

1 **Performance Evaluation of a Continuous-flow Bioanode Microbial
2 Electrolysis Cell Fed with Furanic and Phenolic Compounds**

3 Xiaofei Zeng¹, Abhijeet P. Borole^{2,3}, and Spyros G. Pavlostathis^{1,*}

4 ¹ School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta,
5 Georgia 30332-0512, United States

6 ² Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United
7 States

8 ³ Bredesen Center for Interdisciplinary Research and Education, The University of Tennessee,
9 Knoxville, Tennessee 37996, United States

10 * Phone: 404-894-9367; fax: +404-894-8266; e-mail: spyros.pavlostathis@ce.gatech.edu

11 Notice of Copyright

12 *This manuscript has been co-authored by UT-Battelle, LLC under Contract No. DE-AC05-
13 00OR22725 with the U.S. Department of Energy. The United States Government retains and the
14 publisher, by accepting the article for publication, acknowledges that the United States
15 Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or
16 reproduce the published form of this manuscript, or allow others to do so, for United States
17 Government purposes. The Department of Energy will provide public access to these results of
18 federally sponsored research in accordance with the DOE Public Access Plan
19 (<http://energy.gov/downloads/doe-public-access-plan>).*

20 **Abstract**

21 Furanic and phenolic compounds, formed during the pretreatment of lignocellulosic biomass, are
22 problematic byproducts in down-stream biofuel processes. Microbial electrolysis cell (MEC) is
23 an alternative technology to handle furanic and phenolic compounds and produce renewable
24 hydrogen (H₂). The present study evaluated the performance of a continuous-flow bioanode
25 MEC fed with furanic and phenolic compounds at different operating conditions. All hydraulic
26 retention times (HRTs) tested (6 - 24 h) resulted in complete transformation of the parent
27 compounds at an organic loading rate (OLR) of 0.2 g/L-d and applied voltage of 0.6 V.
28 Increasing the OLR to 0.8 g/L-d at HRT of 6 h resulted in an increased H₂ production rate from
29 0.07 to 0.14 L/L_{anode}-d, but an OLR of 3.2 g/L-d did not lead to a higher H₂ production rate.
30 Significant methane production was observed at an OLR of 3.2 g/L-d. The lack of increased H₂
31 production at the highest OLR tested was due to a limited rate of exoelectrogenesis but not
32 fermentation, evidenced by the accumulation of high acetate levels and higher growth of
33 fermenters and methanogens over exoelectrogens. Increasing applied voltage from 0.6 to 1.0 V at
34 an OLR of 3.2 g/L-d and HRT of 6 h enhanced exoelectrogenesis and resulted in a 1.7-fold
35 increase of H₂ production. Under all operating conditions, more than 90% of the biomass was
36 biofilm-associated. The present study provides new insights into the performance of continuous-
37 flow bioelectrochemical systems fed with complex waste streams resulting from the pretreatment
38 of lignocellulosic biomass.

39 **1. Introduction**

40 Furanic and phenolic compounds, formed during the pretreatment of lignocellulosic biomass, are
41 significant components of hydrolysates, pyrolysates and wastewaters, posing serious challenges
42 in down-stream biofuel processes. Furanic and phenolic compounds are known inhibitors of
43 ethanol and H₂ producing microorganisms used in dark fermentation, negatively impacting the
44 efficiency of biofuel production from lignocellulosic hydrolysates.¹ Another problem with
45 furanic and phenolic compounds is that their polar and in some cases acidic nature makes
46 pyrolysates corrosive and unstable.² As lignocellulosic biomass has been recognized as a
47 promising feedstock for biofuel production, alternative technologies are needed to handle furanic
48 and phenolic compounds bearing waste streams generated during biomass pretreatment.^{2,3}

49 Bioelectrochemical systems have been assessed for the bioconversion of furanic and
50 phenolic compounds. Microbial fuel cells (MFCs) are reported to produce 8 A/m² current density
51 from these compounds,⁴ and to treat hydrolysates and fermentation waste streams generated
52 during the conversion of corn-stover biomass to ethanol.⁵ Microbial electrolysis cell (MEC),
53 another bioelectrochemical system, was recently investigated for the conversion of furanic and
54 phenolic compounds to H₂.⁶⁻⁷ The MEC technology not only offers an alternative in dealing with
55 waste streams bearing furanic and phenolic compounds, but also produces renewable H₂, large
56 quantities of which are needed for the hydrogenation process in bio-oil production via pyrolysis.
57 Currently, H₂ is produced by reforming natural gas (i.e., methane), a non-renewable H₂ source.²
58 The above-mentioned advantage of MEC cannot be achieved by other technologies, such as
59 solvent extraction or use of genetically engineered, tolerant microorganisms. Zeng *et al.*⁶
60 reported that a mixture of two furanic and three phenolic compounds was completely
61 transformed as the sole carbon and energy source in a batch-fed MEC bioanode, at a Coulombic

62 efficiency of 44 – 69%, demonstrating great potential for H₂ production even from these
63 problematic compounds. In addition, Lewis et al.⁷ used a complex pyrolysate stream, which
64 contained furanic and phenolic compounds, in a continuously-fed, batch MEC, and achieved a
65 H₂ production rate as high as 4.3 L/L-d. These proof-of-concept studies based on batch systems
66 demonstrate that MEC technology can be an attractive integrative solution for improving the
67 sustainability of biofuel production. However, assessment of continuous-flow MEC operating
68 conditions, a crucial step to promote the implementation of MEC technology in the overall
69 biofuel production process, is currently lacking.

70 Several studies have investigated continuous-flow MECs with domestic and synthetic
71 wastewater, as well as digestate.⁸⁻¹⁰ However, our fundamental understanding of the effect of
72 continuous-flow operating conditions on MEC performance is still limited, in part due to the
73 complexity of the waste streams used. As stated above, furanic and phenolic compounds are
74 challenging and problematic components of lignocellulose-derived waste streams. In-depth
75 evaluation of the effect of continuous-flow bioanode MEC operating conditions on the
76 conversion of these compounds will enhance our understanding of the performance of
77 bioelectrochemical systems fed with complex waste streams, resulting from the pretreatment of
78 lignocellulosic biomass. The objective of the present study was to evaluate the response of a
79 continuous-flow MEC bioanode, fed with a mixture of two furanic and three phenolic
80 compounds, to various hydraulic retention times (HRT), organic loading rates (OLR), and
81 applied voltage.

82 2. Materials and Methods

83 2.1 Chemicals

84 Furfural, 5-hydroxymethylfurfural, syringic acid, vanillic acid, and 4-hydroxybenzoic acid,
85 purchased from Sigma-Aldrich (St. Louis, MO) and Alfa Aesar (Ward Hill, MA), were used as

86 the anode substrates. The properties of these chemicals were previously summarized in Zeng *et*
87 *al.*⁶

88 2.2 *MEC*

89 An H-type MEC system was developed with two identical glass chambers (250 mL empty bed
90 volume each) separated by a cation exchange membrane (Nafion 117, 5.7 cm²; Dupont,
91 Wilmington, DE). Each chamber was a modified square glass bottle with three side-ports for gas
92 sampling, influent addition, and effluent removal. A glass buret was connected to the headspace
93 of each chamber for gas collection and volume measurement by the displacement of an acid
94 brine solution (10% NaCl w/v, 2% H₂SO₄ v/v) (Fig. 1). The anode electrode was carbon-felt (5
95 stripes, 0.5 inch × 0.5 inch × 3 inch each) and the cathode was a platinum-coated carbon cloth (5
96 cm × 6 cm, 0.5 mg Pt/cm²; Fuel Cell Etc). The MEC anode was inoculated with electrode-
97 attached biofilm from a MFC as previously described,⁶ enriched with a mixture of the above-
98 described five compounds at an applied voltage of 0.6 V (anode relative to cathode), and
99 maintained batch-fed once a week for over a year. Both the anode and cathode contents were
100 continuously mixed magnetically.

