—

> 4}/ SAND2008- 3195C

The Acro/COLIN Framework: Developing Flexible
Optimization Interfaces for Parallel, Hybrid, and
Dynamically-Configured Algorithms

William E. Hart' and John D. Siirola*

'Discrete Math and Complex Systems Dept.
*Exploratory Simulation Technologies Dept.
Sandia National Laboratories
Albuquerque, NM USA

SIAM OP08 — 12 May 2008

{wehart, jdsiiro}@sandia.gov

IR B Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, Sandia

///l VA Dﬁg‘x for the United States Department of Energy’s National Nuclear Security Administration National
" under contract DE-AC04-94AL85000. Laboratories

}"
| Motivation

« Simplify research and development of hybrid algorithms
— “Traditional” branch-and-bound algorithms
— “Traditional” sequential multi-solver hybrids
— Asynchronous, adaptive multi-solver hybrids
— Integrated exact and approximate (surrogate) models
— Simultaneous optimization and uncertainty sampling
— Multi-criteria optimization
— Global optimization

 This is more than just providing the result of one
algorithm as the input to another.

Hart ol .2 ationa .
art & Siirola, p Laboratories

Y

The challenge of (hybrid) optimization research

 What “we” talk about What we assume “just works”

— Algorithm Development — Model evaluation

* Residual calculation/
external function calls

* Sub-problem generation /
formulation transformations

— Data mgmt.
» Type compatibility and
transformation
 Evaluation caching

« Consistency mgmt.
— Parallel resource mgmt.
— Application integration
— Configuration mgmt.

< 20% of the implementation effort? > 80% of the implementation effort?
(more for parallel hybrid algorithms)

Sandia
Hart & Siirola, p. 3 ya%t:)?"a‘?(lmes

The promise of optimization frameworks

« Standardize access to common functionality, especially
— function evaluations (residuals, Jacobian, Hessian)
— solution management (storage & caching)

Facilitate re-use of algorithmic components
— e.g. line searches

Provide common access points
— e.g. for multi-solver hybridization; interfacing with a general sub-solver

Enhance portability
— hides platform-specific details
* e.g. driving external executables
— hides configuration-driven complexity
» e.g. serial vs. threaded vs. distributed evaluation

Assist V&V, SQE:
— rigorously (and independently) test individual components

To make our lives easier.

@ ﬁa%dial
.. dationa
Hart & Siirola, p. 4 Laboratories

's‘,'
. The limitation of “frameworks”

 Frameworks rely on a rigid API

— Most written in common strongly-typed languages
« C, C++, Fortran

— API dictates:
« concepts: organization (classes), functions, methods
« semantics: parameters & data types

— Requires “glue code”
* “wrap” algorithm, function evaluation in framework classes
 conversions to / from API data types

— Application limited to API design space

* e.g. if the APl domain is {vector<int>, vector<double>}, you cannot
accommodate complex numbers or S-expressions

» API often offers gross superset of application’s needs
— application must verify that correct subset is present
— adding to API space requires modification of ALL clients

Sandia
Hart & Siirola, p. 5 yaabt:)[:g?(lmes

'-s‘,V
Flexible frameworks

« Optimization only requires a conceptual framework
— Define organization and methods

” 111 ” 11

 “set domain state”, “compute response”, “store solution”

— Actual data type (mostly) irrelevant to the framework
 decouple interface methods from data types they operate on

— Java’s “everything’s an Object” model is insufficient
* method must expect and resolve explicit type caller provides
— Scripting languages (i.e. Perl, Python) are closer
« implicit conversion among scalar types (int, real, string, etc.)
* implicit conversion of scalar to vector, hash to vector

Sandia
Hart & Siirola, p. 6 yaabt:)[:g?(lmes

..

OLIN: a Common Optimization Library INterface

» Object-oriented conceptual framework

— Easily extensible C++ structure to wrap third-party solvers
 add framework capabilities without modifying existing clients
* clients may declare restricted framework interface

— Facilitates plug-and-play optimizers for hybrid methods

— Decouple component data types

* e.g. solver uses DakotaArray, model uses vector<double>
— Dynamic mappings

» between problem domains

» between problem types (e.g. LP, NLP, MINLP)

— Support serial and parallel environments

Note: our goal is not to create the ‘best’ OO optimization class hierarchy ...
whatever that means ...

— Rather, it is to create a flexible and extendable framework that helps
more than it hinders algorithm research.

