

Validation of a Viscoelastic Model for Foam Encapsulated Component Response SAND2007-1526C
Temperature Range

**Terry Hinnerichs (tdhinne), Jordan Massad (jemassa), Thomas Paez (tlpaez),
Chris O'Gorman (ccogorm) and Patrick Hunter (pshunte)**

Sandia National Laboratories
Albuquerque, New Mexico

Accurate material models are fundamental to predictive structural finite element models. Because potting foams are routinely used to mitigate shock and vibration of encapsulated components in electro/mechanical systems, accurate material models of foams are needed. A linear-viscoelastic foam constitutive model has been developed to represent the foam's stiffness and damping throughout an application space defined by temperature, strain rate or frequency and strain level. Validation of this linear-viscoelastic model, which is integrated into the Salinas structural dynamics code, is being achieved by modeling and testing a series of structural geometries of increasing complexity that have been designed to ensure sensitivity to material parameters. Both experimental and analytical uncertainties are being quantified to ensure the fair assessment of model validity. Quantitative model validation metrics are being developed to provide a means of comparison for analytical model predictions to observations made in the experiments. This presentation will describe the validation process being implemented that includes simple to complex structures with foam encapsulated components. This presentation specifically focuses on model validation over a wide temperature range and using a simple dumbbell structure for modal testing and simulation. Material variations of density, modulus, and damping have been included. A double blind validation process is described that brings together test data with model predictions.