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Background

• Benoît Mandelbrot introduced the term fractal to denote an object that is 
broken or fractured in space or time. 
– However, there is no universally accepted definition of a fractal. 

• Fractals provide models for many media over some finite range of length 
scales with lower and upper cutoffs.

• Tarasov introduced a field theory for fractal media [1-3].
– He developed continuum-type equations of conservation of mass, linear and 

angular momentum, and energy for fractals, and studied several fluid mechanics 
and wave problems. 

– Tarasov’s approach relies on dimensional regularization of fractal objects 
through fractional integrals in Euclidean space, a technique with its roots in 
quantum mechanics.

[1] Tarasov, V.E.: Continuous medium model for fractal media. Phys. Lett. A 336, 167–174 (2005)
[2] Tarasov, V.E.: Fractional hydrodynamic equations for fractal media. Ann. Phys. 318(2), 286–307 (2005)
[3] Tarasov, V.E.: Wave equation for fractal solid string. Mod. Phys. Lett. B 1915), 721–728 (2005)
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Background

• Whereas the formulation of Tarasov is based on the Riesz measure, 
and thus more suited to isotropic fractal media, a model that is based 
on a product measure was introduced by Ostoja-Starzewski and Li 
[4,5].
– This measure has different fractal dimensions in different directions.

– It grasps the anisotropy of fractal geometry better than the original formulation 
for a range of length scales between the lower and upper cutoffs.

• Demmie and Ostoja-Starzewski developed conservation equations for 
fractal media including an energy equation [6] and applied it to a 
study of waves in fractal media.
– This formulation is the basis of our approach to peridynamic theory for fractal 

media.

[4] Ostoja-Starzewski, M. and J. Li: Fractal materials, beams and fracture mechanics. Z. Angew. Math. Phys. 60, 1–12 
(2009)

[5] Li, J. and Ostoja-Starzewski, M.: Fractal solids, product measures and fractional wave equations. Proc. R. Soc. A 465, 
2521–2536 (2009) doi:10.1098/rspa.2009.0101. Errata (2010) doi:10.1098/rspa.2010.0491

[6] Demmie, P. N. and Ostoja-Starzewski, M., “Waves in Fractal Media”, Journal of Elasticity, 104(1-2), 187–204, 20114
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What is Peridynamic Theory?

Peridynamic means “near force”.
1. PD is a reformulation of 

continuum mechanics that 
applies everywhere regardless 
of discontinuities. 

2. PD provides a consistent 
formulation of both 
deformation and failure of 
materials.

• Peridynamic theory (PD) is a theory of continuum mechanics that 
uses integro-differential equations without spatial derivatives rather 
than partial differential equations.
– Bond-Based Peridynamics [7] 

– State-Based Peridynamics [8]

[7] Silling,  “Reformulation of elasticity theory for discontinuities and long-range forces”, in Journal of the 
Mechanics and Physics of Solids, 48 (2000) , pp. 175-209. 
[8] S..A. Silling et al. “Peridynamic States and Constitutive Modeling”, in J Elasticity, 88 (2007), pp. 151–184.
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Bond-Based Peridynamic Theory

x, x´ are position vectors,
t is the time,
 (x) is the density at x,
u is the displacement vector,
R is the domain of the body, 

f is the pairwise force function (PFF),
η and ξ are defined in the figure, 
b is the body-force density, and
δ is the horizon.

where

� � 	
��

���
	� �, � =�� �, �	 ��� + 	� �, �

�

• In bond-based peridynamics the force state at a point is given by a 
functional over the pairwise interactions with all other points in the 
continuum.
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• The integrand in the fundamental equation of peridynamics, 
f, is called the pairwise force function (PFF) and is a force 
per unit volume squared between particles located at two 
points.

Material Modeling in Peridynamics

− Peridynamic interaction between two points is called a bond.

− Constitutive properties of materials are given by specifying the PFF. 

− Bond properties are derivable from measured material properties.

• Material Failure
− A bond fails when its stretch exceeds an input value called the critical stretch.

• Newton’s third law and conservation of angular momentum imply 
that the PFF is of the form

�(�, �) = 		�(�, �) � + � 		for	all		�	,	�

where the scalar function such that F(-η,-ξ) = F(η,ξ).
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Mass Power Law and Fractional Integrals

• By a fractal medium, we mean a medium with a pre-fractal geometric 
structure.
– A pre-fractal geometry is fractal-like at some scale with cutoffs.

• In order to deal with general anisotropic, fractal media, we use a 
power law relation with respect to each coordinate and the mass is 
specified via a product measure as

• The length measure in each coordinate is provided using the 
transformation coefficients

� � 	= 		� � �1, �2, �3 ��1(�1)	��2(�2)	��3(�3)
�

��� �� =		 ��
(�)	 ��, �� 	 ��� 	, 		� = 1, 2, 3			(no	sum)	
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Transformation Coefficients

• We adopt the modified Riemann-Liouville fractional integral of 
Jumarie [8,9] for the transformation coefficients

where lµ is the total length (integral interval) along xµ and lµ0 is the 
characteristic length in the given direction, like the mean pore size. 

