

An Approach to Peridynamic Theory for Fractal Media

Paul N. Demmie¹

Sandia National Laboratories
Albuquerque, New Mexico
pndemmi@sandia.gov

Martin Ostoja-Starzewski

University of Illinois
Urbana-Champaign, IL
martinos@illinois.edu

Presentation at
United States National Congress on Computational Mechanics
San Diego, CA
July 26-30, 2015

¹Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

Outline

- Background
- Peridynamic Theory
 - What is Peridynamic Theory?
 - Fundamental Equation of Peridynamic Theory
 - Material Modeling in Peridynamics
- Developing Continuum Mechanics of Fractal Media
 - Mass Power Laws and Fractional Integrals
 - Homogenization Process for Fractal Media
 - Fractional Integral Theorems and Fractal Derivatives
 - Continuum Mechanics for Fractal Media
- Peridynamic Theory for Fractal Media
- Summary and Conclusions



Background

- Benoît Mandelbrot introduced the term fractal to denote an object that is broken or fractured in space or time.
 - However, there is no universally accepted definition of a fractal.
- Fractals provide models for many media over some finite range of length scales with lower and upper cutoffs.
- Tarasov introduced a field theory for fractal media [1-3].
 - He developed continuum-type equations of conservation of mass, linear and angular momentum, and energy for fractals, and studied several fluid mechanics and wave problems.
 - Tarasov's approach relies on dimensional regularization of fractal objects through fractional integrals in Euclidean space, a technique with its roots in quantum mechanics.

[1] Tarasov, V.E.: Continuous medium model for fractal media. *Phys. Lett. A* **336**, 167–174 (2005)

[2] Tarasov, V.E.: Fractional hydrodynamic equations for fractal media. *Ann. Phys.* **318**(2), 286–307 (2005)

[3] Tarasov, V.E.: Wave equation for fractal solid string. *Mod. Phys. Lett. B* **1915**, 721–728 (2005)

Background

- Whereas the formulation of Tarasov is based on the Riesz measure, and thus more suited to isotropic fractal media, a model that is based on a product measure was introduced by Ostoja-Starzewski and Li [4,5].
 - This measure has different fractal dimensions in different directions.
 - It grasps the anisotropy of fractal geometry better than the original formulation for a range of length scales between the lower and upper cutoffs.
- Demmie and Ostoja-Starzewski developed conservation equations for fractal media including an energy equation [6] and applied it to a study of waves in fractal media.
 - This formulation is the basis of our approach to peridynamic theory for fractal media.

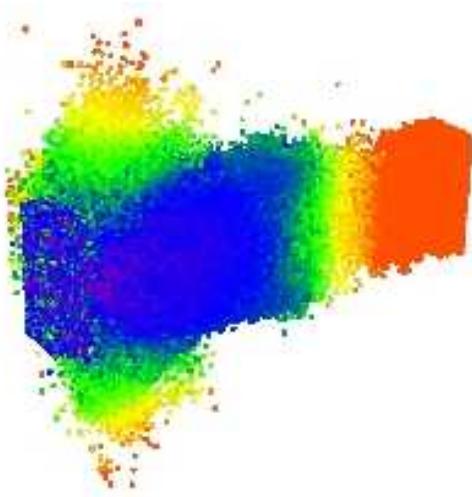
[4] Ostoja-Starzewski, M. and J. Li: Fractal materials, beams and fracture mechanics. *Z. Angew. Math. Phys.* **60**, 1–12 (2009)

[5] Li, J. and Ostoja-Starzewski, M.: Fractal solids, product measures and fractional wave equations. *Proc. R. Soc. A* **465**, 2521–2536 (2009) doi:10.1098/rspa.2009.0101. Errata (2010) doi:10.1098/rspa.2010.0491

[6] Demmie, P. N. and Ostoja-Starzewski, M., “Waves in Fractal Media”, *Journal of Elasticity*, 104(1-2), 187–204, 2011

