

Observations of non-close-packed arrangements in multilayers of passivated gold clusters

A Wellner¹, P Brown², M Aindow^{2,*}, C J Kiely³ and J P Wilcoxon⁴

1. Nanoscale Physics Research Laboratory, School of Physics and Astronomy, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
2. School of Metallurgy and Materials, The University of Birmingham, B15 2TT, UK.
3. Materials Science and Engineering, Dept. of Engineering, University of Liverpool, Liverpool, L69 3BX, UK.
4. Nanostructures and Advanced Materials Department 1152, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.

* Now at: Dept. of Metallurgy and Materials Engineering, University of Connecticut, Storrs, CT 06269-3136, USA.

ABSTRACT: The stacking of second and third layers of supercrystals of self-assembled passivated gold nanoparticles has been investigated using transmission electron microscopy. We report for the first time nanoparticles occupying the twofold saddle site in the third layer.

1. INTRODUCTION

The unusual properties of nanometre-scale metal and semiconductor particles have triggered intensive studies of size selected clusters (Goldby *et al.* 1996, Carroll *et al.* 1998). One of the most fascinating and widely studied phenomena is self-assembly of nanoparticles into superlattices (for a review see Collier *et al.* 1998). Superlattices of surfactant-stabilised nanosized colloidal particles have been reported by several authors, for example Brust *et al.* (1995), Ohara *et al.* (1995), Fink *et al.* (1997), Durston *et al.* (1998), Kiely *et al.* (1998) and Wang (1998). Particles with a narrow size distribution exhibit a hexagonal close-packed arrangement in the first layer (Harfenist *et al.* 1996, Fink *et al.* 1998, Durston *et al.* 1997).

The three dimensional packing of multilayers of passivated particles has been found to be more complicated. Harfenist *et al.* (1996) have shown that passivated nanocrystals with a truncated octahedral shape exhibited face-centred cubic (fcc) packing, corresponding to the occupation of the threefold hollow sites with ..ABCABC.. stacking. For multiply twinned particles, however, hexagonal close-packing (hcp) was observed corresponding to ..ABAB.. stacking (Harfenist *et al.* 1997).

Other studies have shown that particles in the second layer can also occupy the twofold saddle site leading to line or ring structures in projection (Fink *et al.* 1997, Korgel *et al.* 1998, Zanchet *et al.* 1999). Crystallographic descriptions for multilayers in such sites have been described by Aindow *et al.* (1999). In this paper we report for the first time experimental evidence for the existence of such structures.

2. EXPERIMENTAL

The passivated gold clusters used here were produced using the inverse micelle method which has been described elsewhere (Wilcoxon *et al.* 1993). The particles consist of a charge-neutral gold core (4 - 4.5 nm in diameter) surrounded by C₁₂H₂₅S ligands (1.8 nm in length). The clusters were dissolved in a toluene solution. Amorphous carbon substrates

RECEIVED
OCT 20 1999
S T I

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

were produced by evaporating a thin film of carbon onto a glass slide. The film was then floated off in water and transferred onto a Cu support grid. The clusters were deposited by dropping the solution onto the substrate and allowing the solvent to evaporate. The samples were examined in a top-entry JEOL 200CX TEM operating at 200kV.

3. RESULTS AND DISCUSSION

Figure 1 is a bright field (BF) TEM image of a bilayer island which exhibits distinctive lines in three domains which lie at 120° to one another. As explained by Fink *et al.* (1997), lines (or sometimes even rings) arise when nanoparticles in the second layer occupy the two-fold saddle sites in the first layer instead of the three-fold hollow sites as defined in fig. 2a. Although one would expect intuitively the occupation of three-fold hollow sites (fig. 2b) for near-spherical particles, the occupation of the two-fold saddle sites (fig. 2c) is also observed experimentally. It has been suggested that the latter configuration is caused by electrostatic repulsion forces (Fink *et al.* 1998) or shape dependent van-der-Waals forces between the particles (Korgel *et al.* 1998). However, the latter explanation holds only for particles with a truncated octahedral shape. We have observed the occupation of two-fold saddle sites even in samples which contained many multiply-twinned particles which have been shown to behave like spheres (Harfenist *et al.* 1997). Zanchet *et al.* (1999) have shown recently that ring structures arise if the lattice in the second layer is rotated and contracted leading to an energy minimisation. Unfortunately this promising approach fails to explain the development of lines.

