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SUMMARY

This paper describes a new equivalent-circuit model for the thickness shear mode resonator QI Ssch‘e
viscoelastic layer operating near film resonance. The electrical impedance of the film is represented by a
simple three-element parallel circuit containing a resistor, a capacitor, and an inductor. These elements
describe the film’s viscous power dissipation, elastic energy storage, and kinetic energy storage,
respectively. Resonator response comparisons between this lumped-elenient model and the general
transmission-line model show good agreement over a range of film phase conditions and not just near film

resonance.
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INTRODUCTION

The thickness shear mode (TSM) resonator is an important
transduction platform for chemical sensing. A thin
viscoelastic layer on the resonator sorbs chemicals from

the environment and changes its material properties. In this .

case, the viscoelastic layer does not always act as a pure
mass load according to the Sauerbrey expression [1], but
instead one that represents both energy storage and power
loss. As the acoustic wave (imparted to the film by the
vibrating quartz surface) traverses the layer, it experiences
a phase shift, 4. If ¢ « x/2, the film can be treated as a thin
layer loading the surface, exhibiting a monotonic change in
energy storage proportional to mass variation. However, as
¢ increases, more power is dissipated in the film. When ¢=
7/2, the film exhibits a resonance and the power
dissipation is maximum [2]. At this point, the quartz
resonator and the film constitute coupled resonators. We
describe a new Iumped-element equivalent-circuit
representation for the viscoelastic layer derived from its
behavior near film resonance.

RESONATOR MODEL

The TSM resonator with arbitrary surface load can be
represented by a transmission line with complex electrical
impedance [3,4]. Near mechanical resonance of the
unperturbed quartz crystal, the electrical impedance is
reduced to the modified Butterworth-Van Dyke equivalent
circuit shown in Fig. 1(a) [5]. The impedance has a static
branch (characterized by the resonator capacitance, Cp*)
and a motional branch due to the mechanical vibration of
the quartz. The resonator admiftance for these two
branches is given by

Y = joCh+—— | )
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where the resonator motional impedance, Zy,, is a linear
combination of the contributions from the unperturbed

‘crystal:

Z.%=(R,+ = +ij1} )
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and the surface load, ZM".

Near the quartz crystal resonance. the impedance due to
the surface load is given by [6]
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where N is the resonator harmonic number (odd integers).
K? is the quartz electromechanical coupling constant, @, =
27 f; is the series resonant frequency, C, is the quartz plate
capacitance, Z; is the load surface mechanical impedance,
and Z, is the quartz characteristic impedance. The surface
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Fig. 1: The equivalent-circuit representation of a TSM
resonator with a viscoelastic layer.
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mechanical impedance is the ratio of the shear stress
imparted by the film to the shear particle velocity at the
quartz-film interface. For a finite viscoelastic layer [2]

Z, =+[pG tanh(Bh) , @

where p is the film density, G = G' + jG" is the film’s
complex shear modulus (G’ is the storage modulus and G”
is the loss modulus), 8 = jw(p/G)* is the shear wave
propagation factor, and /4 is the film thickness. Since Eq.
(4) is not readily decomposed into real and imaginary
components or other simple elements, previous loaded-
resonator models utilized this transmission-line
representation of the viscoelastic layer as expressed [7].

Near film resonance, an approximation for the hyperbolic
tangent function in Eq. (4) can be implemented [3,8]:
88h
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where N’ is the film harmonic number (odd integers).
Combining Egs. (3) through (5) and performing the

complex algebra yields
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where A4 is defined in Eq. (3). This expression for the load
impedance can be rewritten as
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which is a parallel combination of the film elements as
shown in Fig. 1(b). The individual circuit elements are [8]
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R, represents viscous dissipation in the film, C, the elastic
energy storage, and L, the kinetic energy storage. Note
that L, is proportional to /0, analogous to a mass layer.

MODEL COMPARISONS

A comparison of the TSM resonator responses using both
the transmission-line impedance model for the film [Eq.
(4)] and the lumped-element impedance model [Eq. (6)]
are shown in Fig. 2. Plotted is the shift in series resonant
frequency, 4f;, and the change in resonant resistance, 4R,
for viscoelastic films possessing varying degrees of phase
shift. The two quantities 4f; and 4R are typically the

measurable parameters in a sensor system. As seen in Fig.
2, the TSM resonator system exhibits resonant behavior
near ¢= /12 due to the film properties. For a low-loss film,
where the loss tangent G'/G’' « 1, the lumped-element
representation is a good predictor of the response. This
occurs over a wide range of phase shifts and not just near
film resonance. However, for a lossy film, G" ~ G, the
new model is less. accurate, especially for the frequency
shift predictions. This deviation arises because the
approximation in Eq. (5), upon which the model is
constructed, utilizes the entire argument Sh, while film
resonance depends only on ¢, the imaginary component of
ph. When film loss (the real component of ph) is
significant, Sk and ¢ diverge.

