
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

The Acro/COLIN Framework: Developing Flexible
Optimization Interfaces for Parallel, Hybrid, and

Dynamically-Configured Algorithms

William E. Hart† and John D. Siirola‡

†
Discrete Math and Complex Systems Dept.

‡
Exploratory Simulation Technologies Dept.

Sandia National Laboratories

Albuquerque, NM USA

SIAM OP08 – 12 May 2008

{wehart, jdsiiro}@sandia.gov

SAND2008-3195C

Hart & Siirola, p. 2

Motivation

• Simplify research and development of hybrid algorithms

– “Traditional” branch-and-bound algorithms

– “Traditional” sequential multi-solver hybrids

– Asynchronous, adaptive multi-solver hybrids

– Integrated exact and approximate (surrogate) models

– Simultaneous optimization and uncertainty sampling

– Multi-criteria optimization

– Global optimization

• This is more than just providing the result of one
algorithm as the input to another.

Hart & Siirola, p. 3

The challenge of (hybrid) optimization research

• What “we” talk about
– Algorithm Development

• What we assume “just works”
– Model evaluation

• Residual calculation /
external function calls

• Sub-problem generation /
formulation transformations

– Data mgmt.

• Type compatibility and
transformation

• Evaluation caching

• Consistency mgmt.

– Parallel resource mgmt.

– Application integration

– Configuration mgmt.

< 20% of the implementation effort? > 80% of the implementation effort?
(more for parallel hybrid algorithms)

Hart & Siirola, p. 4

The promise of optimization frameworks
• Standardize access to common functionality, especially

– function evaluations (residuals, Jacobian, Hessian)
– solution management (storage & caching)

• Facilitate re-use of algorithmic components
– e.g. line searches

• Provide common access points
– e.g. for multi-solver hybridization; interfacing with a general sub-solver

• Enhance portability
– hides platform-specific details

• e.g. driving external executables

– hides configuration-driven complexity
• e.g. serial vs. threaded vs. distributed evaluation

• Assist V&V, SQE:
– rigorously (and independently) test individual components

• To make our lives easier.

Hart & Siirola, p. 5

The limitation of “frameworks”

• Frameworks rely on a rigid API
– Most written in common strongly-typed languages

• C, C++, Fortran

– API dictates:
• concepts: organization (classes), functions, methods
• semantics: parameters & data types

– Requires “glue code”
• “wrap” algorithm, function evaluation in framework classes
• conversions to / from API data types

– Application limited to API design space
• e.g. if the API domain is {vector<int>, vector<double>}, you cannot

accommodate complex numbers or S-expressions
• API often offers gross superset of application’s needs

– application must verify that correct subset is present
– adding to API space requires modification of ALL clients

Hart & Siirola, p. 6

Flexible frameworks

• Optimization only requires a conceptual framework

– Define organization and methods

• “set domain state”, “compute response”, “store solution”

– Actual data type (mostly) irrelevant to the framework

• decouple interface methods from data types they operate on

– Java’s “everything’s an Object” model is insufficient

• method must expect and resolve explicit type caller provides

– Scripting languages (i.e. Perl, Python) are closer

• implicit conversion among scalar types (int, real, string, etc.)

• implicit conversion of scalar to vector, hash to vector

Hart & Siirola, p. 7

COLIN: a Common Optimization Library INterface

• Object-oriented conceptual framework

– Easily extensible C++ structure to wrap third-party solvers
• add framework capabilities without modifying existing clients
• clients may declare restricted framework interface

– Facilitates plug-and-play optimizers for hybrid methods

– Decouple component data types
• e.g. solver uses DakotaArray, model uses vector<double>

– Dynamic mappings
• between problem domains
• between problem types (e.g. LP, NLP, MINLP)

– Support serial and parallel environments

Note: our goal is not to create the ‘best’ OO optimization class hierarchy …
whatever that means ...
– Rather, it is to create a flexible and extendable framework that helps

more than it hinders algorithm research.