We now consider the stacking of the third and subsequent layers. The stacking of nanocrystals into threefold hollow sites leads to the well-known fcc or hcp structures, both of which have been observed experimentally (Harfenist *et al.* 1996, Harfenist *et al.* 1997). The arrangements produced by stacking the third layers and subsequent layers into two-fold

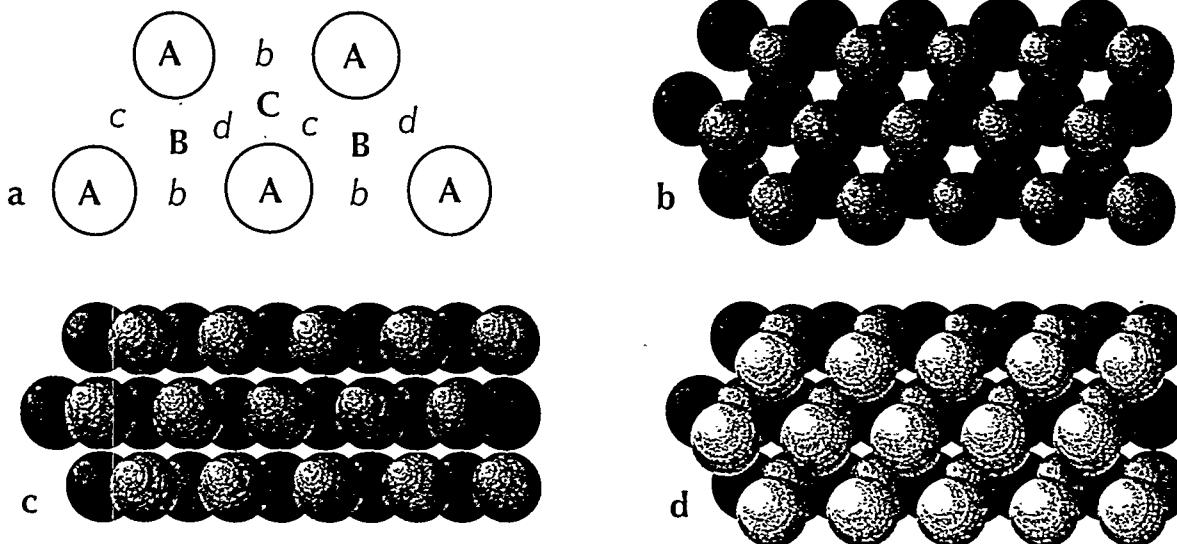


Fig. 2 Schematic representation of multilayers of nanoparticles a) possible occupation sites; projection of particles occupying b) the threefold hollow sites in the second layer (AB stacking), c) the twofold saddle sites in the second layer (Ab stacking), d) the twofold saddle sites in the second and the third layers (Abc stacking).

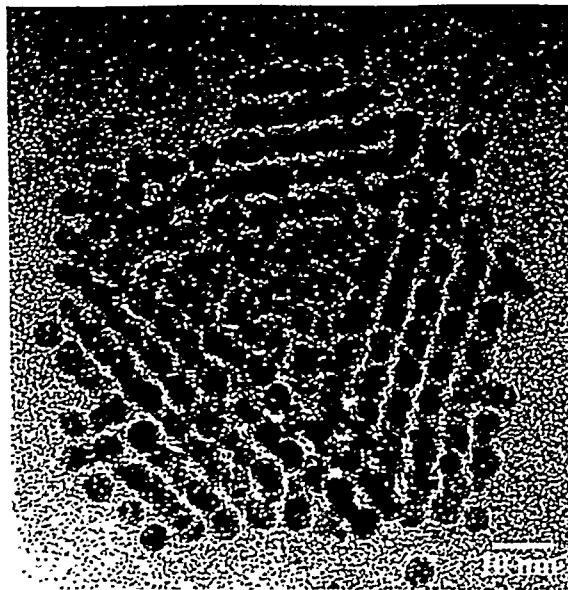


Fig. 1 Bilayer island of gold clusters with a second layer visible as lines.