[8] Jumarie, G.: On the representation of fractional Brownian motion as an integral with respect to (dt)a . Appl. 
Math. Lett. 18, 739–748 (2005)

[9] Jumarie, G.: Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville 
derivative for non-differentiable functions. Appl. Math. Lett. 22(3), 378–385 (2009)

�1
(�) 	= 		��	

��	 − 	��

���

��	��

, � = 1, 2, 3	(no	sum)

• In the product-measure formulation, the resolution length scale is 
given by

�	 = 	 ����
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Continuum Mechanics for Fractal Media

• We extend continuum thermomechanics to a fractal medium 
characterized by a mass (or spatial) fractal dimension, a surface fractal 
dimension, and a resolution length scale.
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• The continuum theory is based on dimensional regularization, in 
which global mass, momentum, and energy laws employ fractional 
integrals.

RVE (representative volume element)



Homogenization Process for Fractal Media

(Lμ)

dlμ

(Xμ)

dxμ

Fractal Space

�� 							= 		det
���

���
	= 	 �� � �3

�� � 	�

��� = 	 ��	���
�

(lμ)

(xμ)

���
�

���

��� ���
�

��� = ����
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���

���
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�
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��� 					= 			��
�
�� 	���						(no sum on �)		

��� 			= 	�� � ���	

�� � 		= 		 ��
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� ��, �� 					� ≠ �, � ≠ σ, υ ≠ �

�� � 		= 		 ��
� �� 	��
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Euclidean Space

�										 = 		det
���

���
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Velocities and Time Derivatives

• From the expression,

��� = 		��
�
�� 	��� 						(no	sum	on	�)

we get the following relationship between the velocities in fractal and 
Euclidean spaces,

��
� =	

���

��
	= 		��

�
�� 	

���

��
	= 			��

�
�� 	�� 					(no	sum	on	�)	

• In terms of the fractal velocity and derivative,

��

��
		= 		

��

��
	+	�� 	

��

���
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��

��
		+ 	��

� 	��
��	 =

��

��
�
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Fractional Integral Theorems and
Fractal Derivatives

• Using the conventional Gauss theorem and noting that each c2
(k) does 

not depend on the coordinate xk , we obtain

• Based on this expression, we define the Fractal Derivative, µ
D as

• Based on this definition, Gauss Theorem for Fractal Media becomes

��
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�
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Fractional Integral Theorems and
Fractal Derivatives
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• We generalize the Reynold’s Transport Theorem as follows: 
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• The Reynold’s Transport Theorem for Fractal Media is: 
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Continuum Mechanics for Fractal Media 

• We specify the relationship between surface force, FS, and the Cauchy 
stress tensor, �� , using fractional integrals as

• For small deformations, we define the strain, �� , in terms of the 
displacement u as 

• The fractal equations for continuity, momentum, and energy follow 
from the balance laws for mass, momentum, and energy.
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Fractal Continuity Equation

• Consider the equation for conservation of mass in a region W

• Using the fractional Reynolds transport theorem, we obtain

• Since W is arbitrary, the Fractal Continuity Equation is
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Fractal Momentum Equation

• Consider the balance law of linear momentum for W, with F	B the 
body force, and F	S the surface force, 

• Using Reynold’s transport and Gauss theorems and the continuity 
equation, we obtain

• Since W is arbitrary, the Fractal Linear Momentum Equation is
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Fractal Energy Equation

• The most general form of balance (conservation) of energy must be 
used to obtain the fractal energy equation.
– The time rate of change of the kinetic energy K plus the internal energy E of a region, W, 

in a continuum equals the sum of the rate of work performed on W by external agencies 
plus the flux Q of all other energies supplied to or removed from W by external agencies 
across the boundary of W.

and using the fractal momentum equation, we obtain  

• Since W is arbitrary, the Fractal Energy Equation is
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• In terms of the kinetic energy K	, specific internal energy e	, and flux 
per unit area q	, 
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Peridynamic Theory for Fractal Media

19

• We obtain the bond-based peridynamics momentum equation by 
replacing the divergence term in the fractal momentum equation by 
the regularized integral from the fundamental equation of 
peridynamics.

�
���
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=��� ��, �� ���

� + 	�
�

(Lμ)

dlμ

(lμ)
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Summary and Conclusions

• We extended continuum thermomechanics to fractal media. 
– The continuum theory is based on dimensional regularization, in which we 

employ fractional integrals to state global balance laws. 

– We derived fractal continuity, linear momentum, and energy equations, which 
through dimensional regularization can be cast into equations in E3. 

• We extended this continuum thermomechanics to peridynamic theory 
for fractal media.

• Future work includes implementation of this extension in a computer 
code, specification of appropriate force states, and failure predictions 
for fractal media subject to high-impulse loading.

20


