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LAMMPS from 10,000 meters

Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov

@ Materials modeling: soft matter, solids, mesoscale
i [T

@ Particle simulator at varying length and time scales
electrons = atomistic = coarse-grained =- continuum

@ Spatial-decomposition of simulation domain for parallelism
@ OpenMP, GPU, Phi enhanced
@ Can be coupled to other scales: QM, kMC, FE, CFD, ...



Research directions for MD

Coupling to
Other Scales

More Accurate| Classical Coarse

Hardware
o Accelerated. Optimizations
Time & Sampling (GPU, Phi, etc)



See you at the movies ...




CGIl modeling advances by Pixar

Bug's Life (1998)  Monsters, Inc (2001) Finding Nemo (2003)
vegetation hair water

Cars (2006) Ratatouille (2007) Wall-E (2008)
painted surfaces food rust & decay



Moore's Law for interatomic potentials (force fields)
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ReaxFF for shock-induced initiation of detonation

@ Work by Ray Shan & Aidan Thompson (Sandia)
@ PETN = explosive material made of organic molecules
@ Simulate “slow” shock wave passing thru PETN crystal




ReaxFF for shock-induced initiation of detonation

@ Work by Ray Shan & Aidan Thompson (Sandia)
@ PETN = explosive material made of organic molecules
@ Simulate “slow” shock wave passing thru PETN crystal

e Use a reactive force field (ReaxFF)
e detonation triggered by initiation of exothermic reactions

@ Quantify detonation sensitivity to
orientation, defects, impurities ... a safety issue



Large-scale 20 nm void simulations

8.5M atoms (300x200x1.3 nm), 500 psec
5M steps, 1500 hours on 64K cores (4 t/c) of BQ/Q

Charm ol Al PrAar 1E+h Infarmatinnal DatAanatinm Svrmam ONTE)



Sensitivity of PETN to shock stress

e Heat and stress trigger chemical reactions
@ Hot-spot lowers initiation threshold stress by 30%
@ Increased sensitivity with increasing void size
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Sensitivity of PETN to shock stress

e Heat and stress trigger chemical reactions
@ Hot-spot lowers initiation threshold stress by 30%
@ Increased sensitivity with increasing void size
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o Agrees with experiment except:
e real PETN can have micron-scale voids
e experiments performed at lower shock speeds
o bigger/longer/CG simulations needed to bridge that gap



Quantum-accuracy with empirical potentials?

@ GAP = Gaussian approximation potentials

o Gébor Csanyi, Albert Bartdk-Partay (U Cambridge)
@ SNAP = spectral neighbor analysis potentials

o Aidan Thompson and collaborators (Sandia)
@ Aim for quantum-level accuracy in some cases:
interpolate to ab initio potential energy surface
Gaussian process: high-dimensional interpolation technique
trained on set of QM configurations, energy, forces
expensive, but cost still O(N) in number of atoms



Quantum-accuracy with empirical potentials?

@ GAP = Gaussian approximation potentials

o Gébor Csanyi, Albert Bartdk-Partay (U Cambridge)
@ SNAP = spectral neighbor analysis potentials

o Aidan Thompson and collaborators (Sandia)

e Aim

for quantum-level accuracy in some cases:
interpolate to ab initio potential energy surface

Gaussian process: high-dimensional interpolation technique
trained on set of QM configurations, energy, forces
expensive, but cost still O(N) in number of atoms

Reduces errors relative to DFT

Bartok, et al, PRL, 104, 136403
(2010).

i

a8 80 1
DFT force / eVih

@ Our interest: semiconductors & metals like InP, Ta, Be



Success with SNAP potential for Tantalum

Energy barrier for screw dislocation migration in bcc Ta
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o DAKOTA optimization package used to iteratively fit
e Thompson, et al, J Comp Phys, 285, 316-330 (2015).



Strong scaling of SNAP on Titan
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@ 246K atoms on 18K nodes of Titan, /red13 atoms/GPU (!)
@ SNAP optimized for GPU by Christian Trott (Sandia)
o Trott, et al, Supercomputing,

in Lecture Notes Comp Sci, 8488, Springer, 1934 (2014).



Coarse graining to extend length & time scales

CRADA with companies interested in solvated nanoparticles

- Actual Radius
Effective
Polymer Radius
(staric)

SHydrodynamic

Electrostatic(]
Osmaotic (polyime
Van Der Waals,

Phase separallomnge

Polymer Fanctionalizat

Spherical vs aspherical, bare vs coated, polydisperse,
agglomeration, response to shear, ...



Sequence of coarse-grained models in LAMMPS
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Coarse-graining of nanoparticles and solvent

Integrated LJ potential over NP volume: Everaers (PRE 2003)
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SRD = stochastic rotation dynamics for solvent, then FLD:
Padding (PRL 04), Kumar and Higdon, (PRE 2010)




Diffusion across time scales and volume fractions
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Bolintineanu, et al, Comp Particle Mechanics, 1, 321-356 (2014).



Viscosity of nanoparticles in SRD fluid

Muller-Plathe algorithm induces V-shaped velocity profile



Arbitrary-shape aspherical NPs with and w/out solvent

Rigid bodies
2d particles are line-segmented surfaces
3d particles triangulated surfaces




Liquid crystal thin film rupture on Titan
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Mike Brown and collaborators (ORNL)

Liquid crystal molecule = coarse-grained ellipsoid

GayBerne potential on GPU = ~100x faster than CPU core
Titan GPU/CPU node is ~7x vs two multi-core CPUs
Nguyen, et al, Nanoscale, 6, 3083-96 (2014).



