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Introduction to Spectral Imaging
= Spectrometers characterize | \/\/\/V\/\/\/WWWW\IWWW

Radiation Type  Radio Microvgave Infrared Visible Ultraviolet | X-ray Gamma_ ray

electromagnetic radiation as a Wt (] 17

function of wavelength. el | il $? & % @

Buildings Humans Butterflies Needle Point Protozoans Molecules| Atoms  Atomic Nuclei

= Optical regime: 0.2 —20.0 pm rovers ) [ I S |

104 108 10" 10'" 10' 10' 107

= Spectral imagers provide Figure from [7]
spectral information as a ' ‘
function of spatial coordinates.

= Acquire /(x,y,A) datacubes

= Many scientific and commercial
applications for multi-, hyper-,
and ultra-spectral imagers.

= Parameters of interest in
passive remote sensing are
typically spectral reflectance
p(A) or emittance g(A).
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Spectral Imaging for CTBTO OSI

(Protocol paragraph 69b)

“For any additional overflight(P

conducted pursuant to par
/3, inspectors on boar g;réft

may also use porta ea‘s:ly
installed equi tt(af‘“?a) multi-
ectral (|nc | infrared)

ry.. (Pnofocol paragraph 80)

Image from [2]
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[Multi-]Spectral imaging is
allowed during an on-site
inspection (OSI) to detect
spectral features that could be
used to prioritize regions
within the inspection area (IA)
and thereby accelerate and
optimize the inspection
process.
= Infrared imaging also allowed;
MSIR = multispectral + infrared
IMaging
The CTBT permits MSIR data
acquisition from the air, or at
or below the surface.

Operational constraints are
imposed.



Data Acquisition Approaches

= How is spectral imagery typically acquired?

ling.
“Scg nnj
SPectry m é’;’ gQ‘
r

In Fourier transform

Point-scanning (whiskbroom) spectrometer:
approaches, optical

path difference Recover spectrum for a point location: I(x, yj,)\)
A (OPD) is measured
vayslngt to recover A Line-scanning (pushbroom) spectrometer:
el Recover spectra for one spatial dimension:

X
Figure from [1]

—~x% Moving sensor platform I(X, }/J’A)

| Wavelength-scanning spectrometer:
Ground pixel area = | Platform ground . . .
GSD »GSD | elocity = v Recover two spatial dimensions for an

integrated wavelength range: I(x,y,A,)

Figure from [10] All scanning spectral imagers scan
Figure from [9] in time to assemble the 3D cube of
Whiskbroom and pushbroom spectral information from multiple 2D
imagers are often implemented for projections or slices.
airborne applications.
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Snapshot Data Acquisition

= Snapshot spectral imagers (SSls) capture the /(x,y,A) spectral
datacube during a single detector integration period.

= Familiar example: A Bayer-filtered
camera is snapshot for 3
wavelengths (red, green, blue).

=

Image from [11]

Figure from [1]

Figure from [12] Figure from [13]
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http://upload.wikimedia.org/wikipedia/commons/2/2e/Sony_DSC-H2_01.jpg
http://upload.wikimedia.org/wikipedia/commons/3/37/Bayer_pattern_on_sensor.svg

SSI for OSI

= Previous OS| exercises have
relied heavily on pushbroom
imagers, which are well suited

Enable Longer Dwell Time
| Ll [T 1]
A ||

o.‘_‘a

for an airborne scannin Blisucucuan
. 8 pushbroom t=1 snapshot
geometry — so what is the IS ot

advantage of SSIs?
Optimize Data Acquisition &

Simplify Data Analysis Reduce Acquisition Constraints

Multi-
configuration

i
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g . w B
1
{bY 4
\qt‘ﬂ?' i
Landsat image used at IFE14 Image from [16]
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SSI for OSI

= CTBTO OSI applications impose particular requirements on spectral
imagers. If an SSI architecture is to be well suited for CTBTO OSI, it must:
= Enable fast data processing = Offer moderate spectral resolution

=  Offer high spatial resolution = Be rugged, portable, and suitable for
field operation

