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Introduction to Cellular Automata (CA)

" Local computational method

= Each element is dependent on elements that share an
edge or corner.

= Mathematically equivalent to finite difference
method of classical elasticity

= Avoids derivation of governing partial differential

equations
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Introduction to Peridynamics (PD)

= Non-local continuum mechanics formulation
" |ntegro-Differential governing equation

p(xi(x,t) =| f(u' —ux' —x,t)dV + b(x,t)

Hy

= Restatement of Newton’s Second Law

= No spatial derivatives
= Designed to handle fracture problems

= Difficult to solve analytically
= Some solutions exist (Silling 2003)
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Discretize Egn. of Motion

= Apply square mesh over ’ P -
. A A
domain f \
|
. > > |
= Assume mass is concentrated at | /,( R X |
Sy 7 |
center ‘\ i AL Ll
IEEGES: . asal KN
" |ntegral goes to sum: \ AT /
\ \\." a:,: ., :. ‘~.//
N 1o
p(it(x,t) = | f(u —ux"—x)dV + b(x,t) = i
Hy =
! BE “jﬁ

b p(x)iL; (x;, t) = Z fup —uy, xp, —x;) dV + bi(x;, t)

p=1
" Can be interpreted as non-local

m National

Laboratories Spri ng_mass mOdel

5




Model Geometry

= Half-Plane subject to load (Lamb’s Problem)

= Normal, impulse load
= Two-Dimensional Problem y F
-

= Motivation
= Surface structures subject to
earthquakes
= Underground structures
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Validation — Homogeneous Case

= Comparison with experiments (J.W. Dally 1967)
= CR-39

= Photoelastic Material
= Elastic Modulus — 3.85 GPa, Poisson Ratio — 1/3, Density — 1300 kg/m3

= Response of surface at different times
= Pressure Wave (P)
= Shear Wave (S)
= Surface or Rayleigh Wave (R)

= Explosive charge used as input

= Analytical Results
= Classical Elasticity (Partial Differential Equations)
= Triangular impulse load
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Results — CA Video

Homogeneous, T=1.00E-06 sec
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Results — PD Video

Homogeneous, T=1.50E-05 sec
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Comparing CA and PD

Rayleigh (surface) cg = 0.919¢
T=1.07E-04 sec . Wave T=1.07E-04 sec 2
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Results — Cont.
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*Note that Peridynamics does not have an equivalent measurement to Cauchy Stress
of classical elasticity. Therefore, for Peridynamics, we compare displacements. ][
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Results — Amplitude Decay
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Background on Distributions — Hurst Effect

= Hurst Parameter
= Long Term Memory

= Negative autocorrelation (An increase followed by a decrease)

0<H<O0.5
= Positive autocorrelation (A decrease followed by a decrease)
05<HKI1
= Random Walk
H=20.5

= Heavy-tail behavior of covariance function (Joseph Effects)

= Covariance decays slower than exponential function

I
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Background on Distributions - Fractals

= Fractals (Mandelbrot 1975)
= “Self Similarity”

= Geometry Repeats at smaller scale

= Found in Nature

= Fractal Dimension is given by: D = —

= N — Number of Segments, r — the scaling factor

= Example: Sierpinski Triangle

log N

logr A%

= Triangle reduced by 1/2 (r = 1/2),
requires 3 triangles (N = 3), D =~ 1.58
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Statistical Definitions
" Expected (mean) value

ElZ(x)] = j_oozf(z; x)dz

= 7 =7(x; w);w € Qisarandom process or field
= fis the probability density function of Z
= Covariance
C(xy,x3) = E[{Z(x1) — E[Z(x1)|HZ(x3) — E|Z(x3)]}]
= R(xy,x;3) — E|Z(x1)]E|Z(x)]
= 7Z(x41) and Z(x,) are random variables, R is the variance
= Measures the strength of the correlation
" |If Z(x1) and Z(x5) are uncorrelated, thenC = 0
m ﬁgtnigir?al
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Random Fields

= Scalar Random Field

= Mass density
p(x,w);w € Q

= Wide-Sense Stationary (WSS)

= Random process Z(x) is WSS if its mean is
independent of x and its autocorrelation depends only
on separation Xx:
R(xq1,x3) = R(x), X=X — X1

= |sotropic Random Field
C(x) = C(|lx|]) = C(h)
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Mass Density Field Disorder

