentally novel ways, by: (1) engag-
ing users as partners, directly building user feedback into training the models; (2) in-
tegrating SIGINT anomaly detection approaches with NILM to enable appliance fault 
detection; and (3) mapping the output of the NILM process to actionable insights for 
end-users, offering a cost-effective smart service.  

2.2 Behavioral Science Foundations   

Previous behavioral science studies on residential electricity consumption have esti-
mated that households could realistically use 5 – 10% less energy without adversely 
impacting occupant comfort or well-being [26]. Newer technologies allow users to 
achieve comparable output with less energy input, and upgrading appliances or using 
appliances more efficiently offers an excellent opportunity to achieve reductions [3], 
[27]. In addition, people tend to underestimate the amount of energy required for  
household activities, especially those that involve major household appliances [28].  

Smart meter infrastructure can be leveraged to motivate residents to increase ener-
gy efficiency through feedback. Historically, residents received only aggregated feed-
back on a monthly or quarterly basis, making it difficult to connect their behaviors 
with consumption. Behavioral research has shown that feedback can play an im-
portant role in reducing energy consumption, with high-resolution feedback associat-
ed with greater savings [13]. For instance, a recent meta-analysis of 57 residential 
energy feedback studies found that disaggregated, real-time feedback was associated 
the highest mean reduction of energy use at 12% [9]. The same meta-analysis found a 
mean peak load reduction of 13% among 11 studies that targeted load curtailment. 
Although these findings are promising, many of the studies included in the meta-
analysis did not undergo rigorous peer-review, as is true for the bulk of DR projects.   

More importantly, energy feedback by itself may not be sufficient to motivate 
change [29]. For feedback to generate a behavioral response, the individual must also 
have a goal, and creating a specific plan for achieving an energy reduction goal has 
been associated with greater savings [30]. In addition, research on financial framing 
and incentives suggest that these tools are generally not effective at motivating reduc-
tions in electricity consumption, and in some cases they result in increased consump-
tion [31]. Among the feedback-frames tested to date, social comparison to peers has 
emerged as a promising strategy for motivating electricity conservation [32, 33].  

Finally, in line with the Theory of Planned Behavior [34], studies suggest that en-
ergy technology acceptance is partially explained by perceived control over the tech-
nology [35]. Direct control DR programs may achieve reliable reductions, but partici-
pation rates are estimated at 10% [8]. Evidence suggests that consumers may be de-
terred from these programs due to privacy and autonomy concerns. Among the most 
well-documented customer concerns regarding smart grid technologies are percep-
tions that utilities can (1) directly control a variety of home equipment without con-



sumer permissions or opt-out; and (2) infer specific behaviors in which occupants are 
engaging [36]. In a similar vein, many consumers prefer choosing their own methods 
for curtailing consumption to direct control technologies [35]. To gain greater ac-
ceptance, smart grid technologies should provide some level of consumer choice.  

PERCS provides residents with near real-time feedback about their household and 
appliance electricity consumption, along with specific recommendations for reduc-
tions. This allows consumers to link discrete actions with electricity data, and to de-
cide whether they will change their behavior. The feedback is delivered in a gamified 
context that allows for social comparison and for a non-pecuniary reward system, a 
strategy that can potentially motivate users to reduce their consumption [32].  

3 PERCS  

The mission of PERCS is to create new possibilities for improving building operating 
efficiency, enhancing grid reliability, avoiding costly power interruptions, and miti-
gating GHG emissions. PERCS proposes to achieve these outcomes by engaging 
building occupants as partners in a user-centered smart service platform that moti-
vates behavioral changes. See Figure 1 for a systems diagram.  

3.1 Objectives  

Our research objectives are to (1) improve energy disaggregation classification by 
incorporating non-power features, most notably direct user input, into algorithm train-
ing; (2) integrate anomaly detection approaches with NILM to enable appliance fault 
detection along with a user alert system; (3) test the energy efficiency and peak load 
curtailment potentials of deploying a gamified, user-centered NILM platform at scale, 
with energy reduction goals of 15% per DR event and 15% for overall energy effi-
ciency; and (4) evaluate the effectiveness of appliance-level feedback and behavior-
contingent social rewards on electricity use among residential end-users.  

