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How this Work Fits Into Overall Picture

o Our interests
— Shielding effectiveness of well shielded cavities
— Pin level voltage
« Aperture coupling into cavity
— Realistic slots (overlap depth and large susceptance, losses and Q)
— Power bounds (matched load — worst case)
» Cavity
— Frequency regimes
 Fundamental

e Undermoded
e Overmoded

— Statistical modal description
* Modal frequencies and field distributions
— Source interactions (antennas and apertures))
* Quantities of interest (impedance, effective height, cross section)

— Localized Enhancements
e Stable
e Unstable scars

e Cable coupling
— Braid penetration
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Frequency Regimes
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~
Pe Igh Frequency Chaotic Behavior in Stadium Cavity

 “Undermoded to overmoded region
Aa)m:a)m+1—a)m:<Aa)m>W f(W)z(;tW/Z)e‘WZ”/4 <A%>~27ZCZ/(C%A) <:>722C3/(Vafn)
— Eigenvalue spacing (Wigner, Deus, et. al.)
— Gaussian (Berry, McDonald & Kaufmann, Lehman)
— Vector correlation (Eckhardt, et. al., Hill, Warne & Lee)
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Quantities of Interest

A

Zheng, et. al.)

 Impedance (Warne, et. al

220MHz 10MHz span—

Power Balance
wmsw Random Mode Series (Uniform Spading)
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Localized Enhancements

e Objective
Determine connection between high frequency modal
amplitude distribution and cavity boundary topology; in
particular the connection between scarring (modal
enhancements along periodic classical paths) and local
curvature of the boundary surface.

 Reason - near worst case vulnerability assessments

» Approach

Develop high frequency ray method to give local modal
amplitude enhancements (above chaotic background levels) in
terms of boundary topology
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|
=~ ' Ray Tracing of Stable Modes

eometric optics identifies periodic orbit resonant frequencies
(includes phase jumps through foci) and stability

— Stable orbit boundary layer construction of wave amplitudes
(Vaynshteyn, Babic)

 Whispering gallery modes (example In the elllpse)
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e Unstable periodic orbits
— Resonant frequencies
— Stability exponents

Bouncing Ball Modes
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» Chaotic ray behavior

‘ Ray Tracing of Unstable Modes
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Convex Boundary (Auf) =1

N

U, = lim Re| /2/(AN)> a g

'
}' Bow Tie Scar Theory

* Unstable scarred orbit N> y 3
statistics AC .
— Enhancements in fields =% . E=E,

relative to chaotic random
plane wave background
(Antonsen, et., al.)

— Vaynshteyn high d=£vl+Ri¢

frequency construction  y_qcosh¢sing
with Antonsen random  y _ 4sinh £ cos
phase
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'
= 'Bow Tie Scar Field and Normalization

» Scar frequency and stability C=¢,
exponent

ka:(p—1/2)7z A=
e Solution

s=4(k—k,)¢/InA~ 2 =VIR(k*-k2)/(2K)
W(S,T)=CRe[U+(S,T)+ei®°U:(S,T):| =,

u, ~ 21//(3, g“\/%)cos[kd sin & — sArcsin (tan &) | //cos &

e Normalization (Antonsen, et.al.) U,(s7)=¢€ <s+|/2)/4u( is, ze‘””“)
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Quarter Bowtie Scar Amplitude vs. Frequency Separation

—
}‘ Symmetric Bow Tie

« Projection along scar IR, e
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# Asymmetric Bow Tie

* Projections same as even
and odd cases
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Aymmer c Half Bowtie
m (0.0) to (0.1)

— Even projection 7 ¥
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V, = | cos(k,x) u(x,0)dx
Asymmetric Half Bowtie - Odd Case z %
— Odd projection = il :
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.
# Stadium Scar Theory

e Interior foci treated Concave Boundary

— Elliptic paths (Vaynshteyn) u~We "< Region 2
— Multiple regions along scar - oW _
_ EM energy theorem S +2ikdsinh g§+(kzdz§2+.kd cosh & W =0
normalization
— Sub-wavelength focal point E'=xl2-¢
shift required to perform o
leading order phase match ¢,&'<<1, Region3
Y
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| ; " Field Along Scé:agr 0
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' '
}‘ Matching and Normalization

k¢ =(p-1/4)x

2

o Scar frequency and symmetry /+d
conditions (focal point phase A=|—
jump) s=4k—k,)¢/InA ¢—d

RelU,'(-s0)+e™™U " (-50)|=0=Rele™*U, (5,0)+€""*€*U"(s0)]

 Matching condition (simulations
indicate n is taken to make shift
positive)

k(d+06)=kd, = sIn(2v/2kd )- @, /2 + nz

 Normalization
— Region 3 gives principal
value interpretation of energy

integral 2 —iziap
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y Spatial Comparisons

with EIGER
simulations (overall
amplitude adjusted)
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== Regions 1 and 2

— Eiger simulation

— Shifted focal region
Geometrical focal point
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Short Quarter Stadium Scar Amplitude vs. Frequency Separation

Stadium Projection and Point Statistics

Short Quarter Stadium
Integrate from (0,0) to (0.275,0)

e Larger deviations

from random 20

lane wave s | — s
A 1 Random Plane Wave|
Ng e Stadium Scar Theory

background o

— Projection
(trigonometric &
scar function
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orthogonality)

— Point statistics
(focal point &
volume)
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T~
} Conclusions

« Combined elliptic coordinate and random phase
reflection approach for time harmonic treatment of
unstable scar field enhancements

e Concave walls and interior foci in 2D
— Multiple region (focal region shift)

— Large enhancements relative to chaotic background

— Results in terms of stability exponents, modal
frequency versus scar frequency difference,
observation point versus focus location, orbit length,
cavity area

e 3D axisymmetric case similar
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