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Sandia’s CMOS Radiation Hardening

* Eliminating upset in >0.5um bulk silicon
CMOS introduced prohibitive performance
delays for resistive feedback approaches.

« SOl wafers reduced collected charge by
reducing collection volume.

« Switching to SOI required Sandia to
develop:

— qualification techniques for sufficient yield of
high-density CMOS circuits (material science
and process expertise)

— alternative hardening approaches to meet
total-dose radiation requirements (transistor
and circuit design).



SOl excels at dose-rate and single-event
immunity but can suffer from total-dose effects

for larger (0.35um) analog transistors.
SOl Transistor
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L 3D simulations predict leakage as
Back Channel a function of trapped radiation-induced
Leakage charge at the transistors back-channel.




The BUSFET' eliminates rad-induced
back channels for total-dose immunity.
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SOl Add-ons: Post-CMOS RF Filter
and Oscillator Fabrication

6 mask levels SOI Wafer and CMOS

AIN sputter deposited at
350°C (Post-CMOS

compatible)

All CMOS compatible SOI Wafer and CMOS
metals/materials

Highly c-axis oriented with a —
rocking curve full width half L L
maximum = 1° (strong SOI Wafer and CMOS
piezoelectric coupling) Released

Dry Si release (no stiction m ™ 1
iIssues, simple and cheap) SOI Wafer and CMOS
Integration directly over SOI

CMOS Post SOl CMOS Process Flow
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SOI CMOS Add-ons: Piezoelectric Post-
CMOS MEMS

Properties

» Lithographically Defined Mechanical Resonance
(Any Resonance Frequency Between 1 MHz — 10
GHz on the Same Wafer)

» Post-CMOS Compatible

» High Q, High Frequency, Low Impedance

Motivation

» Single-Chip Frequency References and
Low-Phase-Noise Voltage-Controlled
Oscillators

» Miniature High-Selectivity Filters and
Filter Banks not otherwise available

> RF Filters in Non-Commercial Bands
» Miniature SAW IF Filter Replacement

T
> Filter Banks for Spectrum Analysis ) “‘ w
and Advanced Radios Tl

> Super High Frequency Acoustic e
Filters with Previously Unachievable
Selectivity

Insertion Loss (dB)

AIN Dual Mode Filter and
Wideband Response



SOl CMOS Add-ons: RF MEMS switches

Low-insertion-loss, high
linearity technology
complements CMOS

Enables RF circuits _
integrated with control or ' T L 10 1o 11 15 15 20
active RF electronics Frequency [GHZ]

CMOS compatible post-
processing for integration
on active circuits

SOl allows high-resistivity
handle substrates for low-
loss transmission lines

Insertion Loss [dB




RF MEMS Switch Process

 Low-temperature
process for post-
processing on
CMOS circuits

« Exploit SiO,/Si
selectivity for
controlled
contact depth

« Sandia MicroFab
allows low-loss
metals and
contacts
THEVZUEL )R

high-volume
CMOS facilities

CMOS pads + MEMS contact metal
/ N

CMOS BEOL Interconnect Active CMOS

;ox High-Resistivity Handle Wafer

Sacrificial Layer Deposition and Etch followed
by Mechanical Layer Patterning and Deposition

SiO, Switch Body

Si Anchor ¥ Contact
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Series connected High-Voltage
Photovoltaics

SOl with
buried oxide
Dielectric Fill - Trench Iayer and

Si Substrate trench with
dielectric fill

_| isolation

Trench prior
to fill

Filled trench with series connections



High-Voltage Photovoltaics from
series-connected arrays.

Series Si Cells, 1.25 mm
diameter, Multiple Taps
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Ultra-Low-Loss SOI Silicon Rib

Design test mask with ring
resonators and varying
coupler gap sizes

1.34 um n-type 38-63 Ohms —
. . Silicon (100) device layer
EULT ORI 200, 1.0 um buried oxide (BOX)
675 um silicon n-type
substrate

Pattern with Photo Resist

Reflow Photo Resist

a a
B  Eich 0.2 um Rib into Silicon
Surface
— 7/ i

Oxidize Silicon
Final thickness is 1.0 um Si
with 0.2 um Rib

Results
Q=7.5x10°
Internal Q = 1.4 x 107

Fabricated Waveguide

im F1 LB1
TAS SKU X23.,0080 Smm



SOl for optical thermal sensors

Incident Radiation

Insulating
Tethers
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Low thermal conductivity of
BOx provides maximizes
impact of temperature
excursions.