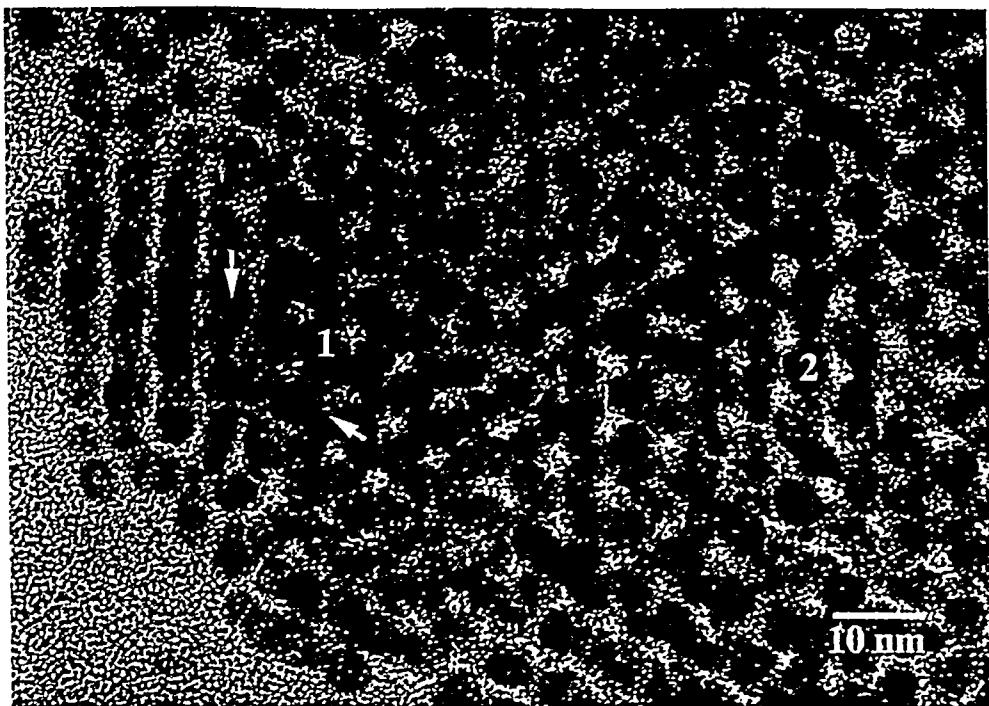


Fig. 3 BF TEM image of an island of gold clusters, with characteristic bilayer lines on the periphery (c.f. fig. 1) and distinct structures in the interior at regions 1 and 2.

saddle sites has been considered by Aindow *et al.* (1999) who noted that the superstructures produced would correspond to disordered forms of the atomic structures adopted by transition metal disilicides. Occupation of the twofold site above the first layer would lead to AbA stacking corresponding to the $C11_b$ MoSi_2 structure (space group I/mmm). This structure would be seen as lines and could not be distinguished from a stacking which contains only two layers in projection (compare with fig. 2c). Occupation of one of the other twofold sites (e.g. c sites) would lead to Abc stacking corresponding to the $C40$ CrSi_2 structure (space group P6₃22). As noted by Aindow *et al.* (1999), in projection this arrangement would resemble hcp stacking (compare Figs. 2b and 2c) but could be distinguished from it by differences in the detail of the arrangements.

This is revealed most clearly in experimental images such as fig. 3 which shows a nanoparticle array in which several different structures can be distinguished. The periphery exhibits the distinctive lines indicating that the second layer of nanoparticles reside in the twofold saddle sites. Within the island, however, two different superstructures are evident. In region 1, the structure appears denser and consists of two sets of lines (arrowed) which are parallel to those on the edges of the island. Towards the centre of the island, however, in region 2, a less dense pattern with three-fold symmetry can be seen. This suggests that the

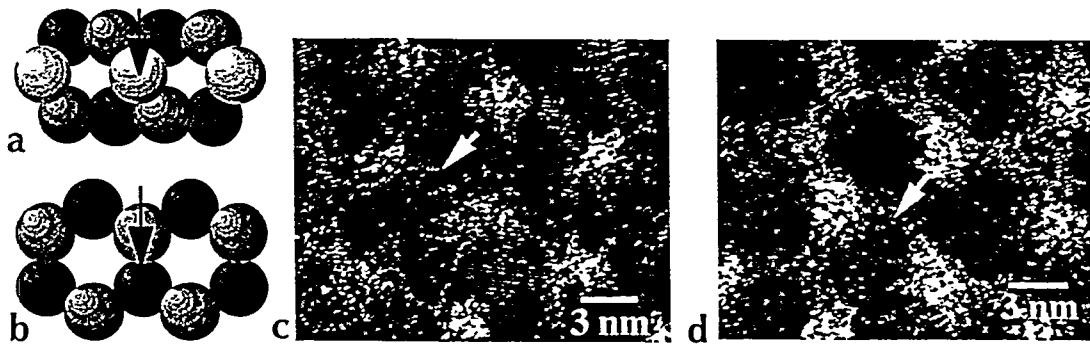


Fig. 4 Detail of cluster arrangements around projected holes with the midpoint between adjacent holes arrowed; a) Abc stacking, b) AB stacking, c) and d) magnified images of regions 1 and 2 in fig 3, respectively.