Hart & Siirola, p. 7 ational
2 Hrola, p Laboratories

2
“¥ COLIN 3.0

« Leverages concrete variant data type system
— based on boost::any
— three key components:

* Any - concrete container for any data type / reference
« TypeManager - casting system to convert Any into concrete types
 Serializer - store & retrieve “Any”s without knowing type

* Interfaces specify inputs / outputs as “Any’s

— concrete classes / methods
* internally, extract parameters into concrete types
* return concrete results wrapped in “Any’s

— enables virtualization, dynamic linking

« Template traits to specify key framework properties & capabilities
— solver & model types (LP, NLP, MINLP, etc.)

Sandia
Hart & Siirola, p. 8 yaabt:)[:g?(lmes

e
“% Core COLIN classes

» OptSolver
— Generic optimizer base class

OptProblem
— Generic handle to an optimization problem
— Templated on problem type
OptApplication
— Interface / driver for the actual model / function evaluator
— Templated on problem type

EvaluationManager
— Manages serial / parallel / async evaluation requests

BasicCache
— Solution database

TypeManager
— Facilitates type conversions (data and problem types)

Sandia
Hart & Siirola, p. 9 yaabt:)[:g?(lmes

\

A Simple Example...

/I A test function and its OptApplication driver
Any func (Any& point);

DirectAnyFuncApplication app = new
DirectAnyFuncApplication<colin::NLPO problem> (func)) ;

app->configure real domain(3);
app->set bounds (“[-1.0,1.0]73");

/I Create and setup an optimization problem class
OptProblem<colin::NLPO problem> prob;
prob.set application (app);

/I Create and setup a PatternSearch optimizer
PatternSearch opt;

opt.set problem(prob);

opt.set parameter (“max neval”,100);

/I Perform minimization and print the best value

opt.minimize () ;
cout << opt.best () << endl;

Sandia
Hart & Siirola, p. 10 raal}lt;]rg?(lmes

...hides complexity: automatic domain type mapping

I/l The actual test function

Any func (Any& point) {
vector<double> domain;
TypeManager () .type cast(point, domain);

double ans = 0.0;

for(size t 1=0; i<domain.size(); ++1)
ans += domain[i]*somain[i];

return ans;

/I The PatternSearch optimizer

volid PatternSearch::minimize () {
array<utilib: :Ereal> domain;
utilib: :Ereal response;

...

m prob->EvalF (m EvalMngr, domain, response);

/* response type cast called within EvalF() */
/...
}

Hart & Siirola, p. 11

(&)

Sandia
National
Laboratories

Automatic problem reformulation

« Connect an non-gradient application to a gradient-based solver:

I/l Create and a derivative-free optimization problem
OptApplication<colin::NLPO problem> *app; //defined elsewhere

OptProblem<colin::NLPO problem> prob;
prob.set application (app);

/l Create and setup a gradient-based optimizer (OPT++)
OPTpp opt;
opt.set problem(prob);

set problem () recognizes prob is nota

NLP1 problem and leverages the TypeManager to convert
prob into an NLP1 problem by reformulating it with a
FiniteDifferenceApplication

Hart & Siirola, p. 12 ational
2 Hrota, p Laboratories

Standard automatic reformulations

Name Purpose Examples
Downcast Hide gradient or Hessian capability NLP1 - NLPO
NLP2 - NLP1
Finite Difference Add gradient capability NLPO = NLP1

MINLPO - MINLP1

Constraint Penalty

Remove constraints and add penalty

to objective

NLP1 - UNLP1

Subspace Add or remove inactive portions of the NLP1 - MINLP1
domain MINLP1 > NLP1"
Sampling Create an approximate deterministic SNLPO - NLPO

application by sampling a stochastic

application

Hart & Siirola, p. 13

[1] - only succeeds if all integer variables are fixed @ Sandia

National

Laboratories

';,7
\. Acro: A Common Repository for Optimizers

A central repository for optimization research
— COLIN

— Coliny — a collection of optimizers built on COLIN
 Pattern Search
* MultiState Pattern Search
 Evolutionary Optimizers
— Interfaces — wrappers for “COLINized” TPL algorithms
« APPS
« Cobyla
« DOT
* Hooke
« MOMHLIib
 NPSOL

— Agent-based Optimization

Hart & Siirola, p. 14 ational
a firo'a. p Laboratories

A
ABO: Agent-based Optimization

« Asynchronous, parallel, adaptive hybrid optimization
— Reconciling a disparity in HPC optimization:
« algorithms: serial; single-threaded; no silver bullet
 architectures: distributed memory clusters

