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ABSTRACT

As part of the U.S. Department of Homeland Security Detect-to-Protect program, a multilab [Sandia National 
Laboratories (SNL), Lawrence Livermore National Laboratories (LLNL), Pacific Northwest National Laboratory 
(PNNL), Oak Ridge National Laboratory (ORNL), and Los Alamos National Laboratory (LANL)] effort is addressing
the need for useable detect-to-warn bioaerosol sensors for public facility protection.  Towards this end, the SNL team is 
employing rapid fluorogenic staining to infer the protein content of bioaerosols. This is being implemented in a flow 
cytometry platform wherein each particle detected generates coincident signals of correlated forward scatter, side scatter, 
and fluorescence.  Several thousand such coincident signal sets are typically collected to generate a probability 
distribution over the scattering and fluorescence values.  A linear unmixing analysis is performed to differentiate 
components in the mixture.  After forming a library of pure component distributions from measured pure material 
samples, the distribution of an unknown mixture of particles is treated as a linear combination of the pure component
distributions.  The scattering/fluorescence probability distribution data vector a is considered the product of two vectors, 
the fractional profile f and the scattering/fluorescence distributions from pure components P.  A least squares procedure 
minimizes the magnitude of the residual vector e in the expression a = fPT + e.  The profile f designates a weighting 
fraction for each particle type included in the set of pure components, providing the composition of the unknown 
mixture.  We discuss testing of this analysis approach and steps we have taken to evaluate the effect of interferents, both 
known and unknown.

1.  INTRODUCTION

The U.S. Department of Homeland Security (DHS) seeks rapidly-acting (1-2 min response time) sensors that indicate the 
presence of a bioaerosol release in enclosed facilities.  Optical measurements are desired for this application because 
they can rapidly measure intrinsic properties of single particles.  Thus, several early-warning sensors1,2,3 have been 
developed that measure the laser-induced fluorescence (LIF) and elastic scattering properties of streams of sampled 
aerosols.  Detailed recognition algorithms4,5 are used to analyze these data to identify significant populations of “threat-
like” aerosols within the facility background aerosol population.

Although their capabilities are continually being improved, current LIF-based sensors are observed to produce false 
alarms at rates between once per week and once every two months when operated under conditions relevant to facility 
protection.  High-consequence actions (e.g. stopping the flow of traffic in an airport concourse) are likely too costly to 
incur by facility managers at this rate.  Thus, false alarming represents a significant obstacle to the use of the devices.

This paper describes the analysis of data acquired using a secondary flow-cytometer channel that would be used in 
conjunction with an LIF-based sensor in order to improve its detection accuracy.  The measurement would be conducted 
by reacting ambient particles with a fast-acting fluorogenic (i.e., becoming fluorescent upon reaction) stain that 
covalently couples to primary amine groups, such as are present on certain protein amino acid residues.  The 
measurement is intended to create a strong LIF signal on particles containing biological material, thus distinguishing 
them from non-biological (or trace biological) background material.

2.  EXPERIMENTAL

This paper focuses on the development and use of an analysis routine for the acquired flow cytometer data, so only a 
brief description of the experimental apparatus is given.  A more thorough description of this apparatus, as well as
potential future implementations of the instrument, is presented in the accompanying paper by Bisson et al.6
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A modified Becton-Dickinson (BD) FACScan flow cytometer performs optical scattering and LIF measurements on 
individual particles entrained in a liquid stream.  The FACScan has been modified by Cytek, Inc. (Hayward, CA) to 
incorporate an additional laser beam and two additional LIF channels.  Due to the cytometer modification by Cytek, 
forward scattering and side scattering measurements are acquired at 488 nm, while correlated LIF measurements are 
acquired with 405-nm excitation with corresponding fluorescence channels centered at 475 and 545nm.  The liquid 
stream containing the particles flows through the cuvette at a flow rate of ~20µl/min, where the stream is 
hydrodynamically focused using sheath fluid to a ~100µm diameter.  At this focus the particles are illuminated by both 
the 488-nm and 405-nm laser beams.  Optical signals generated by the particles are collected by a set of filtered 
photomultiplier tubes (PMTs).  Samples are stained with Fluorescamine, which couples with primary amines according 
to a molecular rearrangment reaction:  the resultant molecule is fluorescent with an excitation peak at ~390 nm and an 
emission peak at ~480 nm.7  The reaction takes place rapidly (≤15 s) upon introduction of the dye to particles in an 
aqueous environment at a pH of ≥8.5.

The count rates are typically about a few thousand counts per second; in some cases, samples were further diluted to 
ensure count rates less than the cytometer maximum acquisition rate of 5000 samples/s.  Normal instrument background 
count rates were on the order of 15-30/sec and were typically associated with low scattering values.  Sample acquisition 
was triggered on the forward scattering signal to allow non-fluorescent scattering particles to be examined.  The size 
threshold below which scattering would not produce a useable trigger was ~200 nm, an approximate value which 
depends on the indices of refraction of the sheath fluid and particle.  Because the range of signals spanned several orders 
of magnitude, all channels were operated in logarithmic mode, which provides 4 decades of dynamic range over only 10
bits of data transfer.  The relationship between the channel output and the actual signal level measured by the PMT is 
given by

channel output = 256 × log [signal level (mV)]. (1)

For example, a channel output value of 100 corresponds to PMT signal level of 2.46 mV, while a value of 1000
corresponds to a PMT signal level of 8.06 V.

