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Abstract

In this letter we discusses the first application of 3-dimensional nonlocal

density functional calculations to the interactions of solvated rigid polymers.

The tlqee cases considered are cylindrical polymers, bead-chain polymers, and

periodic polymers. We calculate potentials of mean force, and show that poly-

mer surface structure plays a critical role in determining the solvation energy

landscape which in turn controls routes to assembly of the macromolecules.
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Polymer solutions are critical to the processing of a wide range of materials (from thin

films for optical applications [I] to paper [2]). They are also critical to biological function

‘$.4proteins are nearly always solvated in physiological conditions [3]. Theories for polymer
~ ,., ,,,1.

‘~’ solutions usually begin from a solution point of view, and focus on capturing polymer physics- .,’,.,
..

:’.: “’”~polyrnerconfigurations, radius of gyration, etc.) while treating the solvent of the system

‘ w’ith a single parameter that defines the strength of polymer-solvent interactions [4].

In this letter we follow an alternate approach that treats the polymers as surfaces that

generate an external fieId in which the fluid molecules equilibrate. Potentials of mean force ,

between three model polymers are calculated with a novel 3-dimensional (3D) nonlocal

density functional theory code. This approach is complementary to molecular simulation,

and allows for detailed free energy calculations of the solvated interactions of locally rigid

_ interacting polymers. The calculations presented here show how polymer geometry can affect

the solvation energy landscape, and more specifically how assembly of polymer bundles can

occur via minor adjustments

another.

The statistical mechanics

in the alignment of two polymer strands with respect to one

behind our approach has been detailed elsewhere [6]. Briefly,

the semi-grand ensemble for a solution of N macromolecules in a solvent with known chemical

potential, p at a temperature, 2’ and volume, V is

z~vpT=
/

~Ne-WN(@ ~
v

{/

‘i”x~ v (frne-8~n(R~,r”)
}

(1)
~=o n.
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where z = e~~/A3 is the solvent activity, /? = I/kBT, k~ is the Boltzmann constant, and A

is the DeBroglie wavelength. Integrals are taken over all possible configurations of the N

surfaces (denoted RN) and the n solvent molecuks (denoted r“).

The potential energy of direct surface-surface interactions is given by UN while the energy

of both solvent-solvent and solvent-surface interactions are summed in Un. Identifying the -

inner integral in Eq.1 as the grand partition function, ~UvT of a fluid in an external field of

N fixed surfaces, the mixture partition function may then be written in terms of the grand
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potential,

Substituting for ~pvT, Eq.1 becomes

ZNVPT= 1@&pUN(RN) @2(RN;p,T)
v

Taking two hard rigid macromolecules (UN = m if overlapping,

potential of mean force (PMF) acting between the macromolecules is

W(R) = !il(l?;p, T) – Q(m;p, T)

in the limit of two surfaces separated by R in an “otherwise infinitely

(2)

(3)

otherwise, UN = o),

(4)

dilute solution of the

macromolecules (ie. PM + O).

Providing that the Gibbs dividing surface is chosen to be identical at ‘all surface sep

arations, the PYIF may also be written in terms of the surface free ener~, W(R) =

~S(l?; p, T) – ~s(ca; p, T) where Q’ = Q(l?; {p(r)}, T) – Q(R; {pb},T), pb is the bulk fiuid

density associated with the known p, and p(r) is the equilibrium nonuniform density distri-

bution of fluid particles in the external field of the N macromolecules.

The surface free energy is directly reIated to the solvent mediated (or solvation) force

acting on the polymer strands. This solvation force may be calculated from the sum rule [7]

(m’
f=”%

where J dr~ indicates a integral over the.-

normal to the surface.

/()= p r. nzdr, (5)

surface of the macromolecule, and n is the unit

Surface free energies can be calculated with molecular simulation or nonlocal density

functional theory (DFT). DFT is based on the functional minimization of the grand free

energy, fl[p(r)] with respect to the density distributions, p(r) at constant temperature, T,

and fluid chemical potential, p.

()&2

‘P(r) T,p
= o.
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The particular free energy functional, fl[p(r)] we use was developed by Rosenfeld [8]. While—.

most DF’T calculations have considered geometries with considerable symmetry (slit-pores,

cylindrical pores, spherical cavities etc); the polymer calculations here will require a full 3D

DFT solution. G6tzelmann et.al. have shown that when an accurate equation of state is

known for the macromolecule-solvent mixture PMFs can be found by taking the explicit

limit of ph~+ O [9]. While their approach shows great promise for certain geometries (e.g.

spherical macromolecules near flat surfaces), it cannot be easily extended to the polymer-

solvent mixtures considered here.
-,.

Our 3-dimensional numerical implementation is based on a Newton’s method solve of the

system of equations, and convergence is usually obtained in less than 20 >’ewton iterations.

Each of the 3D polymer solutions presented here was obtained in approximately 3 minutes

of CPU time on 50 processors of the .4SCI-Red (Intel pentium 333 MHz chips) computer at

Sandia National Laboratories. To the best of our knowledge, these are the first results from

3D nonlocal DFT calculations to be discussed in the literature. The algorithms behind our

computational approach are detailed elsewhere [13] and have been applied to the wetting of

chemically heterogeneous surfaces [14].

lVe restrict the current discussion to hard sphere fluids in contact with hard rigid poly-

mers. Other physical effects (e.g. van der \Yaals, polarization, or Coulomb, forces) may be

critical in many systems; however, our calculations demonstrate the expected magnitude of

solvent packing effects in forces between solvated polymers.