— Instead of building the perfect parallel algorithm, run many
algorithms in parallel

* Collaborative problem solving

* Algorithms - “agents”
— independent entities that observe environment (candidate solutions)
— react by applying algorithm and proposing new solutions
— circular data flow: [Talukdar (1993)]
* |nitialize from Environment — Compute — Report to Environment

— Target the “hardest of the hard” problems:
* mixed-integer, nonlinear, nonconvex
* multi-objective
« wrought with uncertainty (may require sampling truth model)
* “black box”

Sandia
Hart & Siirola, p. 15 ?Ia%t:aorlal?(lmes

ABO Architecture

R o eess Optimization Processes
Central Solution |__ Agent Agent
Cache ,| itialization | | || Initialization
Main Algorithmic L Procedure Procedure
Scheduler 7 17 .o e
OptSolver OptSolver
Main Evaluation < g OptProblem g OptProblem
Manager
— * 7 v
Coordinating Server (€ Reporting Reporting
A
S| w l l l
-§ % Evaluator Evaluator Evaluator
<
O
TE é’ OptApplication OptApplication OptApplication *e°
[y A~

Sandia
Hart & Siirola, p. 16 yaabt:;{a]almes

Example ABO study: effect of solver diversity

0.00

0.05 -

0.10

0.15

0.20 -

0.25

0.30 -

0.35

Fraction of Pareto Clusters Identified

0.40 -

045

-~

Characteristic solution quality after
constant number of total function
evaluations given different sets of
participating solver algorithms for a
dual-objective non-convex NLP.

+ 1 Agent Class

¢+ 2 Agent Classes
+ 3 Agent Classes
+ 4 Agent Classes
+ 5 Agent Classes

0.00

Hart & Siirola, p. 17

0.02

0.04 0.06 0.08 0.10 0.12 0.14

0.16 0.18 0.20

Normalized Nondominated Hypervolume Error (unitless)

[Siirola et al. Comp Chem Eng. 29(1) 2004 pp. 113-126]

m

sandia
National
Laboratories

}"
“¥ Key enabling technologies

« Automatic domain translation
— Greatly simplifies wrapping and including new algorithms

» Automatic problem translation / reformulation

— Each solver receives the problem interface it “expects”
 gradient-based local search - NLP1
 pattern search 2> NLPO
« stochastic search algorithms - UNLPO
. ...efc.

— Solvers only verify declared problem interface
« guaranteed not to receive unexpected interface

» Variant-based infrastructure (utilib::Any)
— Domain-independent solution caching
— Serialization for inter-process communication

» Dynamic composition of agents:
— OptSolver + Initialization + OptProblem

Sandia
Hart & Siirola, p. 18 yaabt:)[:g?(lmes

=
| Future research enabled through COLIN

« Rapid development and testing of hybrid algorithms
— “Traditional” hybrid or multi-solver algorithms
— Parallel multi-solver algorithms
— Distributed asynchronous multi-solver environments

« Dynamic formulation transformation
— Dynamic generation of sub-problems
— Dynamic problem reformulation to exploit solver properties
— Multi-formulation hybrids

Sandia
Hart & Siirola, p. 19 ?Ia%t:aorial?(lmes

'; X
Software Availability

 Acro/ COLIN:

— Open Source
— http://software.sandia.gov/Acro

« ABO:
— general Open Source release targeted September, 2008.

Sandia
Hart & Siirola, p. 20 raal}:)org?(lmes

Sandia

Hart & Siirola, p. 21 National
Laboratories

=2
“¥ COLIN 1.0 & 2.0

« C++ templates

— interfaces templated on key framework data types
« compiler will automatically coerce types
* type incompatibilities discovered at compile time

— limitations
* numerous template instantiations lead to executable bloat
» restricts use of virtual methods
* limits use of dynamic (shared) libraries
* requires many functions so compiler can coerce types

« cannot handle truly any data type
— template type’s API set by use:

template<typename DOMAIN>
void reset domain (DOMAIN d) {
d.clear(); <

Forces the domain type to
support a clear () method

}

Hart iirol .22 e i
art & Siirola, p Laboratories

=
Hybrid optimization frameworks

Configuration Options i
Driver
” Executable " Output
> Parallel Mgmt. l
rithm e 1 -
> Algorithm Model
v (_|_> Evaluation Mgmt. <—|_) v
> Algorithm 1 Model
. Solution Caching .

Sandia
Hart & Siirola, p. 23 I.Naal}:lorg?(lmes