101 2.3 *MEC bioanode continuous-flow operation*

102 Two influent pumps and one effluent pump were connected to the anode inlet and outlet ports,
103 respectively (Fig. 1). Two positive displacement pumps (Fluid Metering Inc., Syosset, NY) were
104 used for anolyte influent and effluent. A syringe pump (Cole Parmer, Hills, IL) was used for
105 substrate addition. All three pumps ran for 10 min every 3 h controlled by an electronic timer
106 (ChronTrol Corporation; San Diego, CA); the influent anolyte and substrate pumps were turned
107 ON after the effluent pump was turned OFF. The anolyte was microbial growth medium and the
108 catholyte was phosphate buffer, both at pH 7.0, with composition as previously described.⁶ The

109 substrate stock solution was a mixture of the five compounds at equal electron equivalents (each
110 at 3.12 g COD/L) and a total concentration of 10 g/L (15.6 g COD/L) dissolved in the anolyte
111 solution. The effect of HRT, OLR and applied voltage on MEC performance was evaluated in
112 three consecutive operational phases. During each phase, one of the parameters was varied while
113 the values of the other two parameters were fixed. First, the HRT was reduced step-wise from 24
114 to 12 and then to 6 h at a constant OLR of 0.2 g/L-d (Phase I), followed by the increase of OLR
115 from 0.2 to 0.8 and then to 3.2 g/L-d at a constant HRT of 6 h (Phase II), by changing the
116 influent substrate concentration accordingly. The applied voltage was then increased from 0.6 to
117 1.0 V (anode relative to cathode) at an HRT of 6 h and OLR of 3.2 g/L-d (Phase III). Each
118 change of MEC condition was made after stable operation was reached and maintained for at
119 least 4 days. While the cathode was not operated as a continuous-flow, the catholyte was
120 replaced every 2-4 days when the pH increased to 7.5.

121 In the present study the OLR values are expressed based on the total mass of the five
122 compounds mixture used as the bioanode substrate; a factor of 1.56 can be used to convert g/L-d
123 to g COD/L-d based on the theoretical oxygen demand of the compounds.⁶ Thus, the applied
124 OLR values are equivalent to 0.3, 1.2 and 5.0 g COD/L-d. Lewis *et al.* tested a switchgrass
125 pyrolysate in a MEC anode at an OLR up to 10 g COD/L-d, in which approximately 27% was
126 contributed by furanic and phenolic compounds.⁷ Thus, the maximum OLR used in the present
127 study (5 g COD/L-d) is well above the equivalent OLR of furanic and phenolic compounds in the
128 pyrolysate used by Lewis *et al.*⁷

129 2.4 *Experimental controls*

130 In order to assess potential H₂ production and compound transformation through abiotic
131 reactions, an abiotic batch assay was conducted with an uninoculated anode at 0.6 and then 1.0

132 V. Assessment at each condition lasted for 7 days with close monitoring of the current, H₂
133 production and the concentration of the five compounds. Additionally, an open circuit control
134 batch assay was conducted with an active MEC bioanode for 7 days, in order to assess the
135 fermentative transformation of the five compounds mixture in the bioanode. The initial
136 concentration of the five compounds mixture used in the control assays was 0.8 g/L, which was
137 the highest influent concentration of the five compounds mixture used in the continuous-flow
138 bioanode MEC.

139 2.5 *Microbial community analysis*

140 Analysis of the MEC anode microbial community was performed after stable operation was
141 achieved with OLR of 0.2 (day 35) and 3.2 g/L-d (day 58), both at an HRT of 6 h, representing
142 the microbial communities at low and high OLR conditions. The genomic DNA extraction from
143 the biofilm, followed by DNA purity check and quantification, was conducted as previously
144 described.⁶ Each extracted DNA sample was sequenced in duplicate for 16S rRNA gene using
145 Illumina MiSeq (Research and Testing Laboratory; Lubbock, TX). Primer sets 28F/388R (5'-
146 GAGTTGATCNTGGCTCAG -3'/5'-TGCTGCCTCCGTAGGAGT-3') and 519wF/909R (5'-
147 CAGCMGCCGCGGTAA -3'/5'-TTTCAGYCTTGCGRCCGTAC-3') were used for partial 16S
148 rRNA gene of Bacteria and Archaea, respectively. The obtained sequences were clustered into
149 Operational Taxonomic Units (OTUs) at 4% divergence using the UPARSE. The centroid
150 sequence of each I was used for taxonomic classification using the USEARCH global alignment
151 program. The sequences of the abundant species (>1 %) have been deposited to GenBank,
152 National Center for Biotechnology Information (NCBI; www.ncbi.nlm.nih.gov/) with sequence
153 accession numbers from KT799852 to KT799875.

154 2.6 *Analytical methods*

155 The furanic and phenolic compounds and their metabolites were quantified after sample filtration
156 through 0.2 μ m polycarbonate membrane, using a high performance liquid chromatography
157 (HPLC) unit equipped with a HPX-87H column, as previously described.⁶ Soluble chemical
158 oxygen demand (sCOD) and pH were measured following procedures outlined in Standard
159 Methods.¹¹ Total gas production was measured by acid brine solution displacement in glass
160 burets, after equilibration to 1 atm. All gas data reported here are at 20°C and 1 atm. Headspace
161 gas composition (H₂, CO₂, and CH₄) was determined with a gas chromatography unit equipped
162 with two columns and two thermal conductivity detectors.¹²

163 The protein concentration of the MEC anode biofilm and planktonic biomass was
164 measured and used for biomass quantification. For each biofilm sample, two pieces of 0.5 \times
165 0.5 \times 0.5 inch anode electrode were removed from the MEC. Protein was extracted by bead
166 beating followed by 30 min heating at 100 °C in 0.1 N NaOH. To quantify the planktonic
167 protein, 60 mL of bioanode liquid was centrifuged at 10,000 rpm for 15 min. The pellet was then
168 washed three times with clean anolyte followed by centrifugation. The pellet was re-suspended
169 in 0.1 N NaOH, followed by 30 min heating at 100 °C. The extracted protein was quantified
170 using the PierceTM BCA protein assay kit (Thermo Scientific, Waltham, MA), according to the
171 manufacturer's instructions.

172 2.7 *Calculations*

173 Coulombic efficiency was calculated based on the number of electrons recovered as electrical
174 current per electron equivalent of COD removed. Electrical or overall energy efficiency was
175 calculated as the ratio of energy recovered as H₂ to the electrical energy input, or to the sum of
176 electrical and substrate energy input, respectively. Biomass yield coefficient was quantified by

177 considering both planktonic and biofilm biomass accumulation during operation at OLR of 0.2
178 and 3.2 g/L-d. Details on the calculations are described in Text S1.