The laboratory cytometer is injected with liquid samples prepared by the Edgewood Chemical and Biological Center
(ECBC) that contain both pure samples of threat agent simulants (Bacillus thuringiensis spores, Yersinia rohdei cells, 
MS2 virus, and ovalbumin protein) as well as mixtures of these simulants with unspecified backgrounds.  Each sample is
measured in both an unstained “native” condition and a stained condition. Samples are typically counted for 1 minute. 
All data are acquired with identical sample preparation protocols and cytometer settings.  For the results presented in this 
paper, only one of the fluorescence channels (centered at 475 nm) is included in the analysis.

3.  ANALYSIS AND DISCUSSION

After a collection of particles is measured, the particle data are binned according to the scattering and fluorescence signal 
levels.  Such binning procedures are used by a variety of biological aerosol detectors to characterize responsivity to 
threats.  These instruments typically calculate the probability that each detected particle is either a threat or a non-
threat.4,5,8  In contrast to analyzing each particle separately, we instead fit an entire collection of coincident data (the term 
“coincident” refers to the simultaneous acquisition of forward scatter, side scatter, and fluorescence signals) to a linear 
sum of library functions corresponding to pure component distributions.  Twede et al.9 used such a linear mixing model 
for analysis of excitation-emission matrices of bio-compounds.  The data analysis routine is performed with MATLAB 7 
(The MathWorks, Natick, MA).

3.1  Creating the Coincident Distribution

Figure 1 illustrates the procedure used to bin the coincident data.  In Fig. 1(a), we show collection of coincident data 
from pure Bt, displaying the side scatter (SSC), forward scatter (FSC), and fluorescence (FL) channels, each value 
ranging between 0 and 1024. Each axis is divided into 26 sections, resulting in 263 = 17,676 bins, as shown in Fig. 1(b).  
The fraction of particles which falls within each bin is then calculated.  A color code to the right of Fig. 1(c) indicates the 
fractional value in each bin.  To emphasize the location of the peak populations, those fractional values with less than 2% 
of the peak fractional value are not displayed.



Fig. 1.  (a) Scatter plot, (b) bin spacing, and (c) binning results for pure Bt stained with Fluorescamine.

Similar to the plot in Fig. 1(c), Fig. 2 displays the results for Bacillus thuringiensis (Bt), Yersinia rohdei (Yr), and house 
dust, both native and stained. The Bt distribution in Fig. 1(c) is included in Fig. 2 to show the complete set of pure 
component distributions.  Staining increases the particle fluorescence while not significantly altering the scattering 
properties of the particles, translating the distributions in the +FL (vertical) direction. 
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Fig. 2.  Binning results from Bt, Yr, and house dust (native and stained with Fluorescamine).

3.2  Fitting an Unknown Coincident Distribution

Once the library of n = 3 pure components distributions (Bt, Yr, and house dust) has been compiled, we assume that each 
unknown sample is a linear combination of these pure component distributions.  In addition, model error is assumed to 
originate from the error in the fractional populations and not in the bin positions.  To allow use of built-in MATLAB
vector functions, we first unfold each 26×26×26 matrix into a 17,676 element vector a.  We can then use classical least 
squares to solve the equation

a = fPT + e, (2)



where a is the 17,676-element vector of acquired coincident data, f is the n-element vector containing the fractional 
concentration for each of the pure constituents, P is the 17,676-by-n matrix of pure constituent distributions, and e is a 
vector of the residuals, which accounts for noise and model error (e.g., particles not included in the set of pure 
components).  This equation can be solved by simple matrix manipulation,

f = (PP')-1Pc. (3)

Figure 3 displays the results of fitting an unknown stained sample distribution to a linear combination of the pure 
component distributions in Fig. 2.  Figure 3(a) displays the acquired sample distributions, while Fig. 3(b) displays the 
resulting fit.  From the fitting approach, the unknown sample is determined to be primarily Yr, with negligible Bt and 
house dust.  Figures 3(c) and 3(d) display plots of the residual in each particle bin.  Similar to the plots displaying the 
particle distributions, the value of e in each particle bin is represented by a color code, and those residuals below 2% of 
the peak residual are not displayed.  Because this color coding convention does not appropriately designate the sign of 
the binned values, separate plots are presented for the positive and negative residuals.

Fig. 3. Fitting results of an unknown stained sample: (a) the acquired distribution, (b) the resulting fit, and (c) the positive 
residual difference and (d) the negative residual difference.  The fitting coefficients identify the sample to be 73% 
Yr, with <10-5 parts Bt or house dust.

