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* TID in Earth orbits
dominated by trapped
protons and electrons.

« LEO orbits dominated by
protons.

 Higher orbits, like GPS or

GEO dominated by electrons.

* For electronics, dose depth
curves will be quite different.

* For shielding, the best type
and combination of materials
will also be different.

* Our work focused on
electron-dominated orbits,
GPS: 20,200 km altitude,
specifically.
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'
>, ' Physics of Shielding

 Protons will be continuously slowed down by scattering from atomic electrons
— higher Z has greater stopping power.

* Collisions with nuclei will become important for thick shielding — lower Z will
be more effective in reducing proton energy.

* Electrons are also continuously slowed down by scattering from atomic
electrons — again, higher Z has greater stopping power.

* However, slowing electrons create Bremmstrahlung X-rays which can be
hard to stop — higher Z creates more X-rays, but stops them more effectively.

* Best shielding depends on patrticle type, energy, and thickness needed.
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‘ Composite Materials

« Composite materials are attractive due to their high structural strength
and relatively low weight.

* Restrictions on size and weight of a payload (dictated by launch vehicle)
make composite materials desirable for electronics enclosures.

» Unfortunately, reduced weight likely means reduced radiation shielding.

* Plan A: Design payload for minimum weight, and use radiation-hardened
electronics or spot shielding to compensate for reduced box shielding.

* Plan B: Find a combination of composite and high-Z material that will
reduce weight and not increase the dose inside the box.

* We chose Plan B — replace 100 mil Al with a composite/high-Z material.

-- for our ongoing program, this allows easy insertion without redoing
analysis or adding spot shielding.
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% Qualifying Composite Materials

 Qualification is often done through analysis, test, or both.

» Analysis requires detailed understanding of composition — not always
available due to manufacturing process.

 Testing must be done carefully — shielding properties depends on particle
type and energy, not total dose.

» There is no source, except for space itself, that gives the trapped electron
spectrum.

* We propose a combination of test and analysis:
1) Test with electrons in the 1-5 MeV energy range.
2) Compare test results with transport simulation.
-- good agreement implies good understanding of composition.
3) Run transport simulation using space spectrum.

» Simple alternative — with scannable monoenergetic source, show that
composite material works as well, or better, than Al at all relevant energies.
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» Tests performed at the National Physical Laboratory in the UK.
- 270 degree magnet provides fairly monoenergetic source
- short pulses allows for p-i-n diode dosimetry — real time, large pulse
number statistics, high precision comparison between samples.

L Linear Accelerator Test
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‘ Composite Structures

Solid Sheets

Spray

Powders

100 mils Al sheet

80 mils C fiber Composite +
5 mils Ta sheet

BACK

250 mils GMB Composite +
Ta spray (5, 10, and 15 mils)

FRONT

100 mils Composite +
Dense layer of W powder + epoxy

58, 116, and 250 mils Silicone +
W particles (0%, 2%, 4%,
6%, 8%, and 10%)
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Test Setup
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Reduce Scatter
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‘ Data Acquisition

» Used biased p-i-n silicon photodiodes (wrapped).

» LeCroy LC334A 500 Mhz single-shot oscilloscope.

» Averaged signal pulse area over 100 pulses (Sequence Mode).

* Normalized reference 100 mil Al sample to main reference p-i-n.

» Moved stage to get normalized signal behind composite sample.

» Method allowed comparison of shielding performance to within 1-2 %.
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A
e~ NPL vs. Space Spectrum

Dial in specific energies (4MeV, 6MeV, 10Mev) and use degraders at the NPL.
Want samples to shield all three exptl spectra.

2.09" 9/07 NPL Test —*—4MeV2/16" Al

1 ITS predicted electron —*— 6 MeV 1/4" Al

1.8+ energy spectrum after —e+—10 MeV 9/16" Al

16 | Aldegraders — GPS Space Spectrum
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Which Enerqgies Contribute Most?
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Energy (MeV)

» Obtained by multiplying calculated dose at each energy by GPS spectral weighting factor.
* lllustrates how much the dose at each energy contributes to overall dose in space.

* Ideally, ground tests should cover the 1 to 4 MeV range. Sandia
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A 4
—~ _ Linac Tuned to 4 MeV

Normalized Dose (to 100 mils Al)
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4 MeV with 1/8" Degrader
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Lenhart's Silicone 116 mils
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Linac Tuned to 6 MeV

l
6 MeV with 1/4" Degrader -
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1.0
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—@— 5 mils Ta sheet BACK
® 5 mils Ta sheet FRONT
0.5 1 [—®— Lenhart's Silicone 58 mils o —
Lenhart's Silicone 116 mils
Lenhart's Silicone 250 mils
—@— AMPL's W particle sheet
® Hall's Thermal Spray

Normalized Dose (to 100 mils Al)
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A 4
—~ _ Linac Tuned to 10 MeV

20 10 MeV with 9/16" Degrader -
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%‘ Conclusions

* Particle type and energy are important for testing shielding properties.
* For shielding electrons in space, using composite with Ta works well.
« Use as much high-Z material as possible, and put towards the inside.

* NPL linear accelerator allows precise comparisons of shielding property
relative to a reference sample.

Further Considerations

* Facilities like Kent State’s NEO beam facility allow for simpler (less
precise) qualification — used for our flight box lid.

* None of these results can be generalized to LEO orbits.

« Manufacturing/structural and EMI concerns will likely prove to be more
difficult to deal with than the radiation issues — all solvable.
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