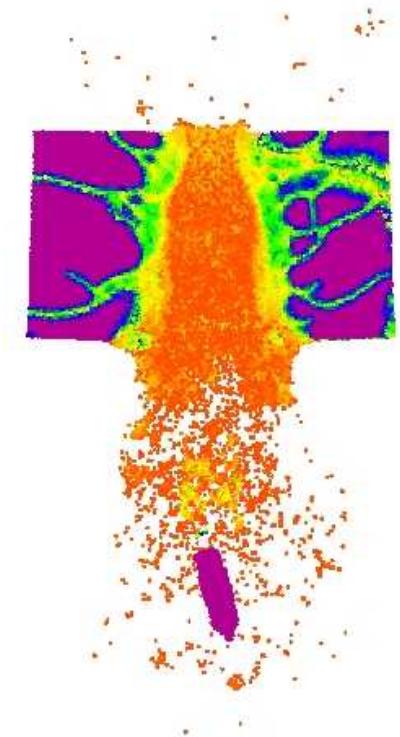
What is Peridynamic Theory?

- **Peridynamic theory (PD)** is a theory of continuum mechanics that uses integro-differential equations without spatial derivatives rather than partial differential equations.
 - Bond-Based Peridynamics [7]
 - State-Based Peridynamics [8]



Peridynamic means “near force”.

1. PD is a reformulation of continuum mechanics that applies everywhere regardless of discontinuities.
2. PD provides a consistent formulation of both deformation and failure of materials.

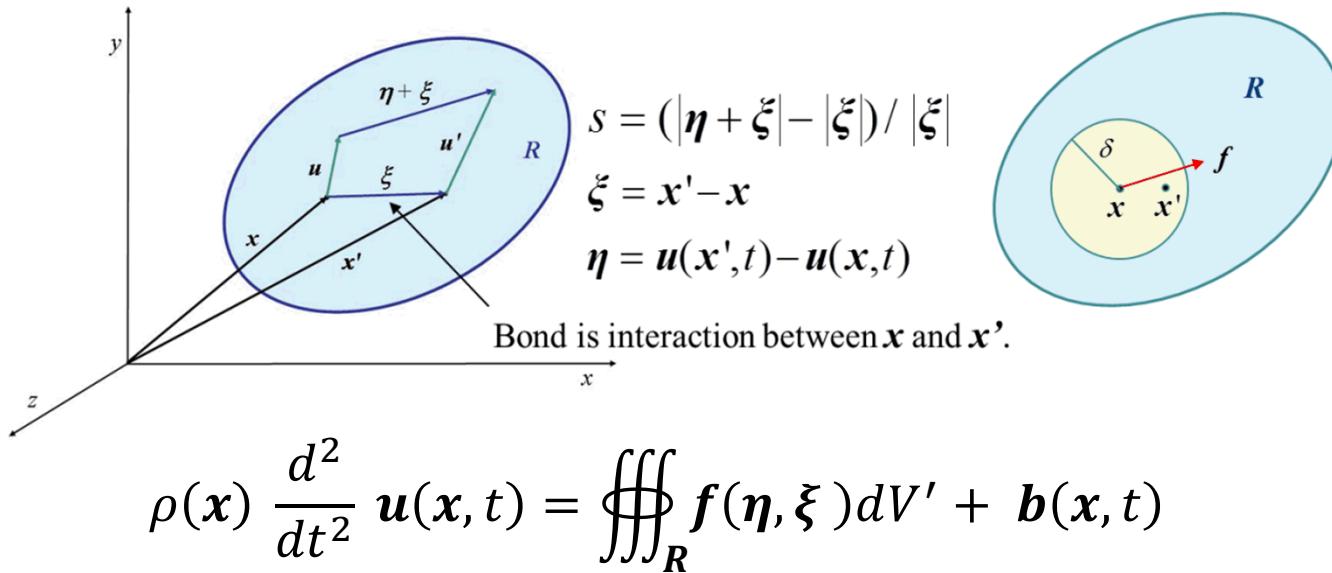


[7] Silling, “Reformulation of elasticity theory for discontinuities and long-range forces”, in *Journal of the Mechanics and Physics of Solids*, 48 (2000) , pp. 175-209.

[8] S..A. Silling et al. “Peridynamic States and Constitutive Modeling”, in *J Elasticity*, 88 (2007), pp. 151–184.

Bond-Based Peridynamic Theory

- In bond-based peridynamics the force state at a point is given by a functional over the pairwise interactions with all other points in the continuum.



where

x, x' are position vectors,
 t is the time,
 $\rho(x)$ is the density at x ,
 u is the displacement vector,
 R is the domain of the body,

f is the pairwise force function (PFF),
 η and ξ are defined in the figure,
 b is the body-force density, and
 δ is the horizon.