Response dependence on viscoelastic layer loss can be
investigated further by comparing the film resonant
frequencies for the two models. For the lumped-element
model (LEM), the film resonant frequency occurs when
the reactive elements in Eq. (7) cancel. Then using Egs. (8)
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Fig. 2: The shift in series resonant frequency [curves (a)
and (c)] and resonant resistance [(b) and (d)] versus
acoustic phase shift across a viscoelastic layer computed
using the new lumped-element model (dashed curves) and
the transmission-line model (solid curves). The two curves’
in (b) are indistinguishable. For all curves, G' = 1 o dyne
em’; responses in (a) and (b) are for a low-loss layer,
while responses in (¢} and (d} are for a lossy layer.
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For the general transmission-line model (TLM), the phase
shift across the viscoelastic layer is

wh ,0(|G| +G')
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Film resonance occurs when the phase shift is N'z/2,

which leads to
N '7z|G| I )
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The ratio of the film resonant frequencies for the two
models is then

a1

Dy =

Of i _ IG|+G' F1/1+(G"/G')2 a

‘Figure 3 is a plot of Eq. (12) illustrating the divergence of
the film resonant frequencies between the two models as
‘G"/G’ increases. When G” = G, the difference between the
two film resonant frequencies is ~ 10%. This relative
difference, however, is much smaller than that observed in
Fig. 2(c) for the measurable frequency shift, 4f.. Model
discrepancy for 4f; at §=7/2 is ~ 50% when G" = G".

Combining Egs. (6) and (9) yields an expression for the
complex electrical impedance of the lumped-element
representation as a function of the film resonant frequency
and the film loss tangent:
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It is interesting to compare this impedance to that of the
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Fig. 3: The computed ratio of film resonant frequencies
between the lumped-element model, &gy, and the
transmission-line model, @y, as a function of the
viscoelastic film loss tangent.

ideal mass layer for acoustically thin films (¢ « 7/2):

N=m
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The impedance ratio for the lumped-element model near
film resonance is then [8]

[éALJ - 8 j(wf/a’)z
Zo )iy W'z} (G')G)+ I~ (@f[0)?]

A plot of this impedance ratio as a function of (@/a@) is
shown in Fig. 4 for the same two values of film loss
tangent used in Fig. 2. Also plotted in Fig. 4 is the
equivalent impedance ratio for the transmission-line
model. That impedance expression is found from Egs. (3),

(4), and (14):
[Q J _ tanh(Bh)
Zw).  ~ Bh
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This impedance representation is similar to that derived by

Behling, et al. [9]. ph as a function of the film resonant
frequency and loss tangent can be found using

ﬂh:ja)h\/g=a+j¢ .
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Fig. 4: The magnitude (top) and phase (bottom) of the
layer impedance ratio versus the oscillation frequency
relative to film resonance. Impedance ratios are shown for
the lumped-element model (dashed curves) computed from
Eq. (15) and the transmission-line model (solid curves)
computed from Eq. (16).




where the film loss, ¢, is given by
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Substituting Egs. (10), (11), and (18) into Eq. (17)
provides a final expression for Gh:
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Several features are noted about the plots in Fig. 4. Near
film resonance, @ = «y, the impedance magnitude and
phase for the two models is in very good agreement when
the viscoelastic layer is low loss, G"/G' = 0.1. Significant
deviations between the models exist for the lossy layer,
G"/G' = 1, as discussed earlier. Away from film resonance,
the equivalent circuit model is not always a good
representation of the layer response. For acoustically thin
films, @ « @, the impedance magnitude ratio is 0.8],
indicating that kinetic energy storage found from L in Eq.
(8¢) is not exactly that expressed by Sauerbrey in his mass
loading model [1]. Note, however, that in the acoustically
thin regime, the impedance phase ratios agree well for both
values of film loss tangent. At the higher oscillation
frequencies, @ » @, large model deviations occur.-Some of
these differences are due to the harmonic resonances
predicted by the transmission-line model and Eq. (16) that
are not expressed in Eq. (15) for the lumped-element
model with N’ = 1. Better fits for the response resonance at
3w/ay would occur if N' = 3 were used in Eq. (15);
however, model deviations would then occur at all other
film resonances.

(19)

CONCLUSIONS

The new lumped-element model for a TSM resonator with
a viscoelastic layer provides a simple equivalent-circuit
representation that is easy to analyze for sensor systems.
For low-loss layers, the model shows excellent agreement
with the transmission-line representation when operating
near film resonance and good agreement for the

measurable response parameters for most other layer phase
conditions. For lossy viscoelastic layers, however, the
lumped-element model can deviate significantly from the
transmission-line model. These differences are due to the
approximation used near film resonance. In general, this
new model provides a suitable mechanism for
characterizing many viscoelastic layers and chemical
sensing systems. In combination with the Sauerbrey model
[1], it expands the acoustic phase region over which simple
expressions can be used for describing surface interactions.
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