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• TID in Earth orbits 

dominated by trapped 

protons and electrons. 

• LEO orbits dominated by 

protons. 

• Higher orbits, like GPS or 

GEO dominated by electrons. 

• For electronics, dose depth 

curves will be quite different. 

• For shielding, the best type 

and combination of materials 

will also be different. 

• Our work focused on 

electron-dominated orbits, 

GPS: 20,200 km altitude, 

specifically. 

 



Physics of Shielding 

• Protons will be continuously slowed down by scattering from atomic electrons 

– higher Z has greater stopping power. 

• Collisions with nuclei will become important for thick shielding – lower Z will 

be more effective in reducing proton energy. 

• Electrons are also continuously slowed down by scattering from atomic 

electrons – again, higher Z has greater stopping power. 

• However, slowing electrons create Bremmstrahlung X-rays which can be 

hard to stop – higher Z creates more X-rays, but stops them more effectively. 

• Best shielding depends on particle type, energy, and thickness needed. 

 

 
Z = # of protons in 

nuclei = atomic number 

 

H:   Z=1 

C:   Z=6 

O:   Z=8 

Al:   Z=13 

Ta:  Z=73 

W:   Z=74 



Composite Materials 

• Composite materials are attractive due to their high structural strength 

and relatively low weight. 

• Restrictions on size and weight of a payload (dictated by launch vehicle) 

make composite materials desirable for electronics enclosures. 

• Unfortunately, reduced weight likely means reduced radiation shielding. 

• Plan A:  Design payload for minimum weight, and use radiation-hardened 

electronics or spot shielding to compensate for reduced box shielding. 

• Plan B:  Find a combination of composite and high-Z material that will 

reduce weight and not increase the dose inside the box. 

• We chose Plan B – replace 100 mil Al with a composite/high-Z material. 

-- for our ongoing program, this allows easy insertion without redoing  

analysis or adding spot shielding. 

How can we ‘qualify’ the composite materials as rad shields? 



Qualifying Composite Materials 

• Qualification is often done through analysis, test, or both. 

• Analysis requires detailed understanding of composition – not always 

available due to manufacturing process. 

• Testing must be done carefully – shielding properties depends on particle 

type and energy, not total dose. 

• There is no source, except for space itself, that gives the trapped electron 

spectrum. 

• We propose a combination of test and analysis: 

 1) Test with electrons in the 1-5 MeV energy range. 

 2) Compare test results with transport simulation. 

     -- good agreement implies good understanding of composition. 

 3) Run transport simulation using space spectrum. 

• Simple alternative – with scannable monoenergetic source, show that 

composite material works as well, or better, than Al at all relevant energies. 



• Tests performed at the National Physical Laboratory in the UK. 

     - 270 degree magnet provides fairly monoenergetic source 

     - short pulses allows for p-i-n diode dosimetry – real time, large pulse 

       number statistics, high precision comparison between samples. 

NPL Linear Accelerator Test 
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80 mils C fiber Composite + 

5 mils Ta sheet 

BACK 

FRONT 

250 mils GMB Composite + 
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W particles (0%, 2%, 4%, 

6%, 8%, and 10%) 
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Test Setup 



Reduce Scatter 



Data Acquisition 

• Used biased p-i-n silicon photodiodes (wrapped). 

• LeCroy LC334A 500 Mhz single-shot oscilloscope. 

• Averaged signal pulse area over 100 pulses (Sequence Mode). 

• Normalized reference 100 mil Al sample to main reference p-i-n. 

• Moved stage to get normalized signal behind composite sample. 

• Method allowed comparison of shielding performance to within 1-2 %. 



  Dial in specific energies (4MeV, 6MeV, 10Mev) and use degraders at the NPL. 

Want samples to shield all three exptl spectra. 
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• Obtained by multiplying calculated dose at each energy by GPS spectral weighting factor. 

• Illustrates how much the dose at each energy contributes to overall dose in space. 

• Ideally, ground tests should cover the 1 to 4 MeV range. 

Which Energies Contribute Most? 



2.0

1.5

1.0

0.5

0.0

N
o

rm
a

li
z
e

d
 D

o
s
e

 (
to

 1
0

0
 m

il
s
 A

l)

2.01.51.00.50.0

Normalized Areal Density (to 100 mils Al)

  4 MeV with 1/8" Degrader

 

 5 mils Ta sheet BACK

 5 mils Ta sheet FRONT

 Lenhart's Silicone 58 mils

 Lenhart's Silicone 116 mils

 AMPL's W particle sheet

Linac Tuned to 4 MeV 
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Linac Tuned to 6 MeV 
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Conclusions 

• Particle type and energy are important for testing shielding properties. 

• For shielding electrons in space, using composite with Ta works well.   

• Use as much high-Z material as possible, and put towards the inside. 

• NPL linear accelerator allows precise comparisons of shielding property 

relative to a reference sample. 

 

Further Considerations 

• Facilities like Kent State’s NEO beam facility allow for simpler (less 

precise) qualification – used for our flight box lid. 

• None of these results can be generalized to LEO orbits. 

• Manufacturing/structural and EMI concerns will likely prove to be more 

difficult to deal with than the radiation issues – all solvable. 

 