= For an Isotropic, WSS, random process p = Z(x), with zero mean,
covariance is: C(h) = E[Z(x)Z(xy + h)]
= Wide variety of models exist
= White Noise: C(h) = §(h)
= Gaussian: C(h) = e’
= Matern: C(h) = hVk,(h), where k is the modified Bessel function
= Cauchy Distribution: C(h) = (1 + h®*)~ /2, o € (0,2],8 > 0

= Dagum Distribution: C(h) =1 — (1 + h‘ﬁ)_ﬁ,ﬁ € (0,1, € (0,1)

= Cauchy and Dagum Distributions can model the fractal dimension and Hurst
parameter — not only model but decouple!

= White noise, Gaussian and Matern cannot model fractal dim. or Hurst

= Dagum Distribution is considered here
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Dagum Random Fields
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Figure 11: Left Column: 8 = 0.2(H = 0.9), Center Column: 8 = 1.0(H = 0.5), Right Column: 8 = 0.8(H = 0.1). Top Row
m a = 0.2(D = 2.9), Middle Row: a = 0.5(D = 2.75), Bottom Row: a = 0.8(D = 2.6)
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Dagum Results — CA and PD

107 PD, § = 3Ax, T=9.20E-05 sec, mean=1300, var = 6500 . <10
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Dagum Random Fields — Higher Variance

Mean 1300, var 26000, DagumRF a =0.2,53=0.8

Mean 1300, var 26000, DagumRF o = 0.2,3 = 0.2 Mean 1300, var 26000, DagumRF a =0.2,3 = 0.5
200 200 2000 200
1800
1800
150 1600 . 150 1600 150
he]
1400 ©
100 Z. 100 1400 100
! 1200
1200 .
50 1000 50 1000 50
800
800

50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
x - Node x - Node x - Node

(a) (b) (c)

2000
1800
1600
1400
1200
1000

y - Node
y - Node

Mean 1300, var 26000, DagumRF o = 0.5,3 = 0.2 Mean 1300, var 26000, DagumRF o = 0.5,3 = 0.5 Mean 1300, var 26000, DagumRF «a = 0.5, 3 = 0.8
200 1800 200 200
1800
150 1600 1600 150
- %
<} 1400 3
Z 100 1400 Z. 100
) 1200 '
> 1200 =
50 1000 50
1000 : 800
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
x - Node x - Node x - Node
(d) () (f)
Mean 1300, var 26000, DagumRF o = 0.8,3 = 0.2 Mean 1300, var 26000, DagumRF o = 0.8,3 = 0.5 Mean 1300, var 26000, DagumRF o = 0.8, 3 = 0.8
200 - = : 200 - - = ; ,.
: ; 1600 : 1800 1800
150 1500 150
P P 1600 1600
Za 1400 2 o0 1400
100 100
. 1300 1 1200
> 1200 > 1200
50 50 1000
1100 1000 800
1000 800 : 600
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
x - Node x - Node

x - Node

(2) (h) (i)

1 Figure 17: Left Column: 8 = 0.2(H = 0.9), Center Column: 8 = 1.0(H = 0.5), Right Column: 8 = 0.8(H = 0.1). Top Row:
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Dagum RF— CA & PD — Higher Variance

y 10-4PD, 6 = 3Ax, T=9.20E-05 sec, mean=1300, var = 26000
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Results — PD Video
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Conclusions
= Homogeneous

= Theoretical, CA and PD results follow very well

= Neither method follows experimental results
= |nput excitation may not reflect explosive input
= Simulation is 2D
= Dissipation and friction

= Heterogeneous Mass-Density Field
= Negligible difference between CA and PD results

= Unexpected!

= Small § (High H), shows the strongest deviation from
homogeneous result

This work was partially supported by the NSF under grants CMMI-1030940

anad IP-1362146
mh National

Laboratories

I

23




QUESTIONS




BACKUP SLIDES




References

[1] S.A. Silling, Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces, J. Mech. Phys. Solids, 48, (2000), 175-209.
[2] E. Madenci, E. Oterkus, Peridynamic Theory and its Applications, Springer, New York-U.S.A., 2014.

[3] P.N. Demmie, S.A. Silling, An Approach to Modeling Extreme Loading of Structures using Peridynamics, J. of Mech. of Mater. and Structures,
2, (2007) 1921-1945.