179 **3. Results and Discussion**

180 MEC operation consisted of three consecutive phases (total duration 66 days) for the evaluation
181 of the effect of HRT, OLR and applied voltage: Phase I (40 days), varying HRT values from 24
182 to 6 h at constant OLR of 0.2 g/L-d and voltage of 0.6 V; Phase II (18 days), varying OLR values
183 from 0.2 to 3.2 g/L-d at constant HRT of 6 h and voltage of 0.6 V; Phase III (8 days), varying
184 applied voltage at constant HRT of 6 h and OLR of 3.2 g/L-d (Fig. 2A, B). The MEC
185 performance in response to each operating condition is discussed below.

186 *3.1 Phase I – Effect of HRT on MEC performance*

187 HRT is an important design parameter for a continuous-flow process. For a MEC, a short HRT
188 allows a high substrate throughput and H₂ production rate for a given influent substrate
189 concentration, but may result in a low extent of substrate biotransformation and COD removal.
190 In the present study, the effect of HRT was assessed at a constant OLR of 0.2 g/L-d and an
191 applied voltage of 0.6 V.

192 Upon each change of HRT from 24 to 12, and then to 6 h, current reached a relatively
193 stable value within 2 days, followed by a stable effluent sCOD in 7 days (Fig. 2). The operation
194 continued for another 4-8 days after a stable effluent sCOD was reached, during which the MEC
195 performance was evaluated (Fig. 3). At a constant OLR of 0.2 g/L-d, the current increased from
196 2.0 to 2.4 mA when the HRT was reduced from 24 to 12 h, and then decreased to 1.9 mA when
197 the HRT was further reduced to 6 h (Fig. 3A; Phase I). Consistent with the measured current, the
198 H₂ production rate at an HRT of 12 h was slightly higher than at an HRT of 24 h or 6 h (Fig. 3B;
199 Phase I), but the difference was not statistically significant ($P = 0.208$). The bioanode and

200 effluent acetate concentration remained below 35 mg/L at all HRT values (Fig. 3C; Phase I). In
201 the open circuit control assay, where only fermentation took place, acetate was produced
202 reaching 502 mg/L at an initial substrate concentration of 800 mg/L of the mixture of the five
203 compounds (Fig. S1). Therefore, acetate was a major fermentation product, which has also been
204 shown in other bioelectrochemical studies which used various fermentable substrates.^{6,13} Acetate,
205 on the other hand, is a key substrate for exoelectrogenesis.^{6,13} Therefore, the observed low
206 acetate concentration during the continuous-flow MEC operation in the present study implies
207 comparable rates of acetate production (i.e., fermentation) and consumption (i.e.,
208 exoelectrogenesis) at an HRT of 6 - 24 h and an OLR of 0.2 g/L-d. The five furanic and phenolic
209 compounds were completely transformed at all HRT values tested during Phase I (Table 1). The
210 sCOD removal ranged from 28 to 41%, and was the highest at an HRT of 12 h (Table 1), which
211 is consistent with the higher current measured at an HRT of 12 h than at HRTs of 24 and 6 h.
212 The Coulombic efficiency, which ranged from 60 to 76%, was not statistically significantly
213 different at the three HRT values tested at an OLR of 0.2 g/L-d ($P = 0.088$) (Table 1).

214 Overall, complete transformation of the five parent compounds at an OLR of 0.2 g/L-d
215 was observed at all HRT values tested. The MEC performance at the three HRTs and an OLR of
216 0.2 g/L-d varied by no more than 25% in terms of H₂ production rate, sCOD removal, and
217 Coulombic efficiency (0.11 ± 0.01 L/L-d, $34 \pm 7\%$, and $73 \pm 6\%$, respectively; mean \pm standard
218 deviation); a HRT of 12 h resulted in a slightly higher current and sCOD removal. Due to the
219 fact that the influent concentration (C_{in}), HRT, and OLR are inter-related (i.e., OLR = C_{in}/HRT),
220 a decrease of HRT at a constant OLR was achieved by decreasing the influent concentration.
221 Thus, the influent concentration, in addition to the HRT, can have an effect on the overall MEC
222 performance. On the other hand, the relatively small variation of the MEC performance in

223 response to the change of HRT is attributed to the fact that more than 90% of the anode biomass
224 was in the biofilm (Fig. 4). Thus, the impact of HRT on the overall anode biomass retention time
225 was expected to be less significant than that in a fully suspended-growth biomass bioreactor. The
226 shortest HRT tested (6 h) is considered as an appropriate operating condition because of the
227 following: (1) a short HRT allows a relatively high substrate throughput and a small anode
228 volume; (2) a nearly complete transformation of the furanic and phenolic compounds was
229 achieved (even at higher OLR values; Table 1, Phase II); and (3) the overall efficiency of H₂
230 production was not considerably lower than that at longer HRT values. Compared to previously
231 reported HRT values used for bioelectrochemical systems, which ranged from hours to days,⁸⁻¹⁰
232 even the relatively short HRT of 6 h used in the present study was sufficient for the
233 transformation of the furanic and phenolic compounds.

234 *3.2 Phase II – Effect of OLR on MEC performance*

235 When the OLR was increased from 0.2 to 0.8 g/L-d, both the current and H₂ production rate
236 increased significantly from 1.9 to 2.7 mA and from 0.10 to 0.14 L/L-d ($P < 0.05$), respectively.
237 However, the current and H₂ production rate did not increase any further when the OLR was
238 increased from 0.8 to 3.2 g/L-d (Fig. 3; Phase II). To understand which sub-process (i.e.,
239 fermentation or exoelectrogenesis) limited the H₂ production rate at an OLR of 3.2 g/L-d, the
240 acetate concentration was examined. As discussed in Section 3.1 above, the measured acetate
241 concentration was the result of the relative rate of production by fermentation and consumption
242 by exoelectrogenesis. At an OLR of 3.2 g/L-d, the effluent acetate level was 332 mg/L, more
243 than 6-fold higher than that at lower OLR values ($P < 0.05$) (Fig. 3C; Phase II). The high acetate
244 concentration in the effluent shows that the rate of acetate consumption by exoelectrogenesis was
245 not able to keep up with the rate of acetate production by fermentation. Considering the liquid

246 phase of the MEC anode as a continuous-flow, stirred tank reactor (CSTR) at steady-state, the
247 following equation applies relative to acetate:

248

$$0 = r_f - r_e - \frac{C}{HRT} \quad (1)$$

249 where r_f is the acetate production rate by fermentation, r_e is the acetate consumption rate by
250 exoelectrogenesis, and C is the measured acetate concentration in the bioanode and the effluent
251 during stable operation. The acetate consumption rate (r_e) at an OLR of 3.2 g/L-d was back
252 calculated as equal to 1.4 mM/d based on the measured H₂ production rate and the following
253 stoichiometric equation:

255 Based on eq 1, the acetate production rate (r_f) at an OLR of 3.2 g/L-d was back
256 calculated as 23.5 mM/d. The fact that r_f (23.5 mM/d) is 17-fold greater than r_e (1.4 mM/d)
257 demonstrates that the rate of exoelectrogenesis was considerably slower than that of
258 fermentation. Moreover, compared with the r_f at OLR of 0.8 g/L-d (4.7 mM/d), the acetate
259 production rate was 5-fold higher at an OLR increased by 4-fold, while the acetate consumption
260 rate (r_e) remained the same. Thus, increasing the OLR improved the rate of acetate production by
261 fermentation, but not the rate of acetate consumption by exoelectrogenesis. Therefore, it is
262 concluded that the H₂ production at an OLR of 3.2 g/L-d was limited by the rate of acetate-
263 supported exoelectrogenesis, as opposed to the rate of fermentation resulting in acetate
264 production.