Material Modeling in Peridynamics

- The integrand in the fundamental equation of peridynamics, f , is called the *pairwise force function* (*PFF*) and is a force per unit volume squared between particles located at two points.
 - Peridynamic interaction between two points is called a *bond*.
 - Constitutive properties of materials are given by specifying the *PFF*.
 - Bond properties are derivable from measured material properties.
- Material Failure
 - A bond fails when its stretch exceeds an input value called the *critical stretch*.
- Newton's third law and conservation of angular momentum imply that the *PFF* is of the form

$$f(\boldsymbol{\eta}, \boldsymbol{\xi}) = F(\boldsymbol{\eta}, \boldsymbol{\xi})(\boldsymbol{\eta} + \boldsymbol{\xi}) \text{ for all } \boldsymbol{\eta}, \boldsymbol{\xi}$$

where the scalar function such that $F(-\boldsymbol{\eta}, -\boldsymbol{\xi}) = F(\boldsymbol{\eta}, \boldsymbol{\xi})$.

Mass Power Law and Fractional Integrals

- By a *fractal medium*, we mean a medium with a pre-fractal geometric structure.
 - A pre-fractal geometry is fractal-like at some scale with cutoffs.
- In order to deal with general anisotropic, fractal media, we use a power law relation with respect to each coordinate and the mass is specified via a product measure as

$$m(W) = \iiint_W \rho(x_1, x_2, x_3) dl_1(x_1) dl_2(x_2) dl_3(x_3)$$

- The length measure in each coordinate is provided using the transformation coefficients

$$dl_\mu(x_\mu) = c_1^{(\mu)}(\alpha_\mu, x_\mu) dx_\mu, \quad \mu = 1, 2, 3 \quad (\text{no sum})$$

Transformation Coefficients

- We adopt the modified Riemann-Liouville fractional integral of Jumarie [8,9] for the transformation coefficients

$$c_1^{(\mu)} = \alpha_\mu \left(\frac{l_\mu - x_\mu}{l_{\mu 0}} \right)^{\alpha_\mu - 1}, \quad \mu = 1, 2, 3 \text{ (no sum)}$$

where l_μ is the total length (integral interval) along x_μ and $l_{\mu 0}$ is the characteristic length in the given direction, like the mean pore size.