Hart & Siirola, p. 8

COLIN 3.0

• Leverages concrete variant data type system

– based on boost::any

– three key components:
• Any - concrete container for any data type / reference

• TypeManager - casting system to convert Any into concrete types

• Serializer - store & retrieve “Any”s without knowing type

• Interfaces specify inputs / outputs as “Any”s

– concrete classes / methods
• internally, extract parameters into concrete types

• return concrete results wrapped in “Any”s

– enables virtualization, dynamic linking

• Template traits to specify key framework properties & capabilities

– solver & model types (LP, NLP, MINLP, etc.)

Hart & Siirola, p. 9

Core COLIN classes

• OptSolver
– Generic optimizer base class

• OptProblem
– Generic handle to an optimization problem
– Templated on problem type

• OptApplication
– Interface / driver for the actual model / function evaluator
– Templated on problem type

• EvaluationManager
– Manages serial / parallel / async evaluation requests

• BasicCache
– Solution database

• TypeManager
– Facilitates type conversions (data and problem types)

Hart & Siirola, p. 10

A Simple Example...
// A test function and its OptApplication driver

Any func(Any& point);

DirectAnyFuncApplication app = new
DirectAnyFuncApplication<colin::NLP0_problem>(func));

app->configure_real_domain(3);

app->set_bounds(“[-1.0,1.0]^3”);

// Create and setup an optimization problem class

OptProblem<colin::NLP0_problem> prob;

prob.set_application(app);

// Create and setup a PatternSearch optimizer

PatternSearch opt;

opt.set_problem(prob);

opt.set_parameter(“max_neval”,100);

// Perform minimization and print the best value

opt.minimize();

cout << opt.best() << endl;

Hart & Siirola, p. 11

...hides complexity: automatic domain type mapping

// The actual test function
Any func(Any& point) {

vector<double> domain;

TypeManager().type_cast(point, domain);

double ans = 0.0;

for(size_t i=0; i<domain.size(); ++i)

ans += domain[i]*somain[i];

return ans;

}

// The PatternSearch optimizer
void PatternSearch::minimize() {

array<utilib::Ereal> domain;

utilib::Ereal response;

// ...

m_prob->EvalF(m_EvalMngr, domain, response);

/* response type_cast called within EvalF() */

// ...

}

Hart & Siirola, p. 12

Automatic problem reformulation

• Connect an non-gradient application to a gradient-based solver:

// Create and a derivative-free optimization problem

OptApplication<colin::NLP0_problem> *app; // defined elsewhere

OptProblem<colin::NLP0_problem> prob;

prob.set_application(app);

// Create and setup a gradient-based optimizer (OPT++)

OPTpp opt;

opt.set_problem(prob);

set_problem() recognizes prob is not a
NLP1_problem and leverages the TypeManager to convert
prob into an NLP1_problem by reformulating it with a
FiniteDifferenceApplication

Hart & Siirola, p. 13

Standard automatic reformulations

Name Purpose Examples

Downcast Hide gradient or Hessian capability NLP1  NLP0

NLP2  NLP1

Finite Difference Add gradient capability NLP0  NLP1

MINLP0  MINLP1

Constraint Penalty Remove constraints and add penalty
to objective

NLP1  UNLP1

Subspace Add or remove inactive portions of the
domain

NLP1  MINLP1

MINLP1  NLP1
[1]

Sampling Create an approximate deterministic
application by sampling a stochastic
application

SNLP0  NLP0

[1] - only succeeds if all integer variables are fixed

Hart & Siirola, p. 14

Acro: A Common Repository for Optimizers

• A central repository for optimization research

– COLIN

– Coliny – a collection of optimizers built on COLIN
• Pattern Search

• MultiState Pattern Search

• Evolutionary Optimizers

– Interfaces – wrappers for “COLINized” TPL algorithms
• APPS

• Cobyla

• DOT

• Hooke

• MOMHLib

• NPSOL

– Agent-based Optimization

Hart & Siirola, p. 15

ABO: Agent-based Optimization

• Asynchronous, parallel, adaptive hybrid optimization
– Reconciling a disparity in HPC optimization:

