
Exploring Memory Management
Strategies in Catamount

Kurt Ferreira, Kevin Pedretti, and Ron Brightwell

Scalable System Software Group

Sandia National Laboratories

Cray Users Group

Helsinki, Finland

May 8, 2008

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

SAND2008-3191C

What to Expect

• Description of phenomenon we’ve observed using the
STREAM micro-benchmark

– Large memory bandwidth swings based on memory layout

– Comparisons to Cray Linux Environment (CLE / CNL)

• Due to level of locality you probably aren’t aware of

– Hopefully interesting

– Possibly useful

• Mitigation techniques we’re working on that alleviate issue
while maintaining LWK advantages

– Predictable memory layout

– Simple network stack (no pinning/unpinning)

STREAM Benchmark

• Old benchmark, now component of HPCC

• Four memory intensive kernels over arrays of doubles:

– Copy: a[i] = b[i]

– Scale: a[i] = scalar * b[i]

– Add: a[i] = b[i] + c[i]

– Triad: a[i] = b[i] + scalar * c[i]

• OFFSET define controls spacing/alignment of arrays in
memory:

a[N] OFFSET b[N] OFFSET c[N]

Mysterious
STREAM Copy Sawtooth on Catamount

N=2000000, ~16MB arrays

STREAM Scale, Add, and Triad Similar

What’s Going On?

• Mystery for 2+ years

– First observed by Courtenay Vaughan while
gathering Red Storm HPCC results

– Careful tuning performed to avoid valleys

• Suspects:

– Cache aliasing?

– Prefetch issues?

– Non-temporal prefetch/store issues?

– Coldstart configuration of memory controller?

– Something inherit in Catamount?

Dips Due to DRAM Page Conflicts
(Bank Conflicts)

A (Very) Brief DRAM Overview

• Commodity component, most numerous in system

• 2-D array of memory

– Addressed by (row, column, bank)

– Accesses to different rows of same bank conflict

– Conflicts are slow, prevents request pipelining

• Typical row (aka page) sizes:

– DRAM: 1 KB wide (1K columns, each 8-bits deep)

– DIMM: 8 KB wide (8 DRAM chips in parallel)

• See “Memory Systems: Cache, DRAM, Disk” book

DDR2 DIMM Architecture Example

Red Storm DDR2 DIMM Architecture

Each DRAM Row is
1K columns * 8 bits = 1K bytes

Each DIMM Row is
1K bytes * 8 chips = 8K bytes

Each Memory “Page” is

8K bytes * 2 DIMMs = 16K bytes

Addresses that are

16K bytes * 8 banks = 128K bytes
apart will result in a Bank Conflict

(Consecutive accesses to

different rows in same
bank, aka Page Conflict)

By the Numbers ...

128KB Spacing

128 KB +/- 16 KB
spacing results in

Page Conflicts

What About Compute Node Linux?

Linux Translation Strategy

• Will scatter virtual
pages throughout
the physical space

• Mapping is non-
deterministic and
varies from run-to-
run

Catamount Translation Strategy

• Maps the virtual
address range to
a contiguous
physical address
range

• Done to reduce
state required for
SeaStar NIC

Compute Node Linux Numbers

• Each point from a
freshly booted CNL
node

• Dips from cache

aliasing and also
seen on Catamount

As Memory Fragments, Performance Affected

• Translations vary for
each application run

• Worst case 80%
slowdown due to
buffer conflicts and
cache aliasing

• Average case similar
to best case

Research Questions

• Do page conflicts matter for any real applications?

– Potential cause of the observed CNL vs. Catamount
performance differences on Red Storm?

• Mitigation techniques:

– Opteron memory controller “swizzle” mode

– Randomize virtual->physical mapping

– Deterministic virtual->physical mapping

• No page pinning/unpinning

• Send address/length to SeaStar vs. command array

– Compiler optimization?

– Stream-style programming…
1 array with unit stride cannot cause bank conflict

Adaptive Approaches

• Monitor page conflict counts while an application
runs

• If system sees application page conflict counts
increasing, shuffle memory mapping

• Intension: cap the number of page conflicts at a
certain level

Adaptive Page Mapping Performance

What About Real Applications?

• HPCCG: somewhere between a micro-benchmark
and a real application

• Written by Mike Heroux of Sandia National Labs

• Simple preconditioned conjugate gradient solver

• Generates a 27-point finite difference matrix with a
user-prescribed sub-block size on each processor

• Processor domains are stacked in the z-dimension

HPCCG – Page Conflict Slowdown

• 32 nodes

• Offset identical
on each node

• ~50% slowdown

Summary

• Virtual to physical translations can affect the
performance of HPC applications

• DRAM page buffer is another level of locality in the
memory hierarchy that the programmer has little
control over and may be important to application
performance

• No translation strategy clear winner

Experimental Platform

• Hardware

– 32 node Cray XT3/4 dev system at SNL

– 2.4 GHz, dual-core AMD Opteron w/ 4 GB RAM

– Cray SeaStar NIC

• Software

– Catamount lightweight OS

– Cray Compute Node Linux