265 Possible reasons for the limited rate of exoelectrogenesis at an OLR of 3.2 g/L-d are
266 discussed below. The measured acetate concentration at an OLR of 3.2 g/L-d (332 mg/L) was
267 substantially higher than the previously reported value (111 mg/L) of the half saturation constant
268 (K_s) for acetate utilization in mixed bioanode communities.¹⁴ Thus, substrate concentration could

269 not be considered as a rate-limiting factor of exoelectrogenesis at the highest OLR of 3.2 g/L-d
270 used in the present study. Although furanic and phenolic compounds can be inhibitory to
271 microbial activity, the influent concentration of 0.8 g/L (at an OLR of 3.2 g/L-d and HRT of 6 h)
272 was not inhibitory as shown in our previous study.⁶ Thus, inhibition of exoelectrogenesis was not
273 the cause of the lack of increased H₂ production at an OLR of 3.2 g/L-d. However, a combination
274 of electrochemical constraints can be a plausible cause of the observed limited exoelectrogenesis
275 at high OLR. The H-type reactor used in the present study is a proof-of-concept design, has a
276 relatively large internal resistance due to the distance between the anode and cathode electrodes,
277 as well as the use and/or the type of the ion exchange membrane.¹⁵ In addition, Harrington *et*
278 *al.*¹⁶ reported that a carbon-felt anode, which is the type of electrode used in the present study,
279 can suffer from ion transport limitation, although its porous structure provides a large surface
280 area for biofilm attachment and development. For electrons to be transferred from the
281 exoelectrogens to the anode and then to the cathode, an equal number of charges (i.e., ions) must
282 be transported out of the anode biofilm to the anolyte and then to the catholyte to achieve
283 electroneutrality. Thus, ineffective ion transport can limit the current and thus cathodic H₂
284 production. Another electrochemical constraint can be the relatively small specific surface area
285 of the cathode used in the present study (12 m²/m³) compared with the typical range of 10-100
286 m²/m³ for a 250 mL-reactor according to a recent review.¹⁷ Other reasons for the lack of
287 increased H₂ production, from the perspective of microbial interactions, are discussed in Section
288 3.4, below.

289 Similar to the limited increase of H₂ production observed in the present study at an OLR
290 of 5.0 g COD/L-d, Escapa *et al.*⁸ reported a Monod-type saturation of H₂ production above an
291 OLR of 2.0 g COD/L-d in a membrane-less MEC fed with domestic wastewater. However, the

292 cause of the observed plateaued H₂ production may be different from that in the present study.
293 Escapa *et al.*⁸ observed a significant loss of cathodic H₂ to methanogenesis and anodic re-
294 oxidation. In contrast, in the present study, the cathode efficiency was as high as 99%, and thus
295 cathodic H₂ loss was minimal. Besides, as discussed above, the H₂ production at high OLR used
296 in the present study was limited by exoelectrogenesis as opposed to fermentation; the limiting
297 sub-process in the study conducted by Escapa *et al.* was not clear.

298 The sCOD removal and Coulombic efficiency decreased with the increase of OLR (Table
299 1). At an OLR of 3.2 g/L-d, aromatic metabolites were detected in the effluent, such as catechol
300 (0.12 g/L) and phenol (0.11 g/L), which indicates a relatively low extent of biodegradation of the
301 phenolic compounds. Nevertheless, more than 98% of the parent compounds were transformed at
302 the two OLR values tested in Phase II (Table 1). Therefore, increasing the OLR enhanced the H₂
303 production rate to a certain extent, but with the trade-off of lower effluent quality, i.e., higher
304 effluent sCOD concentration.

305 Compared to our previously reported, batch-fed MEC bioanode study, which used the
306 same substrate (i.e., mixture of the five compounds) at an initial/influent substrate concentration
307 range (0.2 – 0.8 g/L), the H₂ production rate during the continuous-flow MEC bioanode
308 operation was 1.4 to 2-fold higher than the maximum rate obtained during batch operation.⁶ The
309 H₂ loss in the batch MEC, possibly caused by H₂ diffusion from the cathode to the anode,⁶ was
310 not observed during the continuous-flow operation in the present study (i.e., cathode efficiency >
311 99%). However, the extent of sCOD removal was lower in the continuous-flow MEC (13 - 28%
312 vs. 49 - 61%) due to the shorter residence time (6 h) compared to the batch incubation duration
313 (7 d).

314 *3.3 Phase II – Effect of OLR on COD balance*

315 A COD balance was performed based on the rate of sCOD removal, H₂, biomass and methane
316 production at the various OLRs. The sCOD removal rate (g/L-d) increased linearly with
317 increasing applied OLR (Fig. 5A). However, the fraction of the COD removed as H₂ decreased
318 (Fig. 5B). Thus, the lack of increased H₂ production at high OLR was not due to the MEC's
319 capacity to utilize COD, but rather to a limited contribution of the COD removed towards
320 exoelectrogenesis.

321 The anode biomass, quantified by protein measurement, increased significantly as the
322 OLR increased from 0.2 to 3.2 g/L-d, but the biofilm-associated biomass fraction of the total
323 anode biomass did not change (93 and 91 % at OLR of 0.2 and 3.2 g/L-d, respectively; Fig. 4).
324 The biomass observed yield coefficient (Y_{obs}) was estimated as 0.23 g biomass-COD/g COD
325 removed (or 0.16 g VSS/g COD removed) at both OLR of 0.2 and 3.2 g/L-d (Text S1). Thus, the
326 fraction of electron equivalents used for biomass synthesis (23%) was constant at the increased
327 OLR. The Y_{obs} value estimated in the present study is consistent with the theoretical yield
328 coefficient of exoelectrogens calculated based on thermodynamics (0.1 – 0.3 g VSS/g COD) by
329 Wilson and Kim,¹⁸ as well as the biomass yield estimated in a glucose-fed bioanode (up to 0.54 g
330 biomass-C/g substrate-C, equivalent to 0.38 g VSS/g COD) by Freguia *et al.*¹⁹

331 It is noteworthy that methane was detected in the bioanode only at an OLR of 3.2 g/L-d
332 with a production rate of 0.09 L/L-d, accounting for 19% of the measured sCOD removed (Fig.
333 5B). The electron flow diverted to methane is equivalent to 0.36 L/L-d of H₂ production, which
334 is a significant loss compared to the observed H₂ production rate of 0.13 L/L-d. If methane
335 production had not occurred, the H₂ production rate at OLR of 3.2 g/L-d would have been 0.49
336 L/L-d, representing a 3.5-fold increase from that observed at an OLR of 0.8 g/L-d. The forgoing

337 discussion assumes that the observed methane production was due to hydrogenotrophic
338 methanogenesis. As discussed in Section 3.4 below, acetoclastic methanogens were not detected.