• algorithms: serial; single-threaded; no silver bullet
• architectures: distributed memory clusters

– Instead of building the perfect parallel algorithm, run many
algorithms in parallel

• Collaborative problem solving
• Algorithms  “agents”

– independent entities that observe environment (candidate solutions)
– react by applying algorithm and proposing new solutions
– circular data flow: [Talukdar (1993)]

• Initialize from Environment – Compute – Report to Environment

– Target the “hardest of the hard” problems:
• mixed-integer, nonlinear, nonconvex
• multi-objective
• wrought with uncertainty (may require sampling truth model)
• “black box”

Hart & Siirola, p. 16

Root Process

ABO Architecture

Central Solution
Cache

Coordinating Server

Optimization Processes

E
va

lu
at

io
n

P
ro

ce
ss

es

Main Algorithmic
Scheduler

Main Evaluation
Manager

Agent

Initialization
Procedure

OptSolver

OptProblem

Reporting

• • •

Agent

Initialization
Procedure

OptSolver

OptProblem

Reporting

Evaluator

OptApplication • • •
Evaluator

OptApplication

Evaluator

OptApplication

Hart & Siirola, p. 17

Example ABO study: effect of solver diversity

[Siirola et al. Comp Chem Eng. 29(1) 2004 pp. 113-126]

Normalized Nondominated Hypervolume Error (unitless)

F
ra

c
tio

n
 o

f
P

a
re

to
 C

lu
st

e
rs

 I
d
e
n
tif

ie
d Characteristic solution quality after

constant number of total function
evaluations given different sets of
participating solver algorithms for a
dual-objective non-convex NLP.

Hart & Siirola, p. 18

Key enabling technologies
• Automatic domain translation

– Greatly simplifies wrapping and including new algorithms

• Automatic problem translation / reformulation
– Each solver receives the problem interface it “expects”

• gradient-based local search  NLP1
• pattern search  NLP0
• stochastic search algorithms  UNLP0
• ...etc.

– Solvers only verify declared problem interface
• guaranteed not to receive unexpected interface

• Variant-based infrastructure (utilib::Any)
– Domain-independent solution caching
– Serialization for inter-process communication

• Dynamic composition of agents:
– OptSolver + Initialization + OptProblem

Hart & Siirola, p. 19

Future research enabled through COLIN

• Rapid development and testing of hybrid algorithms

– “Traditional” hybrid or multi-solver algorithms

– Parallel multi-solver algorithms

– Distributed asynchronous multi-solver environments

• Dynamic formulation transformation

– Dynamic generation of sub-problems

– Dynamic problem reformulation to exploit solver properties

– Multi-formulation hybrids

Hart & Siirola, p. 20

Software Availability

• Acro / COLIN:

– Open Source

– http://software.sandia.gov/Acro

• ABO:

– general Open Source release targeted September, 2008.

Hart & Siirola, p. 21

Hart & Siirola, p. 22

COLIN 1.0 & 2.0

• C++ templates
– interfaces templated on key framework data types

• compiler will automatically coerce types

• type incompatibilities discovered at compile time

– limitations
• numerous template instantiations lead to executable bloat

• restricts use of virtual methods

• limits use of dynamic (shared) libraries

• requires many functions so compiler can coerce types

• cannot handle truly any data type
– template type’s API set by use:

template<typename DOMAIN>
void reset_domain(DOMAIN d) {

d.clear();
}

Forces the domain type to
support a clear() method

Hart & Siirola, p. 23

Hybrid optimization frameworks

Driver
Executable

Configuration Options

Output

Solution Caching

Algorithm
Evaluation Mgmt.

Model

Model

●
●

●

●
●

●

Parallel Mgmt.

Algorithm

