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Abstract

In this letter we discusses the first application of 3-dimensional nonlocal
density functional calculations to the interactions of solvated rigid polymers.
The three cases considered are cylindrical polymers, bead-chain polymers, and
periodic polyme;s. We calculate potentials of mean force, and show that poly-
mer surface structure plays a critical role in determining the solvation energy

landscape which in turn controls routes to assembly of the macromolecules.




Polymer solutions are critical to the processing of a wide range of materials (from thin

films for optical applications [1] to paper [2]). They are also critical to biological function

" &S proteins are nearly always solvated in physiological conditions [3]. Theories for polymer

; ;_sdlﬂli:tions usually begin from a solution point of view, and focus on capturing polymer physics

”’lf(polyr‘her configurations, radius of gyration, etc.) while treating the solvent of the system

with a single parameter that defines the strength of polymer-solvent interactions [4].

In this letter we follow an alternate approach that treats the polymers as surfaces that
generate an external field in which the ﬂui‘d molecules equilibrate. Potentials of mean force
between three model polymers are calculated with a novel 3-dimensional (3D) nonlocal
density functional theory code. This approach is complementary to molecular simulation,
and allows for detailed free energy calculations of the solvated interactions of locally rigid
interacting polymers. The calculations presented here show how polymer geometry can affect
the solvation energy landscape, and more specifically how assembly of polymer bundles can
occur via minor adjustments in the alignment of two polymer strands with respect to one
another.

The statistical mechanics behind our approach has been detailed elsewhere [6]. Briefly,
the semi-grand ensemble for a solution of N macromolecules in a solvent with known chemical

potential, ¢ at a temperature, T and volume, V is
ZNV;LT =/ dRNe-ﬁUN(RN) %
v

e 'Zn N .n
{Z —'/ drhe PUn(BTx )} (1)
Znllv B
where z = ®#/A3 is the solvent activity, 8 = 1/kgT, kp is the Boltzmann constant, and A
is the DeBroglie wavelength. Integrals are taken over all possible configurations of the N
surfaces (denoted RN) and the n solvent molecules (denoted r™).

The potential energy of direct surface—surface interactions is given by Uy while the energy
of both solvent-solvent and solvent-surface interactions are summed in U,. Identifying the

inner integral in Eq.1 as the grand partition function, =,y7 of a fluid in an external field of

N fixed surfaces, the mixture partition funétion‘ may then be written in terms of the grand
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potential,
QRN 1, T) = - InZvr. (2)
Substituting for Z,vr, Eq.1 becomes
Zyvur = /V JRN ¢=PUNRN) —BRRY iu,T) 3)

Taking two hard rigid macromolecules (Uy = oo if overlapping, otherwise, Uy = 0), '

potential of mean force (PMF) acting between the macromolecules is
W(R) = QR 1, T) ~ Qoo; 1, T) (4)

in the limit of two surfaces separated be R in an otherwise infinitely dilute solution of the
macromolecules (ie. pyr — 0).

Providing that the Gibbs dividing surface is chosen to be identical at all surface sep-
arationg, the PMF may also be written in terms of the surface free energy, W(R) =
(R i1, T) — Q% (o0; 1, T) where Q° = Q(R; {p(r)}, T) — Q(R; {ps},T), ps is the bulk fluid
density associated with the known p, and p(r) is the equilibrium nonuniform density distri-
bution of fluid particles in the external field of the N macromolecules.

The surface free energy is directly related to the solvent mediated (or solvation) force
acting on the polymer strands. This solvation force may be. calculated from the sum rule [7]

f= —%S; = /p(r,)nzdr, . (5)

where [dr, indicates a integral over the surface of the macromolecule, and n is the unit

normal to the surface.
Surface free energies can be calculated with molecular simulation or nonlocal density
functional theory (DFT). DFT is based on the functional minimization of the grand free

energy, [p(r)] with respect to the density distributions, p(r) at constant temperature, T,

) (625)?)) =" ©
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and fluid chemical potential, .




The particular free energy functional, Q{p(r)] we use was developed by Rosenfeld [8]. While
most DFT calculations have considered geometries with considerable symmetry (slit-pores,
cylindrical pores, spherical cavities etc); the polymer calculations here will require a full 3D
DFT solution. Gotzelmann et.al. have shown that when an accurate equation of state is
known for the macromolecule-solvent mixture PMFs can be found by taking the explicit
limit of pps — 0 [9]. While their approach shows great promise for certain geometries (e.g.
spherical macromolecules near flat surfaces), it cannot be easily extended to the polymer-
solvent mixtures considered here.

Our 3-dimensional numerical implementation is based on a Newton's method solve of the
system of equations, and convergence is usually obtained in less than 20 Newton iterations.
Each of the 3D polymer solutions presented here was obtained in approximately 3 minutes
of CPU time on 50 processors of the ASCI-Red (Intel pentium 333 MHz chips) computer at
Sandia National Laboratories. To the best of our knowledge, these are the first results from
3D nonlocal DFT calculations to be discussed in the literature. The algorithms behind our
computationél approach are detailed elsewhere [13] and have been applied to the wetting of
chemically heterogeneous surfaces [14].

We restrict the current discussion to hard sphere fluids in contact with hard rigid poly-
mers. Other physical effects (e.g. van der Waals, polarizatibn, or Coulomb, forées) may be
critical in many systems; however, our calculations demonstrate the expected magnitude of
solvent packing effects in forces between solvated polymers.

While the stiffness of the pblyrrier models discussed here is not a realistic representation
of all polymers, there are some important exceptions. One example is deoxyribonucleic acid
(DNA). The double helix of the DNA causes this important polymer to be quite rigid, and so
DNA is often treated as a rigid polymer in molecular investigations [1(5:12]. In addition, on
a small enough length scale, all polymers are rigid [4]. The question then becomes whether
solvation forces in question are large for the appropriate length-scale of a particular polymer.