Theoretical uncooled IR
sensitivity within ~20x of
cooled HgCdTe!



Fabrication of Thermally Isolated SOI

Ring Resonators

Design of microphotonic ring resonator for cross section

b
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Pattern 0.5 um p-type 13-22 Ohms - silicon, SOI (Soitec)
3.0 um buried oxide (BOX)
675 um silicon p-type substrate wafer
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Apply silicon nitride hard mask & etch opening around
ring
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3-D lon Trap Chip (ITC) with through-chip and
through-package optical access.

Packaged 3D ion trap chip
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Crystal of 7 Mg* ions Air bridge leads Hole in Si substrate

heating rate w/ SiN surfaces 7.2ES quanta/sec

Courtesy of NIST Boulder — Wineland group



- SOl for substrate through-hole engineering

/ ‘t/”‘p b L W2 Misalignment and rotation EE]BE
= T of via to electrodes could I:IH% B

affect ion transport and
heating rates

Silicon on Insulator (SOI) technology allows for precise, front-side
alignment of the through hole to ion trap electrode features
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Top Si plug defining through Oxide release seam

; ; ; Hole etched in handle Si
hole is precisely aligned to trap top Si allows later |: after trap electrode
electrodes and can be very small ... vo1 0f Sj plug sl
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Low-cost lift-off silicon solar cells

SOl wafer -Silicon material
Create micro-PV cell then anisotropically

etch between cells to buried oxide layer. accou nts fo r 50(%) of

S module cost of single-
Release from handle wafer crystalline silicon solar

usmng an HF based release etch.

M 00 0001 K cells.
] Most of the solar

be rensed to create 2 mew SOT water. spectrum absorbed in
first 10-20um of silicon.
SOl release technology
allows of factor of 10
savings in silicon
material by re-use of
silicon substrates.

Fi zgure 2 Optzcal image of 500 m cells




Low-cost lift-off silicon solar cells

Be-1
1Tmm hexagonal cell 200um hexagonal cell




Complex SOI systems: Nano-g
accelerometer

Combines:

Nanogratings *Near-field coupling
of sub-wavelength
gratings
‘Integrated proof
mass from through-
. wafer bulk

' micromachining

Accelerometer chip
Spa 4. ‘

Accelerometer concept

Dual layer
nanograting test device

STER=1

‘Record displacement sensitivity 12 fm/J/Hz

*Record low Mass Resonant Frequency for a
MEMS device ~ 40 Hz

‘Record Thermal noise floor ~10nG6/J/Hz

Mass
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Our devices have used a wide
variety of SOI wafers.

* Device-layer doping has varied:

— Degenerately doped (0.005 ohm-cm) surface silicon is
used for ion traps and SOl accelerometers

— Lightly doped (10-20 ohm-cm) surface silicon is used for
optical devices, structural silicon layers in which doping
doesn’t matter, or electronic devices in which doping
will be controlled by process.

* Device-layer thickness have varied from:

— thin (~0.3um) for active transistors and optical elements

— to 50um for robust mechanical layers for ion traps and
accelerometers.

 Buried-oxide thickness has varied from:
— 0.2um for CMOS to
— 3um for photonic crystals.

« Soitec and Ultrasil are our suppliers.



Our experience deviates from
common beliefs.

 Belief: thicker BOx is desirable for
structures that will be released

— When the BOx is etched away to free the
device layer, the thicker box should release
more quickly due to faster transport of the etch
chemistry, and a larger gap should be less
prone to sticking.

* Our experience: We have achieved
complete release even with a thick device
layer and a 1 um BOx




Conclusions

« Radiation-hardening of CMOS circuits
drove Sandia to investigate SOI in the mid-
1990s.

— Developed material science and process
expertise as a result.
« Familiarity with SOl led to extensions
beyond integrated circuits using flexibility
inherent in the MESA fabrication facilities.

* The processing flexibility inherent in SOI
has enabled Sandia to develop a wide
variety of novel devices.