3.2 Technical Approach 

PERCS uses a single sensing point – a Wi-Fi-enabled service gateway installed in a 
residence – to capture smart electric meter data at high resolution, and push the data 
through a server where it is processed. The processed data are then presented to users 
as novel information about their home energy use via a mobile phone application 
(app), providing actionable, appliance-level information without the requirement of 
purchasing individual smart appliances or smart plugs. The NILM process identifies 
“events” in the power feed that indicate a state change of an appliance, typically signi-
fying a change of power. Machine learning algorithms then attribute non-power fea-
tures to that event, such as delta-power, time of day, and outdoor temperature, which 
enable discrimination between similar load characteristics. Using these features, a 
clustering algorithm groups these events into groups of similar events. Event-groups 
that co-occur are then grouped into an “appliance-pattern”, which is linked to specific 



appliances based on additional non-power characteristics of state changes (i.e., only 
runs when outdoor temperature is above 80F). PERCS aims to refine appliance classi-
fications through soliciting feedback from users as part of the training process, de-
scribed below. Additionally, the system identifies patterns of suboptimal appliance 
functioning and alerts users when it would be advantageous to replace or service inef-
ficient or failing appliances. PERCS features the following:  
 

 
Fig. 1.  Systems Diagram 

Leveraging User Input to Improve Classification. PERCS builds user feedback 
directly into the NILM workflow through a process called “tagging”. PERCS prompts 
users to identify an appliance that changed state in real time by sending notifications 
to users’ mobile phones. This data improves differentiation between similar applianc-
es (e.g., stove and grill) as well as identification of appliances with multiple signals. 
To encourage responses to tagging prompts, users earn points for responding as part 
of the competitive mobile platform game, described in detail below.  

Real-Time Algorithm Training. Running the entire NILM process continuously can 
be computationally intensive. In PERCS, we add a unique parallel process that 
streamlines the process, enabling it to run as new data are received. This real-time 
identification process uses characteristic appliance data to identify state changes, up-
dating classification as appropriate as new data are received.  
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Smart Appliance Insights for Users. Perhaps the most transformational of the 
PERCS innovations is the insight engine, which uses NILM results to provide a valu-
able service to end-users by triggering user notifications. The trigger comprises a de-
cision tree with specific conditional triggers, such as time of day, total power demand 
and consumption, specific appliance power and run time, appliance efficiency, and 
other metrics. From the insight engine, PERCS sends “Action of the Week” notifica-
tions to users every week, each of which is a request to engage in one specific behav-
ior tailored to each user’s household based on identified appliances (e.g., “Keep your 
A/C off every day this week from 1-4pm”). These notifications serve as behavioral 
“triggers”, which have been identified as a key component of behavior change [12]. 
This level of customization marks a significant innovation from the status quo of 
whole-house feedback. It eliminates the need for consumers to generate a mental list 
of what is using energy in their home, which can be overwhelming and ultimately 
inhibit action. By eliminating this step, PERCS provides a valuable service that ena-
bles consumers to focus on executing a single, straightforward action to save energy.  

Enhancing User Engagement. To produce and sustain an engaging user experience, 
PERCS includes a game as part of the mobile platform under which users earn points 
for complying with “Action of the Week” requests. Each “Action of the Week” is 
presented to users via a push notification sent to their mobile phones, and includes the 
following information: concise description of specific action to be taken, number of 
points that can be earned for compliance, and dates and times of requested compli-
ance. Any given “Action” is active for a 1-week period, and users can earn points for 
complying each day during that particular week. To maintain user engagement over 
time, the platform offers opportunities to earn bonus points, which will be awarded on 
intermittent schedules of reinforcement (e.g., points awarded for logging in, partici-
pating in tagging process). Users compete against one another for the highest rank 
among the PERCS community via a public leaderboard that displays each participat-
ing household’s selected username, point total, and rank, introducing social norms as 
motivation to reduce usage. Point totals and leaderboard ranks are updated daily to 
encourage frequent participation. To enable households who join the game relatively 
later than others to “catch up” to households that joined earlier, leaderboard ranks are 
adjusted daily to account for level of participation. For DR events, users receive spe-
cial push notifications one day ahead and one hour ahead of the scheduled event, with 
a request to engage in a specific behavior to save energy.   