[4] W. Liu, J.W. Hong, Discretized Peridynamics for Linear Elastic Solids, Comput. Mech., 50, (2012), 579-590.

[5] M.L. Parks, P. Seleson, S.J. Plimpton, R.B. Lehoucq, S.A. Silling,Peridynamics with LAMMPS: A User Guide v0.2 Beta, Sandia National
Laboratories, 2010-5549, (2010).

[6] B. Kilic, E. Madenci, Coupling of Peridynamic Theory and the Finite Element Method, J. Mech. Mater. Structures, 5, (2010).
[7] S.A. Silling, E. Askari, A Meshfree Method Based on the Peridynamic Model of Solid Mechanics, Comput. Struct., 83, (2005), 1526-1535.
[8] J. von Neumann, The Theory of Self-reproducing Automata, University of Illinois Press, 1966.
[9] M.J. Leamy, Application of Cellular Automata Modeling to Seismic Elastodynamics, Int. J. Solids Struct., 45, (2008), 4835-4849.
[10] R.K. Hopman, M.J. Leamy, Arbitrary Geometry Cellular Automata for Elastodynamics, J. Appl. Mech., 78, (2011).

[11] J.W. Dally, S.A. Thau, Observations of Stress Wave Propagation in a Half-plane with Boundary Loading, Int. J. Solids Structures, 3, (1967)
293-308.

[12] K.F. Graff, Wave Motion in Elastic Solids, Dover Publications, INC., New York-U.S.A., 1991.

[13] E. Kausel, Lamb’s Problem at its Simplest, Proc. R. Soc. A, 469, (2013).

[14] H. Lamb, On the Propagation of Tremors over the Surface of an Elastic Solid, Phil. Trans. R. Soc. Lond. A, 203, (1904).
[15] Y.C. Fung, Foundations of Solid Mechanics, Prentice-Hall, 1965.

[16] J.W. Sherwood, Elastic Wave Propagation in a Semi-Infinite Solid Medium, Proc. Phys. Soc., Lond., 71, (1958).
[17] S.A. Silling, R.B. Lehoucq, Convergence of Peridynamics to Classical Elasticity, J. Elast., 93, (2008), 13-37.

[18] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 2nd edition, McGraw-Hill, 1984.

[19] M. Ostoja-Starzewski, Microstructural Randomness and Scaling in Mechanics of Materials, CRC Press, 2008.

<
m £ [20] J. Mateu, E. Porcu, O. Nicolis, A Note on Decoupling of Local and Global Behaviors for the Dagum Random Field, Probabilistic Eng. Mech.,
L 22, (2007), 320-329.

26




Definitions of Peridynamics

= Undeformed position: x, Displacements: u,
Deformed position y.
y(x,t) =ulxt) +x
= Stretch between x and x':
ly' =yl —|x" — x|
|x" — x|

s(u —u,x' —x) =

= Force response function:
f(w' —ux' —x)
= The force that x’ exerts on x per unit volume squared.
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Peridynamic Horizon

= Non-locality in PD is defined by the ‘horizon’

" Horizon — Defines the sphere of influence around
a particle.

= Why is non-locality important?

= Significant at small scales
= Predicts finite stress at crack

tip (Eringen 19743, b)

o(x) =f A(x, x")C:g(x") dV’ Mor_zo
v
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Balance Laws

= Equation of Motion
p(xi(x,t) =| f(u' —ux' —x,t)dV + b(x,t)

Hx
= Newton’s Laws

fw —ux'"—x)=—fu—u',x—x')
= Balance of Linear Momentum

j j f —u,x"—x)dv' dv =J j flu—u',x —x")dvdyv’
vV Vv vV Vv
= Net internal force
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Balance Laws — cont.

= Balance of Angular Momentum
-y xfw—-—ux'"—-x)=0

= (y' —y)andf(u' —u,x’ — x) must be parallel

= Pairwise response function:
y —y
[y =yl

fwW —ux'"—x)=c-s(u —u,x’' — x)

= cis called the “bond constant”
= 5 s stretch

I
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Surface Correction

= Reduced number of bonds for particles near surface
= Normalize strain-energy
= Equation of motion becomes

p(x)it(x,t) = j gxf(u —u,x'—x,t)dV + b(x,t)

Hy

= Correction factor is denoted by g
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