While the stiffness of the polymer models discussed here is not a realistic representation
.-

of all polymers, there are some important exceptions. One example is deoxyribonucleic acid

(DPJ.4). The double helix of the DN.4 causes this important polymer to be quite rigid, and so

DN.4 is often treated as a rigid polymer in molecular investigations [10~12]. In addition, on

a small enough length scale, all polymers are rigid [4]. The question then becomes whether

solvation forces in question are large for the appropriate length-scale of a particular polymer.

The polymer models discussed here include cylindrical, bead-chain, and periodic poly-

mers. Taking the z-axis down the long axis of a polymer chain, the cylindrical polymer is
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.de;cribed by ~(z) = 1.5u where ~ is the radius of the polymer chain and a is the diam-

eter of the solvent particle. The bead chain polymer is composed of spheres with radius

~ = l.% where the centers of the spheres along the z-axis are separated by 3a. The peri-

odic polymer has a radius, &(z) = TO+Acos(2rz/A) where the reference radius, rO= 0.75a,

the amplitude, A = 0.75c, and the period, A = 30.

While all three polymer models exhibit surface curvature perpendicular to the long axis

of the polymer, the bead-chain and periodic polymers aIso exhibit structure paraIlel to the

polymer axes. Thus, we have calculated potentials of mean force m a function of both

relative aliOmment and surface separation for these two cases.

Potentials of mean force for the three solvated polymer models are shown in Fig.1. In all

cases, solvent packing leads to oscillatory potentials as a function of center-center separation.

The magnitude of the oscillations is largest for the parallel cylinders in Fig.1.k where densities

are uniform along the long axis of the polymer strands. However, in all c=es, the free energy

peaks are substantial in comparison with kT. Consider the peak at R/o = 3.6 in the case

of the ali~med bead-chain polymer. It’s magnitude per unit length (in a units) is ~ 0.25kT.

One bead of the polymer chain has a length (diameter) of 3a, and so, even 5 interacting

segments will experience an energy of x 3.75kT.

The bead-chain case in Fig.lB demonstrates that the details of

of the polymer play an important role in assembly of the strands.

the surface structure

Consider the energy

barriers experienced by two polymer strands as they come together from infinite separation.

If the strands remain in a perfect~ aiigned state, they wiI1need to overcome the substantial

solvation barriers mentioned above. However by shifting their orientations to 180° out of -

phase at the appropriate separations, the solvation barriers can be avoided altogether since

the maxima in the aligned state very nearly correspond to the minima for the unaligned

state. As a corallary, the forces experienced by the bead-chain polymers will be always

attractive from infinite separation to contact provided that the polymers can freely change

their relative orientation. The only way for the cylindrical polymers to avoid the large

solvation barriers would be for the cylinders to rotate away from the parallel position. Such
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a rotation would be kinetically unfavorable in comparison with the small adjustments needed

when surface structure is present,

While the surface structure on the bead-chain polymers provides a low-energy route to

assembly by avoiding solvation energy barriers, this is not the case for the periodic polymer as

shown in Fig. IC. Here, the unaligned and aligned cases have minima and maxima at similar

separations. F?evertheless, the solvation energy Iandscape is significantly affected by the

surface structure on the periodic polymers. Specifically, the period of solvation oscillations

increases from Ic (Fig.1.4,B) to approximately l.% (Fig.lC). In addition, the global free

energy minimum is now found at R/a = 2.75 where there is a layer of fluid between the

polymer strands.

The solvated assembly of the periodic polymers is in contrast to both cylindrical and

“ bead-chain cmes (Fig.1.4,B) where the global free energy minimum is found-at contact. In

these two cases, osmotic exclusion of the hard-sphere solvent results in the strong attractive

depletion forces [9]. Thus while solutions composed of any of the three polymers would

self-a.ssembIe in to tightly ordered arrays, the periodic polymer assembly w~illbe the most

highly solvated: Predicting solvated assembly is critical to studying protein crystals where

the crystals may contain 50% solvent by volume [15,16].

For all of the cases in Fig.1 except the unaligned bead-chain polymer, the potential

curves are drawn to the point of closest approach of the polymer strands. However, it was

not possible to obtain solutions for the case of the unaligned bead-chain polymer when

R/a <3.5. The numerical difficulty is due to the interaction of multiple steep density peaks

that arise in the annuli around the points where two beads on one chain meet. -h example

of the density distribution in one slice of the 3D domain at R/a = 3.75 is shown in Fig.2.

The steepness of these peaks indicate that the fluid partic~es in these regions are effectively

bound to the polymer strands although there are no chemical bonds present.

In this Ietter we have presented the first results from 3D-DFT calculations of interacting

solvated polymers. We have shown how surface structure is linked to molecular recognition

via the sohation energy landscape, and how both bound fluid molecules and solvated as-
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semblies of macromolecules can arise in solvated polymer systems. This approach may be

used to investigate complex phenomena such as molecular recognition, protein interactions,

and physically bound solvent molecules on macromolecules.
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FIGURES

FIG. 1. The potential of mean force as a function of the center-center separation, R of two

cylindrical (A), bead-chain (B), and periodic polymers (C). In B and C, the solid lines show the

cases where the centers of the polymers are perfectly al@?d while the dashed lines show cases

where the polymers are 180° out of phase as shown in the sketches. The bulk density for all cases

WaSp@3 = 0.63.

FIG. 2. The density distribution as a function of position (z, y in units of a) in a slice of

constant z where two beads on the left chain come together. The white regions include both the

polymer volume and solvent exclusion zones due to the hard interactions between the poljxer

and solvent particles. The two chains are unaligned (see the sketch corresponding to dashed

lines in Fig.lB). The maximum densities in the figure are pa3 = 10.7 found at z/a = 6.375,

. y/u = 4.5,6.5. The density maxima at the center between the surfaces is, pa3 = 3.7 and is located

at Z/O = 7.375,y/v = 5.5,z/cr = 0.5.
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