- In the product-measure formulation, the resolution length scale is given by

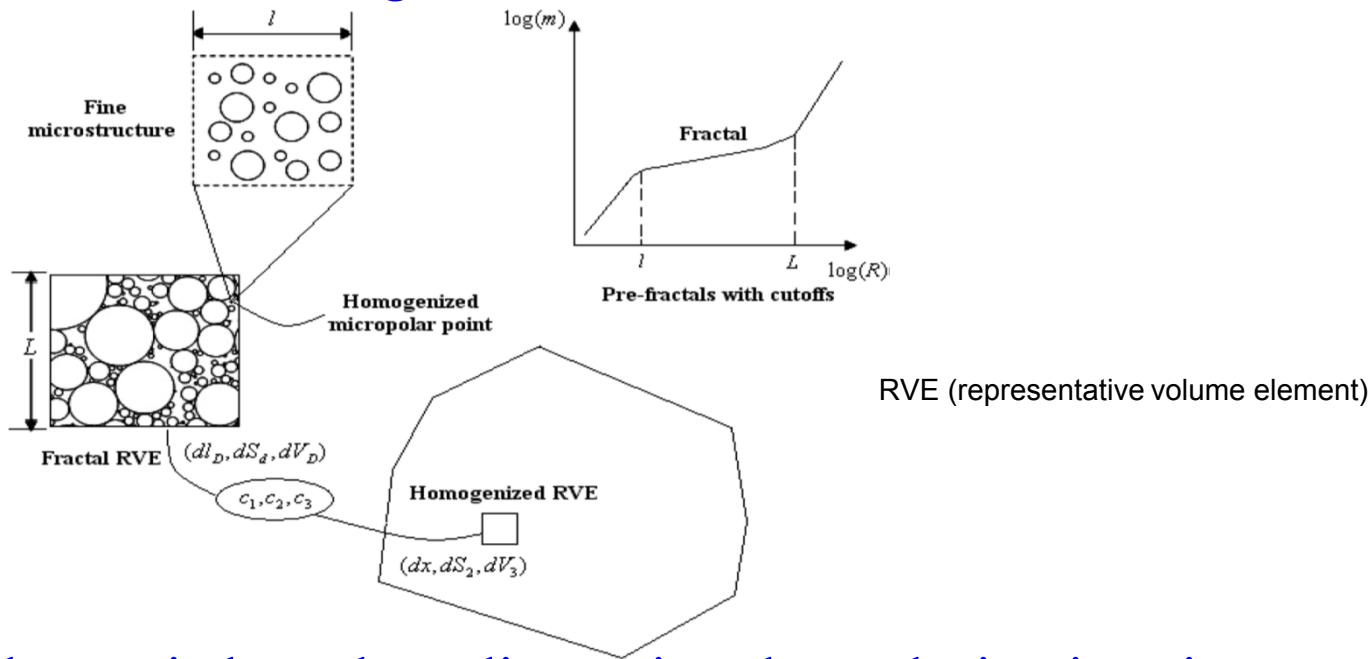
$$R = \sqrt{l_\mu l_\mu}$$

[8] Jumarie, G.: On the representation of fractional Brownian motion as an integral with respect to $(dt)a$. *Appl. Math. Lett.* **18**, 739–748 (2005)

[9] Jumarie, G.: Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions. *Appl. Math. Lett.* **22**(3), 378–385 (2009)

Continuum Mechanics for Fractal Media

- We extend continuum thermomechanics to a fractal medium characterized by a mass (or spatial) fractal dimension, a surface fractal dimension, and a resolution length scale.



- The continuum theory is based on dimensional regularization, in which global mass, momentum, and energy laws employ fractional integrals.

Homogenization Process for Fractal Media

$$dV_D = c_3(x)dV_3 \quad n_\mu dS_D = c_\mu^2(x_\nu, x_\sigma)dS_2$$

$$c_3(x) = c_\mu^1(x_\mu) c_\mu^2(x_\nu, x_\sigma) \quad \mu \neq \nu, \mu \neq \sigma, \nu \neq \sigma$$

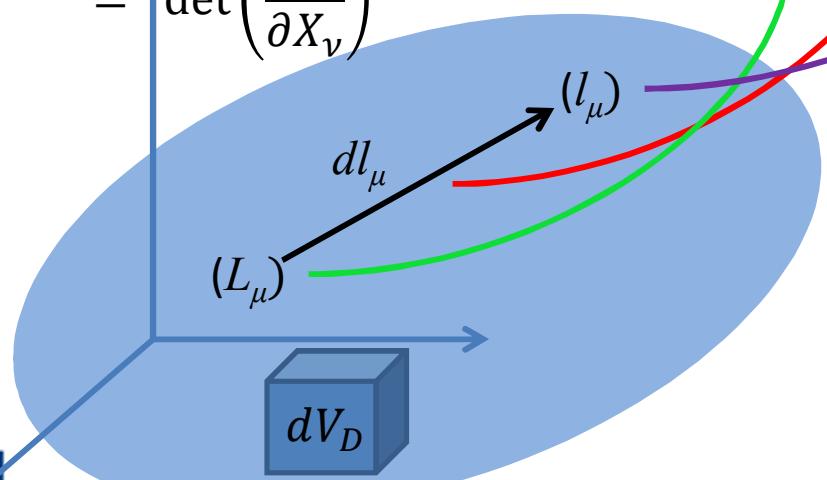
$$c_3(X) = c_\mu^1(X_\mu) c_\mu^2(X_\nu, X_\sigma) \quad \mu \neq \nu, \mu \neq \sigma, \nu \neq \sigma$$