339 After accounting for H₂, CH₄, and biomass production, 5 – 45% of the COD removed
340 remained unaccounted for (Fig. 5B). Bacterial carbon storage as polymers represented 34-65% of
341 the total bioanode biomass has previously been reported.¹⁹ Because in the present study the
342 biomass was quantified by protein measurement, carbon storage in polymeric substances was not
343 accounted for. Therefore, increasing the OLR to 3.2 g/L-d affected the distribution of electron
344 equivalents, resulting in a higher fraction used for methanogenesis and a lower fraction used for
345 exoelectrogenesis, but the fraction used for biomass production remained constant.

346 *3.4 Phase II – Effect of OLR on anode microbial community*

347 The anode microbial community consisted of three major bacterial phyla: *Proteobacteria*,
348 *Firmicutes* and *Bacteroidetes*. However, the relative abundance of these phyla was considerably
349 different at OLR of 0.2 and 3.2 g/L-d (Fig. 6). At the low OLR (0.2 g/L-d), the microbial
350 community was dominated by *Proteobacteria*, in which more than 80% were *Geobacter* spp.,
351 closely related to *G. sulfurreducens*, a well-known exoelectrogen, and other *Geobacter* spp.
352 reported in bioelectrochemical systems (> 97% identity).^{20,21} In contrast, at the high OLR (3.2
353 g/L-d), *Firmicutes* was the major phylum, distributed in the genera of *Anaerovorax* (16-19%;
354 duplicate analysis), *Acetobacterium* (12-14%), *Eubacterium* (7-9%), *Phascolarctobacterium* (3-
355 4%), *Clostridium* (3%), and unclassified *Clostridia* spp. (42-50%). The characteristics of the
356 detected *Firmicutes* phylotypes are discussed below. The only described species in the
357 *Anaerovorax* genus is *A. ordorimutans*, which ferments putrescine to acetate, butyrate and
358 hydrogen.²² A number of strains of *Acetobacterium* and *Eubacterium* are acetogenic and able to
359 metabolize methoxylated aromatic compounds, such as syringic and vanillic acid.²³⁻²⁵ In

360 particular, the *Eubacterium* sp. detected in the present study is phylogenetically close to
361 *Eubacterium limosum* (99% identity), which is known to perform homoacetogenesis and can also
362 grow on methoxylated aromatic compounds.^{24,25} *Phascolarctobacterium* sp. detected in the
363 present study was closely related to *P. faecium* (99% identity), which can convert succinate to
364 propionate.²⁶ *Clostridium* spp. are mostly obligate anaerobes and usually produce mixtures of
365 organic acids and alcohols from carbohydrates.²⁷ To date, only a few exoelectrogens belonging
366 to *Firmicutes* have been isolated, such as *Clostridium butyricum* EG3,²⁸ *Desulfitobacterium*
367 *hafniense* strain DCB2,²⁹ and two *Thermincola* strains.^{30,31} However, none of these species was
368 detected or was closely related to the phylotypes identified in the present study. Therefore, the
369 *Firmicutes* species in the present study are considered to be fermenters and acetogens, which
370 metabolically differ from the *Proteobacteria* dominated by exoelectrogenic *Geobacter* spp..

371 Although the relative abundance of exoelectrogens decreased at the high OLR used in the
372 present study, it does not necessarily mean that the size of the exoelectrogenic population
373 decreased, because the total biomass concentration increased at the high OLR by a factor of 3
374 (Fig. 4). However, it is clear that the relative size of the non-exoelectrogenic population
375 increased considerably and disproportionately to that of the exoelectrogens with the increase of
376 OLR from 0.2 to 3.2 g/L-d (Fig. 6). Excessive growth of fermenters and acetogens was expected
377 to result in a higher acetate production rate and acetate accumulation at higher levels, which is
378 consistent with the calculated production rate and measured acetate concentration as discussed in
379 Section 3.2, above. Therefore, the higher OLR favored the growth of the non-exoelectrogens to a
380 higher extent than that of the exoelectrogens. The furanic and phenolic compounds used in the
381 present study are fermentable compounds, which are not directly used by exoelectrogens.⁶ Thus,
382 increasing the loading rate of these substrates enriched fermenters more directly than

383 exoelectrogens. The change of biofilm composition was observed in 24 days (6 days at an OLR
384 of 0.2 g/L, 8 days at 0.8 g/L-d, and then 10 days at 3.2 g/L-d). For the observed dramatic change
385 in the bioanode microbial community composition in a relatively short time, the biofilm
386 coverage was more likely low, which was confirmed based on visual observation and the
387 measured, anode surface area-normalized biomass (0.02 and 0.07 g VSS/m² at OLR of 0.2 and
388 3.2 g/L-d, respectively). Such low biofilm coverage is not uncommon. Harrington *et al.*¹⁶
389 observed sporadic monolayer biofilm on a MEC graphite felt electrode using scanning electron
390 microscopy, and suggested that low biofilm coverage may be characteristic of high surface area
391 electrodes, in contrast to high biofilm coverage on small and flat electrodes.

392 Archaeal species were detected at an OLR of 3.2 g/L-d, but not at 0.2 g/L-d. The detected
393 *Archaea* were two methanogens: *Methanobacterium palustre* (99%) and *Methanobrevibacter*
394 *arboriphilus* (1%) (Fig. 6). The detection of methanogens is consistent with the methane
395 production at an OLR of 3.2 g/L-d discussed in Section 3.3, above. In addition, both
396 *Methanobacterium palustre* and *Methanobrevibacter arboriphilus* are hydrogenotrophic
397 methanogens using H₂ and CO₂, but not acetate,³² which is consistent with the observed acetate
398 accumulation at an OLR of 3.2 g/L-d (Fig. 3C, Phase II). Absence of acetoclastic methanogens
399 in bioanode has previously been reported and explained by outcompetition by exoelectrogens,
400 given that the half-maximum rate concentration (K_s = 177–427 mg COD/L) of acetoclastic
401 methanogens is orders of magnitude higher than that of exoelectrogens (K_s = 0.64 mg COD/L).³³
402 The development of methanogens is considered a consequence of the excessive growth of
403 fermenters at high OLR, which could have produced higher levels of H₂ and CO₂. In contrast, at
404 low OLR, the H₂ produced by fermentation could have been rapidly utilized by the
405 exoelectrogens which dominated the microbial community over the fermenters (Fig. 6). The

406 negative impact of methanogenesis is primarily the diversion of electrons away from
407 exoelectrogenesis and current production, resulting in lower Coulombic efficiency. A secondary
408 impact is competition of hydrogenotrophic methanogens with exoelectrogens for substrate (i.e.,
409 H₂) and nutrients in the biofilm.

410 The microbial community analysis confirmed that a high OLR caused an imbalanced
411 growth of fermentative and exoelectrogenic bacteria. This is another explanation of the limited
412 rate of exoelectrogenesis relative to fermentation, besides the electrochemical constraints
413 discussed in Section 3.2 above. Pinto *et al.*³⁴ developed a multi-population MEC mathematical
414 model which included microbial physiological groups such as fermenters, exoelectrogens, and
415 methanogens, which predicted that the increase of H₂ production rate was less significant at
416 higher organic loadings. However, it is not clear how the effect of organic loading on microbial
417 interactions was accounted for and related to the H₂ production. Consistent with the model
418 prediction,³⁴ the present study showed a similar H₂ production plateau, but has also provided
419 microbial community evidence on the shift relative to the abundance of fermenters and
420 exoelectrogens and the development of methanogens as a result of increased OLR. These
421 findings have important implications on MEC applications with complex, fermentable waste
422 streams derived from the pretreatment of lignocellulosic biomass.