3.3  Testing the Fitting Performance

The performance of the analysis approach was evaluated in a blind test against the unknown sample mixtures obtained 
from ECBC.  Twenty such samples were provided with mixtures of Bt, Yr, ovalbumin, and/or MS2, accompanied by 
varying amounts of unknown background(s).  The approach of detecting mixture components by their 



scattering/fluorescence properties is applicable only for non-soluble constituents (Bt and Yr), while ovalbumin and MS2 
are detected by another method which recognizes the soluble protein in the mixture.  The linear unmixing procedure 
correctly identified the non-soluble constituents in all 20 of these samples with no false positives.  The results of 
analyzing the ECBC mixtures are displayed in Table 1.

Table 1. Sample assignments and ECBC mixtures for preliminary design review testing.

ECBC 
sample 
number

Cell/spore 
assignment

Soluble 
protein

ECBC 
Antigen

ECBC
Background

H=High
L=Low

1 -- -- None L
2 -- Yes Ovalbumin H
3 Yersinia Yes Yersinia H
4 -- -- None H
5 -- Yes Ovalbumin H
6 -- -- None H
7 -- Yes MS2 L
8 -- Yes MS2 L
9 -- Yes Ovalbumin L

10 Bt -- Bt L
11 Yersinia Yes Yersinia L
12 -- Yes Ovalbumin L
13 Bt Yes Bt L
14 -- Yes MS2 H
15 Bt -- Bt H
16 Bt -- Bt H
17 Yersinia Yes Yersinia H
18 Yersinia Yes Yersinia L
19 -- -- None L
20 -- Yes MS2 H

3.4  Evaluating the Impact of Potential Interferents

While the ECBC blind-test samples contained unknown background interferents, none of these interferents possessed 
similar scattering/fluorescence properties to those of Bt and Yr.  Because the interferents were dissimilar to the target 
particles, they had little effect on the net analyte signal (NAS), the portion of the threat signal orthogonal to that of 
interferents.  The scattering/fluorescence properties of house dust, on the other hand, significantly overlap those of the
threat simulants.   We anticipate that substances with characteristics similar to house dust – particles possessing 
biological content (e.g., dust mites and skin flakes) and which are distributed over the respirable size range – will be the 
most challenging to mitigate.  We therefore undertook a study to help quantify the enhanced specificity provided by 
staining, as compared to measuring only the native particle scattering/fluorescence properties, seeking to define the NAS 
improvement provided by staining. 

To gauge the effect that an unknown background such as house dust would have on the ability of our instrument to detect 
biological threats, we removed house dust from the set of pure components and compared the results to those obtained 
with house dust included in the set of pure components.  We created five mixtures of Bt and house dust for this 
comparison.  Figure 4(a) displays a comparison of fitting the unstained samples without house dust included in the pure 
component distributions P (vertical axis) versus including house dust in P (horizontal axis).  Figure 4(b) displays the 
corresponding results for the stained samples.  The solid line with a slope of unity and a vertical intercept of zero
represents perfect agreement between the two fits, which would be the case if the house dust distribution were 
orthogonal to that of Bt.  Below each graph is a plot of the deviation of these results from this perfect agreement.  The 
extrapolated vertical-axis intercept of these plots indicates the fraction of house dust which would be mistakenly 



identified as Bt.  Staining the sample significantly improves the specificity of the measurement, decreasing the fraction 
of house dust misidentified as Bt from 10% to only 3%.
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Fig. 4. Comparison of fitting samples with and without house dust included in the pure component distributions for (a) 
unstained samples and (b) stained samples.

3.5  Evaluating the Impact of Potential Artifacts

While the least-squares analysis provides a method for analyzing the data available from these trials, additional 
chemometric approaches can be implemented to examine artifacts present in the mixture data which would reduce the 
fidelity of the fitting routine.  Such artifacts would arise if portions of the acquired distribution were not linearly 
proportional to the concentration of the measured pure components.  For example, small particles of sample debris – the 
exact quantity of which may not be directly proportional to the particle concentration – can trigger the cytometer.  In 
addition, the probability of acquiring data from doublets (two particles present in the probe volume during a single 
coincident data acquisition) will become significant at high count rates, and the probability of acquiring data from 
doublets will increase nonlinearly with increasing particle concentration.

4.  CONCLUSIONS AND FUTURE WORK

We have demonstrated the use of a linear mixing analysis for the identification of particle mixtures from data acquired 
with a flow cytometer.  The approach of classical least squares is demonstrated sufficient for differentiating Bt and Yr
from house dust as well as unknown backgrounds provided in a blind test.  Staining provides improved differentiation 
between Bt and house dust as compared to analyzing only the native scattering/fluorescence properties.

Future work will focus on evaluating the ability of the analysis routine to account for additional backgrounds as well as 
evaluate the repeatability of the threat distributions.  In particular, instrument variation over time may shift the 
distributions, reducing the sensitivity and/or selectivity of the analysis.  Evaluations of instrument drifts will be 
conducted and potential mitigation approaches will be evaluated.
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