$$dl_\mu = c_1^{(\mu)}(x_\mu) dx_\mu \quad (\text{no sum on } \mu)$$

$$dL_\mu = c_1^{(\mu)}(X_\mu) dX_\mu \quad (\text{no sum on } \mu)$$

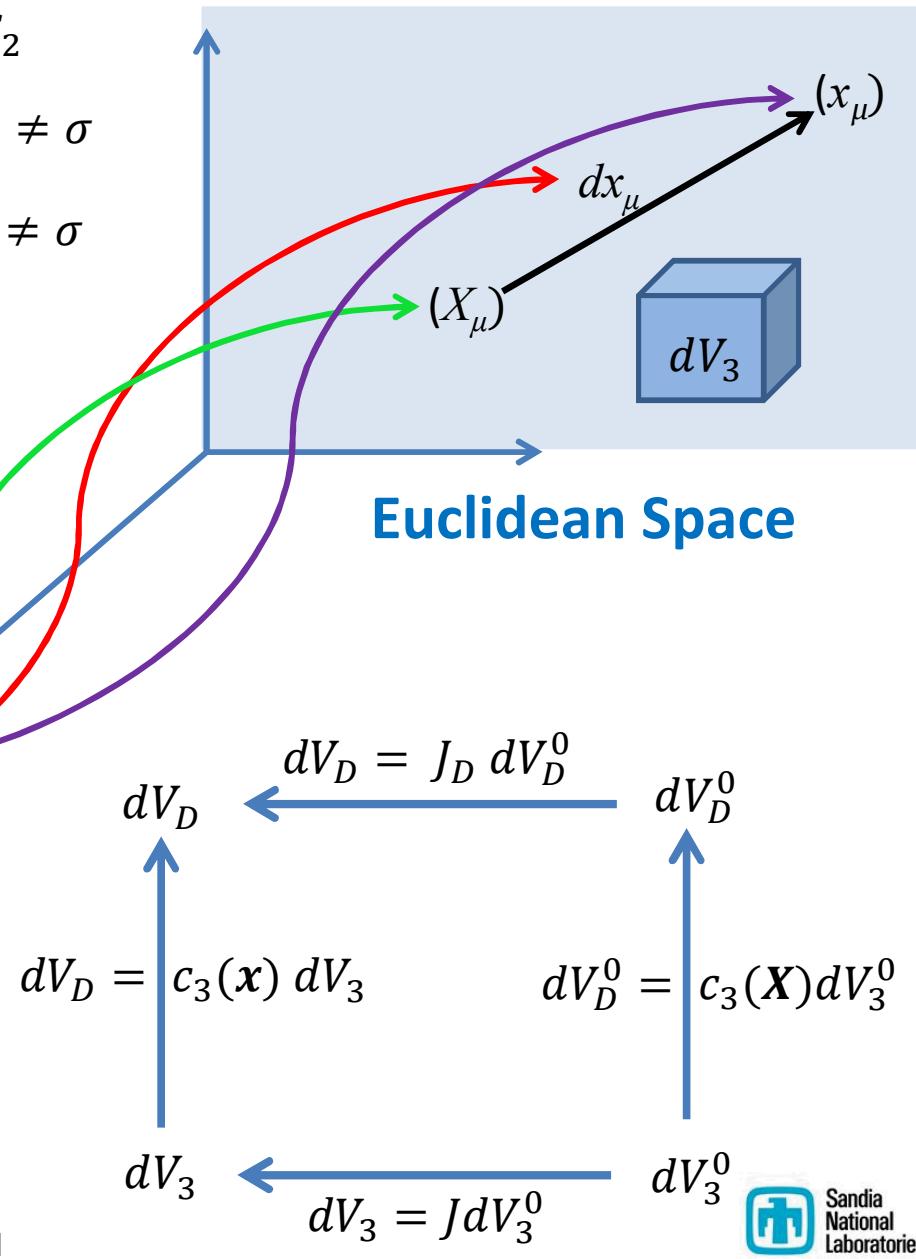
$$J_D = \det\left(\frac{\partial l_\mu}{\partial L_\nu}\right) = c_3(x)c_3^{-1}(X) J$$

$$J = \det\left(\frac{\partial x_\mu}{\partial X_\nu}\right)$$



Fractal Space

11



Velocities and Time Derivatives

- From the expression,

$$dl_\mu = c_1^{(\mu)}(x_\mu) dx_\mu \quad (\text{no sum on } \mu)$$

we get the following relationship between the velocities in fractal and Euclidean spaces,

$$v_\mu^D = \frac{dl_\mu}{dt} = c_1^{(\mu)}(x_\mu) \frac{dx_\mu}{dt} = c_1^{(\mu)}(x_\mu) v_\mu \quad (\text{no sum on } \mu)$$