423 3.5 *Phase III – Effect of applied voltage on MEC performance*

424 The effect of increased applied voltage was investigated at an OLR of 3.2 g/L-d and HRT of 6 h,
425 a condition where exoelectrogenesis was limited as discussed in Section 3.2, above. Upon the
426 increase of voltage from 0.6 to 1.0 V, the current gradually increased from 2.5 to 4.2 mA in 2
427 days, and then reached a plateau at 4.2 ± 0.1 mA (Fig. 2C; 60-68 d). The abiotic controls
428 conducted at 0.6 V and 1.0 V showed negligible current production (< 0.05 mA). The fate of the

429 furanic and phenolic compounds in the abiotic controls at 0.6 and 1.0 V was very similar (Fig.
430 S2). It is noteworthy that electrochemical reactions and diffusion of the compounds through the
431 ion exchange membrane to the cathode took place during the abiotic control assays, as described
432 in detail in Text S2. However, the extent of diffusion and electrochemical reactions was the same
433 at both 0.6 and 1.0 V. Therefore, the observed improvement in current production at 1.0 V was
434 not associated with any abiotic electrochemical reactions triggered by the voltage increase.

435 The H₂ production rate at 1.0 V was 1.7-fold higher than at 0.6 V (Fig. 3B, Phase III).
436 The acetate level at 1.0 V (264 mg/L) was lower than that at 0.6 V (332 mg/L), indicating that
437 the rate of acetate consumption by exoelectrogenesis was enhanced at the higher voltage (Fig.
438 3C; Phase III). A higher applied voltage potentially increased the free energy gain of the
439 exoelectrogens, and facilitated electron and charge transport, thus compensating for the
440 electrochemical constraints discussed in Section 3.2, above. The sCOD removal efficiency
441 increased by 2.6-fold, but the Coulombic efficiency decreased (Table 1), as the extent of current
442 increase was less than that of sCOD removal. The differences in current, H₂ production, sCOD
443 removal, Coulombic efficiency, and acetate concentration at 0.6 and 1.0 V were all statistically
444 significant ($P < 0.05$). The concentrations of catechol and phenol, two detected metabolites (both
445 at 0.12 ± 0.01 g/L), were not significantly different from those at the lower voltage (0.12 ± 0.02
446 g/L, $P = 0.705$ and 0.11 ± 0.004 g/L, $P = 0.169$, respectively). The open circuit control assay
447 confirmed that catechol and phenol were fermentation products (Fig. S1). Our previous study
448 showed that catechol and phenol were not used by exoelectrogens.⁶ Thus, the change in applied
449 voltage was not expected to affect the effluent concentration of catechol and phenol. The
450 electrical and overall energy efficiencies at 1.0 V decreased from 242 to 150 %, and from 14 to
451 9%, respectively, compared with those at 0.6 V. A recent review by Lu and Ren summarized

452 MEC performance at various applied voltage values in studies using a large variety of substrates
453 from acetate to lignocellulosic biorefinery byproducts.³⁵ They showed a general trend of
454 increased MEC performance but decreased energy efficiency with an increased voltage in the
455 range of 0.2 - 1.2 V, attributed to a higher energy input which in turn facilitates electron transfer
456 in exoelectrogenesis.

457 **4. Conclusions**

458 An HRT of 6 h resulted in complete transformation of furanic and phenolic substrates, which can
459 be a feasible MEC operating condition for a lignocellulose-derived wastewater. OLR affects
460 MEC performance and is critical in maintaining balanced growth between fermenters and
461 exoelectrogens, especially for fermentable and slowly degraded substrates. Increasing the MEC
462 voltage significantly improved the H₂ production rate when exoelectrogenesis was limited. The
463 present study provides insights into how continuous-flow MEC operating conditions affect
464 microbial activity and interactions in a mixed-population bioanode community, which apply to a
465 broader range of complex, fermentable substrates used in bioelectrochemical systems.

466 **Acknowledgements**

467 We acknowledge funding for this work from the U.S. Department of Energy, BioEnergy
468 Technologies Office under the Carbon, Hydrogen and Separations Efficiency (CHASE) in Bio-
469 Oil Conversion Pathways program, DE-FOA-0000812. The manuscript has been coauthored by
470 UT-Battelle, LLC, under Contract DEAC05-00OR22725 with the U.S. Department of Energy.

471

472

References

473 1. H. B. Klinke, A. B. Thomsen and B. K. Ahring, *Appl. Microbiol. Biotechnol.*, 2004, **66**, 10-
474 26.

475 2. S. Jones, P. Meyer, L. Snowden-Swan, A. Padmaperuma, E. Tan, A. Dutta, J. Jacobson and
476 K. Cafferty, *Process design and economics for conversion of lignocellulosic biomass to*
477 *hydrocarbon fuels*, Report PNNL-23053, NREL/TP- 5100-61178, Pacific Northwest
478 National Laboratory, Richland, WA, 2013.

479 3. J. S. Piotrowski, Y. Zhang, T. Sato, I. Ong, D. Keating, D. Bates and R. Landick, *Front.*
480 *Microbiol.*, 2014, **5**, 1-8.

481 4. A. Borole, J. Mielenz, T. Vishnivetskaya and C. Hamilton, *Biotechnol. Biofuels*, 2009, **2**, 7.

482 5. A. P. Borole, C. Y. Hamilton and D. J. Schell, *Environ. Sci. Technol.*, 2013, **47**, 642-648.

483 6. X. Zeng, A. P. Borole and S. G. Pavlostathis, *Environ. Sci. Technol.*, 2015, **49**, 13667-13675.

484 7. A. J. Lewis, S. Ren, X. Ye, P. Kim, N. Labbe and A. P. Borole, *Bioresour. Technol.*, 2015,
485 **195**, 231-241.

486 8. A. Escapa, L. Gil-Carrera, V. García and A. Morán, *Bioresour. Technol.*, 2012, **117**, 55-62.

487 9. Y. Gao, H. Ryu, J. W. Santo Domingo and H.-S. Lee, *Bioresour. Technol.*, 2014, **153**, 245-
488 253.

489 10. L. Gil-Carrera, A. Escapa, P. Mehta, G. Santoyo, S. R. Guiot, A. Morán and B. Tartakovsky,
490 *Bioresour. Technol.*, 2013, **130**, 584-591.

491 11. E. W. Rice, A. D. Eaton and R. B. Baird, *Standard Methods for the Examination of Water*
492 *and Wastewater* APHA, AWWA, WEF, Washington, DC, 22nd edn., 2012.

493 12. D. Okutman Tas and S. G. Pavlostathis, *Environ. Sci. Technol.*, 2008, **42**, 3234-3240.

494 13. P. D. Kiely, J. M. Regan and B. E. Logan, *Curr. Opin. Biotechnol.*, 2011, **22**, 378-385.