Key OSI Observables Relevant to MSIR Techniques [4] Snapshot Imager Technologies [1]
Signature Spectral Region Rissrl:':iaoln Spatial Resolution Temporal Behavior Technology  Class n M (pixels used)
IFS-F F 1 NN (N +5s)(2s + 1
Primary Observables Xy (No+5)(2s +1)
Surface disruption VIS, NIR, SWIR Low to 10-30 m goal Weeks if dry Hours  IFS-L F 1 NXNy(NW+ s)(2s+1)
{spectral) required; LWIR useful Medium <1 km required to days if weathering |r5_p F 1 N (N, +2s)(N. +25)
Surface fluffing (thermal - Thermal IR N/A 10-30 m goal Data taken around o v
reconnaissance mode) <1 km required maxiumum AT IFS-u F 1 N,(N,+ 2s)(N,,+ 2s)
Thermal hot spots/plumes Thermal IR N/A 0.3-1m gqal Stable for years/ IMS E 1 Nx(Ny+ 2s)(N,,+ 2s)
<10 m required Days to weeks
. Low to 0.3-1 m goal Weeks to months IRIS A 1/2 (N + 25}{Ny+ 2s)N,,
Spectral anomalies All . .
Medium < 10 m required MAFC P 1 (N, + 25}(Ny+ 2s)N,,
Secondary Observables
y _ MSBS A 1 (N, + 2s)(N, + 2s)N,,
R VIS, NIR, SWIR Low to 0.3-1 m goal Permanent until
P required; LWIR useful Medium <10 m required covered MSI F 1/4 NN,(2N,,+ 1)
Surface fluffir.1g (thermal - Thermal IR N/A 10-30m g(?al Data tajlken around  gHET p 1/4 (N, + 25)(N, + 25)N,,
hypothesis mode) <1 km required maxiumum AT
Geology Low to High N/A SRDA F 1/N,, NN,N,,
Undefined TEI A+F 1 (N,+2s)(N,+ 2s)N,,
10-30 m goal Low after 7 days, CTIS A* 1/3 ~N
Vegetation stress VNIR, SWIR Low <1kmrequired senescence after
T CASSI X* 1/2 NN +N,,-1)
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SSI Architectures for OSI

Spatially Resolved Detector Arrays
(SRDA)

spectre
filters

Figure from [1]

Commercial SRDAs can be ’
small - 77 x 142 x 36 mm?3

Image from [18]

Compact and rugged, but require

interpolation algorithms and spectral
channels are fixed.

Multispectral Beamsplitters (MSBS)

&0
ey
ﬁ«"\)

Figures from [1]

Produces 4-16 spectral images, but
image registration must be
implemented to accurately reconstruct.
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SSI Architectures for OSI

Multi-Aperture Cameras (MAC) Image Mapping Spectrometer (IMS)

Filters bonded
to FPA 46

vl Filter array in
ol AL front of objective lens
Y lenslets

Figure from [1]

SHIFT: Fourier
transform
approach

(image of lorikeet)

\?.5‘ Object
@D
)

6 EAHY
X
Figure from [1] Lenslets  Np, Figure from [1]

Compact and light efficient, but subject Offers high spatial and moderate
to parallax induced artifacts and require spectral resolution, but maintaining

image registration. calibration may be challenging.
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SSI Technology Comparison

= Comparison below is focused exclusively on the four sensor
architectures reviewed.

= Signal to noise ratio (SNR) is proportional to optical efficiency and
detector utilization.
= QOptical efficiency assumes lossless optics.

= Example shows achievable spatial samples given a 4096x4096
(¥16M) pixel FPA and 12 spectral channels.

= Pixel margin between spectra is assumed to be 5 pixels.

Max Spatial
Ideal Optical Detector Samples (given 12 Calibration Airborne Commercially

Technology Efficiency FPA Pixels Used Utilization spectral channels) Robustness? Robustness® Available
SRDA 1/N,, N.N,N,, 1.00 1182 x 1182 high high yes
MSBS 0.5-1 (N, + 2s)(N,+ 2s)N,, 1.00 1182 x 1182 med-high low-med yes

MAC 0.25-1 (N, + 2s)(N,+ 2s)N,, 0.98 1172 x 1172 med-high medium unknown
IMS 1 NN, + 2s)(N,, + 2s) 0.54 868 x 868 high low yes
Pushbroom 1/N, NN, 1.00 4096 high high yes

aThe Calibration Robustness metricis assessing the relative maintainability of spatial and spectral calibration once a sensor is transitioned from the laboratory to the field. For
example, a technology assessed as high means the technology will likely maintain its calibration better than a technology assessed as a medium.

b The Airborne Robustness metric is assessing the relative ability to withstand and successfully collect data under airborne deployment conditions . For example, a technology
assessed as low will likely be less successful during an airborne deployment than a technology assessed as medium.

Portions of table from [3] 10
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Commercially Available Sensors

= VNIR Spectral Imagers: Snapshot and limited pushbroom.