Protecting User Data Privacy. To protect users’ data privacy, energy data, disaggre-
gation results, and other anonymous data are linked to an Anonymous User ID. All 
identifiable data (e.g., address) are stored separately, linked by an Identifiable User 
ID. Only the study team has access to both IDs to enable mapping between datasets. 
Select pieces of secure code in the application programming interface have access to 
the proper private keys required to link the Anonymous and Identifiable User IDs.  



Anomaly Detection. PERCS expands on the disaggregation process by adding anom-
aly detection to the platform in order to identify failing or inefficient appliances. We 
leverage research from the U.S. Department of Energy-funded Building Level Energy 
Management System (BLEMS; [37]) and the U.S. Office of Naval Research (ONR)-
funded Geospatial Analysis of Motion-Based Intelligence and Tracking (GAMBIT) 
projects [38]. In BLEMS, artificial neural networks and Bayesian Belief Networks 
(BBNs) were trained to recognize office building occupancy patterns and to detect 
anomalies. This information was used to calculate HVAC set points to simultaneously 
optimize energy efficiency and meet occupant comfort preferences. In GAMBIT, 
BBNs were trained to recognize movement data (signals) and detect normal and ab-
normal movement behaviors. PERCS incorporates these approaches to identify, track, 
and address appliance degradation, using findings to trigger user alerts regarding ap-
pliance functioning along with recommendations to service or replace failing appli-
ances at the optimal time.  

Smart Building Services. We view energy efficiency, peak load reduction, user satis-
faction, and equipment performance as services – each often competing with the oth-
er. A smart service platform that is designed to add capabilities over time, PERCS 
currently offers the following: (1) detect and differentiate energy usage anomalies 
from appliance performance degradation, including identifying the economic and en-
vironmental “cross-over” point at which it is advantageous to replace an appliance; 
(2) tailored to each participating household, suggest specific behaviors to improve 
energy efficiency and reduce peak demand; (3) provide an engaging experience to 
occupants using relatable information and social incentives.  

If successful, future extensions of PERCS would enable remote appliance control, 
integrate with DR forecasting to improve peak demand management, and/or offer 
redemption of points earned as part of the game (e.g., gift cards, utility bill rebates). 

4 Conclusions  

PERCS introduces new possibilities for improving building operating efficiency, en-
hancing grid reliability, avoiding costly power interruptions, and mitigating GHG 
emissions. Using minimal instrumentation, we provide a cost-effective and scalable 
solution for intelligent sensing. Additionally, PERCS offers a new model for engaging 
utility customers, which may prove to be valuable for meeting DR and energy effi-
ciency goals. The platform allows end-users to monitor their behavior, receive per-
sonalized feedback, and motivates behavior change via competition. If successful, 
PERCS could be expanded to promote behavior change for other applications.  

Using an interdisciplinary approach that combines social psychology, machine 
learning, energy informatics, and network computing, PERCS challenges traditional 
energy management approaches by directly engaging end-users as key elements in a 
technological system, and provides a solution to the problem of how to achieve reduc-
tions in peak demand. PERCS advances behavioral science and computer science 
research by creatively mapping the output of the NILM process to actionable insights 



via a relatable user platform; it improves the NILM training process without burden-
ing, but rather by engaging, end-users. Coupled with DR forecasting, PERCS holds 
promise for reshaping the energy landscape.  
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