pattern in region 1 corresponds to the Abc stacking of the C40 CrSi₂ structure as shown in fig. 2d, whereas region 2 corresponds to the AB stacking of the hcp structure (fig 2b). A reliable distinction between the two structures can be made by a closer examination of the projected holes in the arrangement (fig. 4). Figures 4a and 4b are schematic diagrams of the cluster arrangements around the holes for Abc- and AB-stacking, respectively. Both consist of a network of closed hexagons but the difference becomes clear if we consider the point midway between two adjacent holes in the projected arrays (arrowed in figs. 4a-d). For Abc-stacking (fig. 4a) this corresponds to the centre of a particle, whereas for AB-stacking (fig. 4b) it is the midpoint between two neighbouring particles. This test can be applied to regions 1 and 2 in fig. 3 which are shown at higher magnification in figs. 4c and d, respectively. In fig. 4c a particle can be seen clearly at the midpoint between the two neighbouring holes. This confirms that region 1 exhibits the Abc-stacking of the C40 CrSi₂ structure. In contrast, fig. 4d shows clearly that the midpoint between adjacent holes lies between adjacent particles and thus region 2 exhibits the AB- stacking of the hcp structure.

Further stacking of the fourth and subsequent layers of nanoparticles into twofold saddle sites could give rise to AbAb... stacking (C11_b MoSi₂ structure), AbcAbc... stacking (C40 CrSi₂ structure), AbcdAbcd.... stacking (C54 TiSi₂ structure) or mixtures of these. The former two would resemble the arrangements shown in figs. 2c and d, respectively, whereas abcd... stacking would appear as a dense raft of nanoparticles which could not be distinguished from fcc or random threefold hollow site packing in this projection.

5. CONCLUSION

We have shown for the first time experimental evidence of nanoparticles occupying the twofold saddle site in the third layer (Abc stacking) corresponding to the C40 CrSi₂ structure. In projection, this pattern resembles closed packed AB stacking in the second layer but it has been shown that the patterns can be distinguished by a careful examination of the cluster arrangement around the projected holes. The analysis of the experimental data shows that Abc- and AB stacking can coexist in the same self-assembled island.

REFERENCES

Aindow M, Williams SN, Palmer RE, Fink J, and Kiely CJ, 1999, Phil. Mag. Lett. **79**, 569.
 Brust M, Bethell D, Schiffrin DJ, and Kiely CJ, 1995, Adv. Mater. **9**, 795.
 Carroll SJ, Seeger K, and Palmer RE, 1998, Appl. Phys. Lett. **72**, 305.
 Collier CP, Vossmeye T, and Heath JR, 1998, Annu. Rev. Phys. Chem. **49**, 371.
 Durston PJ, Schmidt J, Palmer RE, and Wilcoxon JP, 1997, Appl. Phys. Lett. **71**, 2940
 Durston PJ, Palmer RE, and Wilcoxon JP, 1998, Appl. Phys. Lett. **72**, 176.
 Fink J, Kiely CJ, Bethell D, Schiffrin DJ, 1997, Inst. Phys. Conf. Ser. **153**, 601.
 Fink J, Kiely CJ, Bethell D, Schiffrin DJ, 1998, Chem. Mater. **10**, 922.
 Goldby IM, Kuipers L, von Issendorf B, and Palmer RE, 1996, Appl. Phys. Lett. **69**, 2819.
 Harfenist SA, Wang ZL, Alvarez MM, Vezmar I, and Whetten RL, 1996, J. Phys. Chem. **100**, 13904.
 Harfenist SA, Wang ZL, Whetten RL, Vezmar I, and Alvarez MM, 1997, Adv. Mater. **9**, 817.
 Kiely CJ, Fink J, Brust M, Bethell D, and Schiffrin DJ, 1998, Nature **396**, 444.
 Korgel BA and Fitzmaurice D, 1998, Phys. Rev. Lett. **80**, 3531.
 Korgel BA, Fullam S, Connolly S, and Fitzmaurice D, 1998, J. Phys. Chem. B **102**, 8379.
 Ohara PC, Leff DV, Heath JR, and Gelbart WM, 1995, Phys. Rev. Lett. **75**, 3466.
 Ohara PC, Heath JR, and Gelbart WM, 1997, Angew. Chem. Int. Ed. Engl. **36**, 1077.
 Wang ZL, 1998, Adv. Mater. **10**, 13.
 Wilcoxon JP, Williamson RL, Baughman RJ, 1993, J. Chem. Phys. **98**, 9933.
 Zanchet D, Moreno MS, and Ugarte D, 1999, Phys. Rev. Lett. **82**, 5277.