Load-balancing via recursive coordinate bisectioning

@ Often needed for coarse-grained models
e DPD, SPH, Peridynamics, granular, etc

e Worked to reduce comm with 26 neighbors to 6+ (for 3d)




Load-balancing examples for soft and hard materials

2d SPH “water” flowing over a dam
Georg Ganzenmueller, Fraunhofer EMI




Load-balancing examples for soft and hard materials

2d SPH “water” flowing over a dam
Georg Ganzenmueller, Fraunhofer EMI

Atomic microlattice of
metal struts

Alex Stukowski
(Tech Univ Darmstadt)

@ star imbalance = 18x

@ 13x speed-up for 21M
atoms on 16K cores




Accelerator hardware: Aiming for MPI+X via Kokkos

e Kokkos = programming model developed at Sandia
e minimize impact of new chip designs on applications
o https://github.com/kokkos
@ Goal: write application kernels only once,
run efficiently on variety of current/future hardware



Accelerator hardware: Aiming for MPI+X via Kokkos

e Kokkos = programming model developed at Sandia
e minimize impact of new chip designs on applications
o https://github.com/kokkos
@ Goal: write application kernels only once,
run efficiently on variety of current/future hardware
@ Two major components:
@ Data access abstraction via Kokkos arrays

e optimal layout & access pattern for each device
GPU, Xeon Phi, etc

@ Parallel dispatch of small chunks of work

@ auto-mapped onto back-end languages
CUDA, OpenMP, etc



Accelerator hardware: Aiming for MPI+X via Kokkos

e Kokkos = programming model developed at Sandia
e minimize impact of new chip designs on applications
o https://github.com/kokkos

@ Goal: write application kernels only once,
run efficiently on variety of current/future hardware
@ Two major components:
@ Data access abstraction via Kokkos arrays

e optimal layout & access pattern for each device
GPU, Xeon Phi, etc

@ Parallel dispatch of small chunks of work
@ auto-mapped onto back-end languages
CUDA, OpenMP, etc
@ Key task for application is to write kernels so they:

e operate at fine granularity and are thread-safe
o use Kokkos data structures (dual-view concept)
o unfortunately LAMMPS has ~1000 “kernels”



Kokkos performance for Lennard-Jones pairwise kernel

One-node performance :
dual 8-core Intel Sandy Bridge Xeon CPUs
two NVIDIA Kepler GPUs

255 Shannon single-node double precision
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Kokkos for manybody potentials

o Completed: EAM, Tersoff, Stillinger-Weber
@ Working on ReaxFF = reactive bond-order potential
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@ About 50% complete: bond-order terms, Coulomb, LJ
e Todo: many-body, QEq (matrix solve or damped dynamics)



Multiscale & multiphysics via coupling to other codes
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Goal: enable “easy” coupling of MD to QM, kMC, FE ...
via Python or C-style lib interface (C/C++/Fortran/etc)

syst actly
with water-CNT atom region



Thermal coupling with AtC package

Reese Jones, Jon Zimmerman, Jeremy Templeton,
Greg Wagner (Sandia)

2D diffusion problem

* Plate with
embedded MD
region (~33,000
atoms)

~0x (Adgstromsi0 120 « Initialized to
temperature field
with gaussian
profile

* Adiabatic
boundary
conditions at
edges

6.1

Sandia
@ National
Laboratories
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Mechanical coupling with AtC package

Elasto-dynamic response:
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Granular + fluids modeling via OpenFOAM

Christoph Kloss (JKU) and add-on LIGGGHTS package
www.liggghts.com/www.cfdem.com

o particles + CAD mesh + fluid
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MD + kMC for stress-driven grain growth

e SPPARKS (kMC) runs Potts model for grain growth
e Hamiltonian includes stress term
e send grain structure to LAMMPS
e LAMMPS (MD) treats particles at grain boundary as larger
o relaxes system
e send per-particle stress to SPPARKS

r.




A think-outside-the-box example ...

LIGGGHTS package extension to LAMMPS for granular models and
FMI (Functional Mock-up Interface) for mesh dynamics

LIGGGHTS by C Kloss (DCS Computing)

Wheelloader model by C Schubert & T Dresden (Dresden Tech U)

Simulation by C. Richter & A. Katterfeld (U Magdeburg OV Guericke)

TecHNischE  CeParTec

UNIVERSITAT
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Thanks and links

LAMMPS: http://lammps.sandia.gov

Funding;:
o DOE (BES,BER), Sandia (ASC,LDRD)
o NINE (university), CRADA with Corning, 3M, BASF

Joint work with:
o LAMMPS: Aidan Thompson, Paul Crozier, Stan Moore,
Ray Shan, Axel Kohlmeyer (Temple U)
o Kokkos: Carter Edwards & Christian Trott

Two papers with more info:
e S. J. Plimpton and A. P. Thompson, “Computational Aspects
of Many-body Potentials”, MRS Bulletin, 37, 513-521 (2012).
e D. S. Bolintineanu, et al, “Particle dynamics modeling
methods for colloid suspensions”, Comp Particle Mechanics, 1,
321-356 (2014).