Spectral Spatial Frame
Manufacturer Instrument Architecture Spectral Range | Samples Samples Rate
Bayspec OCI-2000 SRDA 600-1000 nm 25 256x256 8 Hz
500-910 nm; or 90; or 55 x 44; or
Bodkin Hyperpixel Array Camera IFS-L 450-675 nm 20 90x 75 25 Hz
Cubert Hedgehog & Firefly SRDA (?) 450-950 nm 125 50 x 50 5-20 Hz
IMEC Snapshot Tiled Imager MAFC 600-1000 nm 32 256 x 256 340 Hz
SM4x4 or 470-630 nm; or 16; or 512 x 256; or
IMEC SM 5x5 SRDA 600-1000 nm 25 409 x 216 340 Hz
Opto Knowledge HyperVideo 4DIS IFS-F 400-1100 nm 300 44 x 40 30 Hz
P&P Optica Hyperchannel IFS-F 450-900 nm 100 14 x 14 40-100 Hz
RL Associates Multispectral Imager MSBS - holographic | 450 — 800 nm 4-12 ? ?
413 - 766 nm; or
462 - 645 nm; or
Rebellion Photonics Arrow IMS 417-497 nm 32 320x480 7-15 Hz

Headwall Photonics

Gilden Photonics
Specim

Hyperspec E Series

HS Spectral Cameras

AisaEAGLE

pushbroom

pushbroom
pushbroom

400-1000 nm

380-800 nm; or
400-1000 nm

400-970 nm

100-400
Hz

33 Hz
30 Hz
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Summary

= Snapshot spectral imagers (SSls) offer unique advantages over
scanning spectral imagers for remote sensing.

= SSlIs afford data acquisition under conventional airborne scanning
configurations but also enable flexible and targeted collections.

= Signal to noise ratio for SSls can be higher versus scanning spectrometers.

= Data collected can be processed faster allowing more time to be spent on
analysis — and sooner.

= Further technology development may enable even more elegant
snapshot approaches.

= The market for commercial SSls is growing, many more solutions
available today than even 2 years ago.

= The future of SSIs may benefit from a number of emerging technologies,
such as three dimensional focal plane arrays

= For more information on SSI designs and development, see ref. 3.
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John Henderson, Michael Kudenov, and Aled Rowlands
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Additional Information

= More detailed information on select SSI architectures follows.
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SSI Architectures

=  Many different SSI architectures have been developed and demonstrated.

Fiber Bundle Integrated Field Spectrometer

=
2
detector array

dber bundle

we
onieCigns

Multiaperture Filtered Cameras

re-imaging

lens o
n

Image Replicating Imaging Spectrometer (IRIS)

Snapshot Hyperspectral Imaging Fourier
Transform Spectrometer (SHIFT)
G HWP A L

Lenslets NP, NP,

Computed Tomography Imaging
Spectrometer (CTIS)

Objecti
IeCUve Detector

L
V[ H

|
Kinoform -
grating #
(disperser) 3

Coded Aperture Snapshot Spectral Imager
(CASSI)

coded apErture disperser
s

object

detector

All figures from [1]
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= Division of focal plane based
approach; a ‘super pixel’ of
spectral filters is aligned and
bonded to the focal plane

Figure from [1]

array (FPA)
= Extremely compact and Cs?anTf”yC;aﬁfffZgiﬁ’ nff |
monolithic Image from [16]

Data processing analogous to Bayer filtered cameras

= Robust to temperature
fluctuations and vibration

= Can be subject to aliasing if
image is not properly
bandlimited

= Filter array manufacturing
can be challenging

Figure from [6] {
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Multispectral Beamsplitters

= Division of amplitude based
approach.

= Spectral images are produced
through implementation of
sequential spectral filters.

= Multiple FPA and single FPA
designs have been
demonstrated.
= Most implementations are
limited to 4-16 spectral
images.

= |mage registration must be
implemented to accurately
reconstruct.

G sensor

Approaches use

iz volume
" holograms,

spectral filters,
spectral
beamsplitters, or
Wollaston prisms

All figures from [1]
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Multi-Aperture Cameras

Filters bonded to FPA

= Division of pupil approach: a
lenslet array is used to produce
multiple images of the scene on a
single FPA.

= Filtered and filterless MACs have
been developed.
= Multiple filtered designs have
been proposed using filter arrays

in pupil space or bonded to the
detector.

= Fourier transform designs are
filterless and reconstruct uses
discrete Fourier transform
processing techniques (ex: SHIFT)

= MACs require image registration
and are subject to parallax
effects, which can produce
spectral artifacts and complicate
datacube reconstruction.

Image from [18]

Filter array in front of lenslets

lens array

filter array

Figure from [1]

SHIFT: Snapshot Hyperspectral Imaging Fourier

R0
0

NxM
Lenslets

Transform Spectrometer
G HWP ‘

NP,

NP,

A

Figure from [1]
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Image Mapping Spectrometer

= QOther image reformatting obisctive lens
approaches exist, but the IMS
architecture is the best choice
for OSl applications
= |MS offers high spatial
resolution and moderate
spectral resolution
" |ntermediate image is ‘sliced’
by a microfaceted mirror to
produce multiple picket fence
images, which are then
dispersed.

= |mage slicing mirror can be
difficult to manufacture.

= Maintaining alignment and
calibration through airborne
operations may be difficult.

(image of lorikeet)

(image without disperser)

(image of uniform object)

Figure from [1]
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