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How this Work Fits Into Overall Picture
• Our interests

– Shielding effectiveness of well shielded cavities
– Pin level voltage

• Aperture coupling into cavity
– Realistic slots (overlap depth and large susceptance, losses and Q)
– Power bounds (matched load – worst case)

• Cavity
– Frequency regimes

• Fundamental
• Undermoded
• Overmoded

– Statistical modal description
• Modal frequencies and field distributions

– Source interactions (antennas and apertures))
• Quantities of interest (impedance, effective height, cross section)

– Localized Enhancements
• Stable
• Unstable scars

• Cable coupling
– Braid penetration
– Interior modes and loads



Overall Problem Description
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Frequency Regimes
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• Undermoded to overmoded region

– Eigenvalue spacing (Wigner, Deus, et. al.)
– Gaussian (Berry, McDonald & Kaufmann, Lehman)
– Vector correlation (Eckhardt, et. al., Hill, Warne & Lee)

High Frequency Chaotic Behavior in Stadium Cavity
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Quantities of Interest
• Impedance (Warne, et. al., Zheng, et. al.)
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• Power balance derivation of 
simple engineering formulas
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Localized Enhancements

• Objective
Determine connection between high frequency modal 
amplitude distribution and cavity boundary topology; in 
particular the connection between scarring (modal 
enhancements along periodic classical paths) and local 
curvature of the boundary surface.

• Reason - near worst case vulnerability assessments

• Approach
Develop high frequency ray method to give local modal 
amplitude enhancements (above chaotic background levels) in 
terms of boundary topology



• Geometric optics identifies periodic orbit resonant frequencies 
(includes phase jumps through foci) and stability
– Stable orbit boundary layer construction of wave amplitudes 

(Vaynshteyn, Babic)
• Whispering gallery modes (example in the ellipse)

• Bouncing ball modes

Ray Tracing of Stable Modes
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Ray Tracing of Unstable Modes

• Unstable periodic orbits
– Resonant frequencies
– Stability exponents

• Chaotic ray behavior
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Bow Tie Scar Theory
Convex Boundary

• Unstable scarred orbit 
statistics
– Enhancements in fields 

relative to chaotic random 
plane wave background 
(Antonsen, et., al.)

– Vaynshteyn high 
frequency construction 
with Antonsen random 
phase
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Bow Tie Scar Field and Normalization
• Scar frequency and stability 

exponent

• Solution

• Normalization (Antonsen, et. al. )
( ) ( )~ 2 , 2 cos sin Arcsin tan / cospu s kd kd sψ ζ ξ ξ ξ−⎡ ⎤⎣ ⎦

( )π2/1−= pk pl

( ) ( ) ( )2 2
14 / ln ~ / 2p ps k k R k k kλ= − Λ = −l l

( ) ∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂
⋅+⋅

∂
∂

−⋅+⋅=⋅⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

×+×
∂
∂

VVS

dVJEJEdVEEHHidSnHEHE
ωω

εμ
ωω

***
0

*
0

**

( )0,2,1

0

2
00

0

0

x
y

uiKd
u

udSu p
z

p

A ∂

∂
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

= ∫∫
− ωμ

ξ
ζωω

εμ
ξ

ξ

( )[ ]
( )

Λ⎟
⎠
⎞

⎜
⎝
⎛ Φ

=
+

+ ln2
0,'

0,'Im21 2

2

2
02 kd

sU
sU

dk
dc

( ) ( ) ( )4/4/2/ ,, ππ ττ iis eisUesU −+−
+ −=

( ) ( )
spacing)even -(even /16~

2/,2/~/
2

2/22
0

2 2

Ak

evfkvddk v

π

ππ

Δ

=ΔΦ −

y

x

x = x0
x = -x0

z z = 0

z -z = 0

d-d

Φ0

( ) ( ) ( )0 *, Re , ,is c U s e U sψ τ τ τΦ
+ +⎡ ⎤= +⎣ ⎦

2

l

l

−
+

=Λ
d
d



Symmetric Bow Tie

• Projection along scar

• Point statistics in volume & 
on axis (scar decomposition)
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Asymmetric Bow Tie

• Projections same as even 
and odd cases

– Even projection

– Odd projection
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Stadium Scar Theory
Concave Boundary• Interior foci treated

– Elliptic paths (Vaynshteyn)
– Multiple regions along scar
– EM energy theorem 

normalization
– Sub-wavelength focal point 

shift required to perform 
leading order phase match
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Field Along Scar

• Region 1    

• Region 2

• Region 3
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Matching and Normalization

• Scar frequency and symmetry 
conditions (focal point phase 
jump)

• Matching condition (simulations 
indicate n is taken to make shift 
positive)

• Normalization
– Region 3 gives principal 

value interpretation of energy 
integral

( )π4/1−= pk pl

( ) ( )[ ] ( ) ( )[ ]0,'0,'Re00,'0,'Re *4/4/* 00 sUeesUesUesU iiii
+

Φ
+

−
+

Φ−
+ +==−+− ππ

( ) Λ−= ln/4 lpkks

2

d
d

−
+

=Λ
l

l

( ) ( ) πδ nkdskddk e +Φ−==+ 2/22ln 0

( )[ ]
( )

Λ⎟
⎠
⎞

⎜
⎝
⎛ Φ

=
+

+
−

ln2
0,'

0,'Im21 2

4/2

2
02 kd

sU
sUe

dk
dc

iπ



Spatial Comparisons
•Spatial comparisons 
with EIGER 
simulations (overall 
amplitude adjusted)
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Stadium Projection and Point Statistics

• Larger deviations 
from random 
plane wave 
background 
– Projection 

(trigonometric & 
scar function 
orthogonality)

– Point statistics 
(focal point & 
volume)
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Conclusions

• Combined elliptic coordinate and random phase 
reflection approach for time harmonic treatment of 
unstable scar field enhancements

• Concave walls and interior foci in 2D
– Multiple region (focal region shift)
– Large enhancements relative to chaotic background
– Results in terms of stability exponents, modal 

frequency versus scar frequency difference, 
observation point versus focus location, orbit length, 
cavity area

• 3D axisymmetric case similar