495 14. H.-S. Lee, C. s. I. Torres and B. E. Rittmann, *Environ. Sci. Technol.*, 2009, **43**, 7571-7577.

496 15. B. E. Logan, D. Call, S. Cheng, H. V. M. Hamelers, T. H. J. A. Sleutels, A. W. Jeremiassie
497 and R. A. Rozendal, *Environ. Sci. Technol.*, 2008, **42**, 8630-8640.

498 16. T. D. Harrington, J. T. Babauta, E. K. Davenport, R. S. Renslow and H. Beyenal, *Biotechnol.*
499 *Bioeng.*, 2015, **112**, 858-866.

500 17. B. E. Logan, M. J. Wallack, K.-Y. Kim, W. He, Y. Feng and P. E. Saikaly, *Environ. Sci.*
501 *Technol. Lett.*, 2015, **8**, 206-214.

502 18. E. L. Wilson and Y. Kim, *Water Res.*, 2016, **94**, 233-239.

503 19. S. Freguia, K. Rabaey, Z. Yuan and J. Keller, *Environ. Sci. Technol.*, 2007, **41**, 2915-2921.

504 20. J. Butler, N. Young, M. Aklujkar and D. Lovley, *BMC Genomics*, 2012, **13**, 471.

505 21. H. Kobayashi, N. Saito, Q. Fu, H. Kawaguchi, J. Vilcaez, T. Wakayama, H. Maeda and K.
506 Sato, *J. Biosci. Bioeng.*, 2013, **116**, 114-117.

507 22. C. Matthies, S. Evers, W. Ludwig and B. Schink, *Int. J. Syst. Evol. Microbiol.*, 2000, **50**,
508 1591-1594.

509 23. R. Bache and N. Pfennig, *Arch. Microbiol.*, 1981, **130**, 255-261.

510 24. B. R. Gentner, C. L. Davis and M. P. Bryant, *Appl. Environ. Microbiol.*, 1981, **42**, 12-19.

511 25. B. R. Sharak Gentner and M. P. Bryant, *Appl. Environ. Microbiol.*, 1987, **53**, 471-476.

512 26. T. Del Dot, R. Osawa and E. Stackebrandt, *Syst. Appl. Microbiol.*, 1993, **16**, 380-384.

513 27. P. D. Vos, G. M. Garrity, D. Jones, N. R. Krieg, W. Ludwig, F. A. Rainey, K.-H. Schleifer
514 and W. B. Whitman, *Bergey's manual of systematic bacteriology. Volume 3. The Firmicutes*,
515 Springer, Dordrecht, NY, 2 edn., 2009.

516 28. H. S. Park, B. H. Kim, H. S. Kim, H. J. Kim, G. T. Kim, M. Kim, I. S. Chang, Y. K. Park and
517 H. I. Chang, *Anaerobe*, 2001, **7**, 297-306.

518 29. C. E. Milliken and H. D. May, *Appl. Microbiol. Biotechnol.*, 2007, **73**, 1180-1189.

519 30. C. W. Marshall and H. D. May, *Energy Environ. Sci.*, 2009, **2**, 699-705.

520 31. K. C. Wrighton, P. Agbo, F. Warnecke, K. A. Weber, E. L. Brodie, T. Z. DeSantis, P.

521 Hugenholz, G. L. Andersen and J. D. Coates, *ISME J.*, 2008, **2**, 1146-1156.

522 32. J.-L. Garcia, *FEMS Microbiol. Rev.*, 1990, **87**, 297-308.

523 33. P. Parameswaran, H. Zhang, C. I. Torres, B. E. Rittmann and R. Krajmalnik-Brown,

524 *Biotechnol. Bioeng.*, 2010, **105**, 69-78.

525 34. R. P. Pinto, B. Srinivasan, A. Escapa and B. Tartakovsky, *Environ. Sci. Technol.*, 2011, **45**,

526 5039-5046.

527 35. L. Lu and Z. J. Ren, *Bioresour. Technol.*, 2016, **215**, 254-264.

528

Figure Captions

529 **Fig. 1.** Continuous-flow bioanode MEC. 1, mixture of furanic and phenolic compounds; 2,
530 anolyte; 3, effluent waste; 4, syringe pump; 5, positive displacement pump; 6, glass buret; 7, acid
531 brine displacement reservoir; 8, anode chamber; 9, cation exchange membrane; 10, cathode
532 chamber; 11, potentiostat.

533 **Fig. 2.** MEC response to various operating conditions. (A) HRT and OLR; (B) applied voltage;
534 (C) current; (D) influent and effluent sCOD. Error bars represent mean values \pm one standard
535 deviation, $n = 3$.

536 **Fig. 3.** Current (A), H₂ production rate (B) and acetate concentration (C) during stable MEC
537 operation at various HRT, OLR and applied voltage values. Error bars represent mean values \pm
538 one standard deviation, $n \geq 4$.

539 **Fig. 4.** MEC anode protein concentration normalized to anode empty bed volume at various OLR
540 values and an HRT of 6 h. Error bars represent mean values \pm one standard deviation, $n = 2$.

541 **Fig. 5.** Soluble COD removed (A) and its components (B) at various OLR values and an HRT of
542 6 h.