The polymer models discussed here include cylindrical, bead-chain, and periodic poly-

mers. Taking the z-axis down the long axis of a polymer chain, the cylindrical polymer is
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‘described by R,(2) = 1.50 where R, is the radius of the polymer chain and o is the diam-
eter of the solvent particle. The bead chain polymer is composed of spheres with radius
R, = 1.50 where the.centers of the spheres along the z-axis are separated by 30. The peri-
odic polymer has a radius, R,(z) = r,+ Acos(27z/}) whére the reference radius, r, = 0.750,
the amplitude, A = 0.750, aiid the period, A = 30.

While all three polymer models exhibit surface curvature perpendicular to the long axis
of the polymer, the bead-chain and periodic polymers also exhibit structure parallel to the
polymer axes. Thus, we have calculated potentials of mean force as a function of both
relative alignment and surface separation for these two cases.

Potentials of mean force for the three solvated polymer models are shown in Fig.1. In all
céses, solvent packing leads to oscillatory potentials as a function of center—centér separation.
The magnitude of the oscillations is largest for the parallel cylindersin F ig.lei'_here densities
are uniform along the long axis of the polymer strands. However, in all cases, the free energy
peaks are substantial in comparison with k7. Consider the peak at R/c = 3.6 in the case
of the aligned bead-chain polymer. It's magnitude per unit length (in ¢ units) is = 0.25kT.
One bead of the polymer chain has a length (diameter) of 3¢, and vso, even 5 interacting
segments will experience an energy of ~ 3.75kT. |

The bead-chain case in Fig.1B demonstrates that the details of the surface structure
of the polymer play an im;ﬁortant role in assembly of the strands. Consider the energy
barriers experienced by two polymer strands as they come together from infinite separation.
If the strands remain in a perfectly aligned state, they will need to overcome the substantial
solvation barriers mentioned above. However by shifting their orientations to 180° out of
phase at the appropriate separations, the solvation barriers can be avoided altogether since
the maxima in the aligned state very nearly correspond to the minima for the unaligned
state. As a corallary, the forces experienced by the bead-chain polymers will be always
attractive from inﬁnite.separation to contact provided that the polymers can freely change
their relative orientation. The only way for the cylindrical polymers to avoid the large

solvation barriers would be for the cylinders to rotate away from the parallel position. Such

-
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a rotation would be kinetically unfavorable in comparison with the small adjustments needed
when surface structure is present.

While the surface structure on the bead-chain polymers provides a low-energy route to
assembly by avoiding solvation energy barriers, this is not the case for the periodic polymer as
shown in Fig.1C. Here, the unaligned and aligned cases have minima and maxima at similar
separations. Nevertheless, the solvation energy landscape is significantly affected by the
surface structure on the periodic polymers. Specifically, the period of solvation oscillations
increases from 1o (Fig.1A,B) to approximately 1.50 (Fig.1C). In addition, the global free
energy minimum is now found at R/o = 2.75 where there is a layer of fluid between the
polymer strands.

The solvated assembly of the periodic polymers is in contrast to both cylindrical and

" bead-chain cases (Fig.1A,B) where the global free energy minimum is found at contact. In
these two cases, osmotic exclusion of the hafd-sphere solvent results in the strong attractive
depletion forces [9]. Thus while solutions composed of any of the three polymers would
self-assemble in to tightly ordered arrays, the periodic polymer assembly will be the most
highly solvated. Predicting solvated assembly is critical to studying protein crystals where
the crystals may contain 50% solvent by volume [15,16].

For all of the cases in Fig.1 except the unaligned bead-chain polymer, the potential
curves are drawn to the point of closest approach of the polymer strands. However, it was
not possible to obtain solutions for the case of the unaligned bead-chain polymer when
R/o < 3.5. The numerical difficulty is due to the interaction of multiple steep density peaks
that arise in the annuli around the points where two beads on one chain meet. An example
of the density distribution in one slice of the 3D domain at R/o = 3.75 is shown in Fig.2.
The steepness of these peaks indicate that the fluid particles in these regions are effectively
bound to the polymer strands although there are no chemical bonds present.

In this letter we have presented the first results from 3D-DFT calculations of interacting
solvated polymers. We have shown how surface structure is linked to molecular recognition

via the solvation energy landscape, and how both bound fluid molecules and solvated as-




semblies of macromolecules can arise in solvated polymer systems. This approach may be
used to investigate complex phenomena such as molecular recognition, protein interactions,

and physically bound solvent molecules on macromolecules.
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FIGURES

FIG. 1. The potential of mean force as a function of the center-center sepa.ratidn, R of two
cylindrical (A), bead-chain (B)k,ra.nd periodic’polymers (C). In B and C, the solid lines show the |
cases where the centers of the polymers are perfectly aligned while theﬂ dashed lines show cases
where the polymers are 180° out of phase as shown in the sketches. The bulk density for all cases

was pyo° = 0.63.

FIG. 2. The density distribution as a function of position (z,y in units of o) in a slice of
constant z where two beads on the left chain come together. The white regions include both the
polymer volume and solvent exclusion zones due to the hard interactions between the polymer
and solvent par?icles. The two chains are unaligned (see the sketch corresponding to dashed
lines in Fig.1B). The maximum densities in the figure are po® = 10.7 found at z/o = 6.375,
y/o = 4.5,6.5. The density maxima at the center between the surfaces is, po® = 3.7 and is located

at z/o = 7.375,y/o = 5.5,z/0 = 0.5.
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