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Introduction to Cellular Automata (CA)
 Local computational method

 Each element is dependent on elements that share an 
edge or corner.

 Mathematically equivalent to finite difference 
method of classical elasticity

 Avoids derivation of governing partial differential 
equations
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Introduction to Peridynamics (PD)

 Non-local continuum mechanics formulation

 Integro-Differential governing equation

 Restatement of Newton’s Second Law

 No spatial derivatives
 Designed to handle fracture problems

 Difficult to solve analytically

 Some solutions exist (Silling 2003)
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Discretize Eqn. of Motion

 Apply square mesh over 
domain

 Assume mass is concentrated at 
center

 Integral goes to sum:

 Can be interpreted as non-local 
spring-mass model
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Model Geometry

 Half-Plane subject to load (Lamb’s Problem)

 Normal, impulse load

 Two-Dimensional Problem

 Motivation

 Surface structures subject to 

earthquakes

 Underground structures
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Validation – Homogeneous Case
 Comparison with experiments (J.W. Dally 1967)

 CR-39
 Photoelastic Material

 Elastic Modulus – 3.85 GPa, Poisson Ratio – 1/3, Density – 1300 kg/m3

 Response of surface at different times
 Pressure Wave (P)

 Shear Wave (S)

 Surface or Rayleigh Wave (R)

 Explosive charge used as input

 Analytical Results

 Classical Elasticity (Partial Differential Equations)

 Triangular impulse load
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Results – CA Video

Plot of displacement magnitude
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Results – PD Video

Plot of displacement magnitude
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Comparing CA and PD

Longitudinal 
Wave

Shear 
Wave

Rayleigh (surface) 
Wave

�� = 0.919��
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Results – Cont.

*Note that Peridynamics does not have an equivalent measurement to Cauchy Stress 
of classical elasticity. Therefore, for Peridynamics, we compare displacements.
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Results – Amplitude Decay
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Background on Distributions – Hurst Effect

 Hurst Parameter

 Long Term Memory
 Negative autocorrelation (An increase followed by a decrease)

0 < � < 0.5

 Positive autocorrelation (A decrease followed by a decrease)
0.5 < � < 1

 Random Walk

� = 0.5

 Heavy-tail behavior of covariance function (Joseph Effects)
 Covariance decays slower than exponential function
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Background on Distributions - Fractals

 Fractals (Mandelbrot 1975)

 “Self Similarity”
 Geometry Repeats at smaller scale

 Found in Nature

 Fractal Dimension is given by: � = −	
��� �

��� �

 � – Number of Segments, � – the scaling factor

 Example: Sierpinski Triangle
 Triangle reduced by 1/2 (� = 1/2), 

requires 3 triangles (� = 3), � ≈ 1.58

14



Statistical Definitions
 Expected (mean) value

�[�(�)] = � ��(�; �) ��
�

��

 � = � �; 	� ;� ∈ Ω is	a	random	process	or	field

 � is the probability density function of �

 Covariance

� ��, �� = �[ � �� − � � �� {� �� − � � �� }]
																			= � ��, �� − � � �� � � ��

 �(��) and � �� are random variables, � is the variance 

 Measures the strength of the correlation

 If �(��) and �(��) are uncorrelated, then � = 0
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Random Fields

 Scalar Random Field

 Mass density
� �,� ;� ∈ Ω

 Wide-Sense Stationary (WSS)

 Random process �(�) is WSS if its mean is 
independent of �	and its autocorrelation depends only 
on separation �:

� ��, �� = � � , �	= �� − ��

 Isotropic Random Field
� � = � � = �(ℎ)
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Mass Density Field Disorder

 For an Isotropic, WSS, random process � = �(�), with zero mean, 
covariance is:

 Wide variety of models exist
 White Noise: � ℎ = �(ℎ)

 Gaussian: � ℎ = ���
�

 Matern: � ℎ = ℎ��� ℎ , where � is the modified Bessel function

 Cauchy Distribution: � ℎ = 1 + ℎ� ��/� , � ∈ 0,2 , � > 0

 Dagum Distribution:  � ℎ = 1 − 1 + ℎ��
�
�

�, � ∈ 0,1 , � ∈ (0,1)

 Cauchy and Dagum Distributions can model the fractal dimension and Hurst 
parameter – not only model but decouple! 

 White noise, Gaussian and Matern cannot model fractal dim. or Hurst

 Dagum Distribution is considered here
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Dagum Random Fields

18Variance = 6500, std dev = 80.6



Dagum Results – CA and PD

19
Variance = 6500, std dev = 80.6



Dagum Random Fields – Higher Variance

20Variance = 26000, std dev = 161.2



Dagum RF– CA & PD – Higher Variance

21Variance = 26000, std dev = 161.2



Results – PD Video

Plot of displacement magnitude
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Conclusions
 Homogeneous

 Theoretical, CA and PD results follow very well

 Neither method follows experimental results
 Input excitation may not reflect explosive input

 Simulation is 2D

 Dissipation and friction

 Heterogeneous Mass-Density Field

 Negligible difference between CA and PD results
 Unexpected!

 Small � (High �), shows the strongest deviation from 
homogeneous result

This work was partially supported by the NSF under grants CMMI-1030940 
and IIP-1362146
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Definitions of Peridynamics

 Undeformed position: �,	Displacements: �,
Deformed position �.

� �, � = � �, � + �

 Stretch between � and �′:

� �� − �, �� − � =
�� − � − �� − �

�� − �

 Force response function:
�(�� − �, �� − �)

 The force that �′ exerts on � per unit volume squared.
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Peridynamic Horizon

 Non-locality in PD is defined by the ‘horizon’

 Horizon – Defines the sphere of influence around 
a particle.

 Why is non-locality important?
 Significant at small scales

 Predicts finite stress at crack

tip (Eringen 1974a, b)
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Balance Laws
 Equation of Motion

 Newton’s Laws

 Balance of Linear Momentum

� � � �� − �, �� − �
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�

 Net internal force
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Balance Laws – cont.

 Balance of Angular Momentum

 (�� − �) and �(�� − �, �� − �) must be parallel

 Pairwise response function:

� �� − �, �� − � = � ∙ �(�� − �, �� − �)
�� − �

�� − �
 � is called the “bond constant”

 � is stretch
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Surface Correction

 Reduced number of bonds for particles near surface

 Normalize strain-energy

 Equation of motion becomes

 Correction factor is denoted by �
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