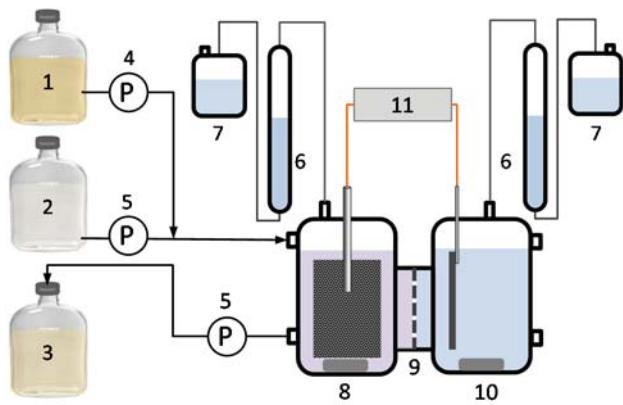
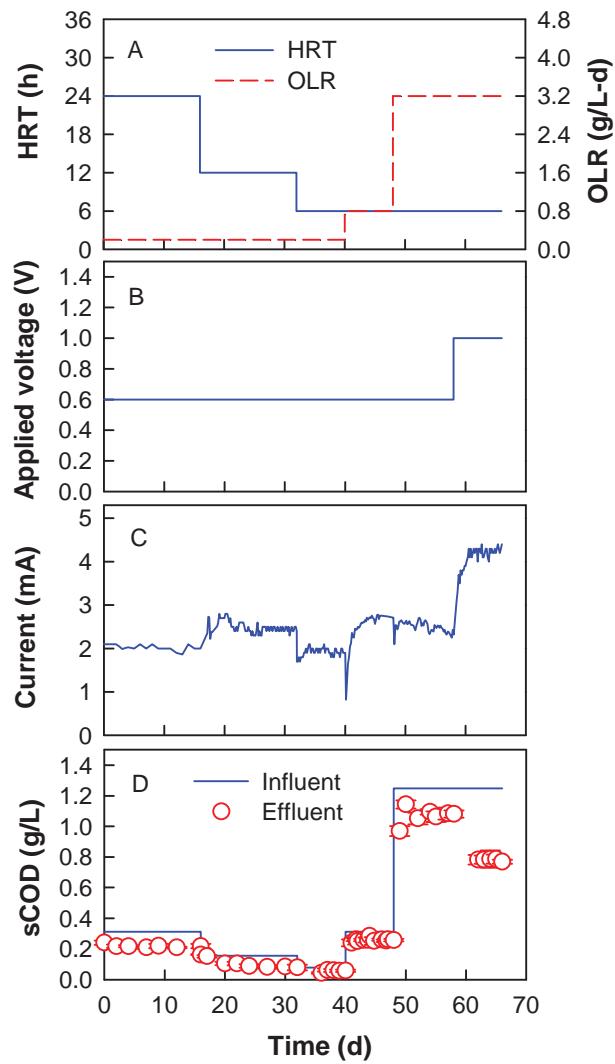
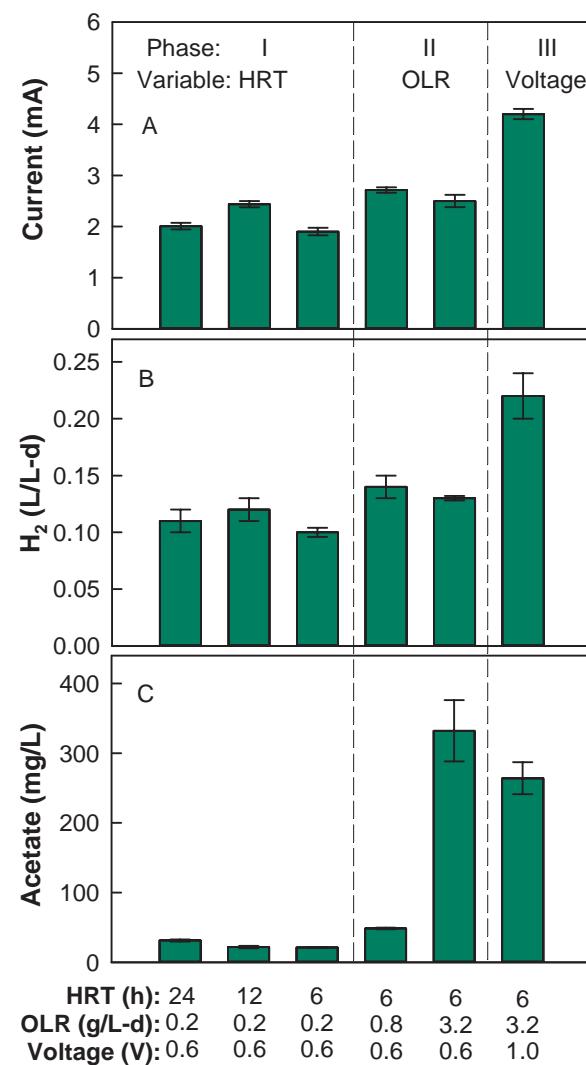
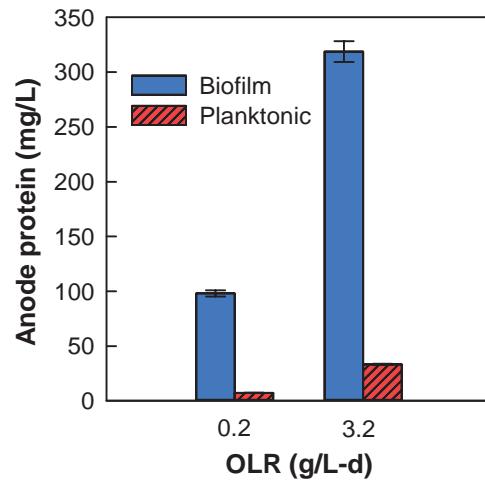
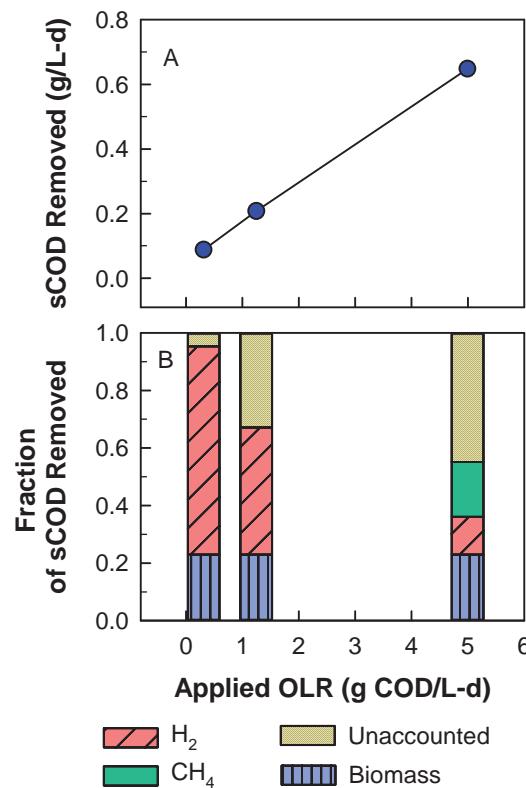
543 **Fig. 6.** Anode microbial community composition in duplicate at various OLR values and an HRT
544 of 6 h.

Table 1. MEC Performance under Various HRT, OLR and Applied Voltage Conditions

Parameter	Operational Phase					
	I		II		III	
Duration (d)	16	16	8	8	10	8
Applied voltage (V)	0.6	0.6	0.6	0.6	0.6	1.0
HRT (h)	24	12	6	6	6	6
OLR (g/L-d)	0.2	0.2	0.2	0.8	3.2	3.2
Influent parent compounds (mg/L)	200	100	50	200	800	800
Effluent parent compounds (mg/L)	ND ^a	ND	ND	4 ± 1 ^b	16 ± 2	5 ± 2
Parent compounds conversion (%)	> 99	> 99	> 99	98 ± 0.6	99 ± 0.2	99 ± 0.3
sCOD removal (%)	31 ± 1	47 ± 3	30 ± 10	18 ± 2	14 ± 1	37 ± 1
Coulombic efficiency (%)	74 ± 5	60 ± 4	76 ± 18	44 ± 3	13 ± 1	8.0 ± 0.3

^a None detected.

^b Mean ± standard deviation ($n \geq 4$).






Fig. 1

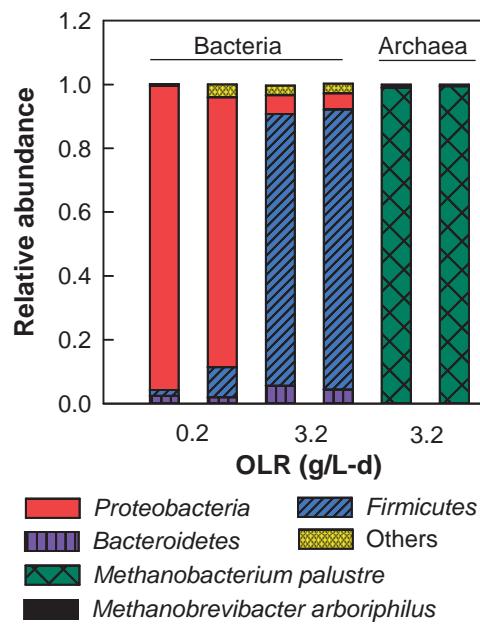

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6