- In terms of the fractal velocity and derivative,

$$\frac{dP}{dt} = \frac{\partial P}{\partial t} + v_\mu \frac{\partial P}{\partial x_\mu} = \frac{\partial P}{\partial t} + v_\mu^D \nabla_\mu^D P = \left(\frac{dP}{dt} \right)_D$$

Fractional Integral Theorems and Fractal Derivatives

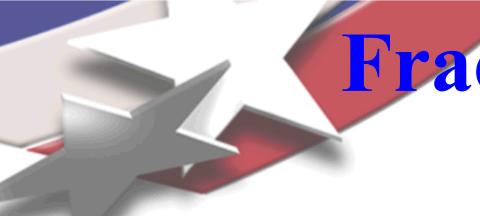
- Using the conventional Gauss theorem and noting that each $c_2^{(k)}$ does not depend on the coordinate x_k , we obtain

$$\iint_{\partial W} \mathbf{f} \cdot \mathbf{n} \, dS_D = \iiint_W [fk c_2^{(\mu)}]_{,\mu} \, dV_3 = \iiint_W \frac{f_{\mu \mu}}{c_1^{(\mu)}} \, dV_D$$

- Based on this expression, we define the ***Fractal Derivative***, ∇_{μ}^D as

$$\nabla_{\mu}^D = \frac{1}{c_1^{(\mu)}(x_{\mu})} \frac{\partial}{\partial x_{\mu}} = \frac{\partial x_{\mu}}{\partial l_{\mu}} \frac{\partial}{\partial x_{\mu}} = \frac{\partial}{\partial l_{\mu}} \quad (\text{no sum})$$
- Based on this definition, ***Gauss Theorem for Fractal Media*** becomes

$$\iint_{\partial W} \mathbf{f} \cdot \mathbf{n} \, dS_D = \iiint_W (\nabla_{\mu}^D f_{\mu}) \, dV_D = \iiint_W (\nabla^D \cdot \mathbf{f}) \, dV_D$$



Fractional Integral Theorems and Fractal Derivatives

- We generalize the Reynold's Transport Theorem as follows:

$$\begin{aligned} \frac{d}{dt} \iiint_W P \, dV_D &= \frac{d}{dt} \iiint_W PJ_D \, dV_D^0 = \iiint_W \frac{d}{dt} (PJ_D) \, dV_D^0 = \\ \iiint_W \left[\left(\frac{dP}{dt} \right) J_D + P \left(\frac{dJ_D}{dt} \right) \right] \, dV_D^0 &= \iiint_W \left[\left(\frac{\partial P}{\partial t} + \nabla_{\mu}^D (\nu_{\mu}^D P) \right) \right] J_D \, dV_D^0 = \\ \iiint_W \left[\frac{\partial P}{\partial t} + \nabla_{\mu}^D (\nu_{\mu}^D P) \right] \, dV_D \end{aligned}$$

- The **Reynold's Transport Theorem for Fractal Media** is:

$$\frac{d}{dt} \iiint_W P \, dV_D = \iiint_W \left[\frac{\partial P}{\partial t} + \nabla_{\mu}^D (\nu_{\mu}^D P) \right] \, dV_D = \iiint_W \left(\frac{dP}{dt} \right)_D \, dV_D$$

Continuum Mechanics for Fractal Media

- We specify the relationship between surface force, F^S , and the Cauchy stress tensor, $\sigma_{\mu\nu}$, using fractional integrals as

$$F_\mu^S = \iint_{S_D} \sigma_{\mu\nu} n_\nu \, dS_D = \int_{S_2} \sigma_{\mu\nu} n_\nu c_2^{(\nu)} \, dS_2$$

- For small deformations, we define the strain, $\varepsilon_{\mu\nu}$, in terms of the displacement \mathbf{u} as

$$\varepsilon_{\mu\nu} = \frac{1}{2} (\nabla_\nu^D u_\mu + \nabla_\mu^D u_\nu) = \frac{1}{2} \left[\frac{1}{c_1^{(j)}} u_\mu + \frac{1}{c_1^{(i)}} u_\nu \right]$$

- The fractal equations for continuity, momentum, and energy follow from the balance laws for mass, momentum, and energy.

Fractal Continuity Equation

- Consider the equation for conservation of mass in a region W

$$\frac{d}{dt} \iiint_W \rho \, dV_D = 0$$

- Using the fractional Reynolds transport theorem, we obtain

$$\frac{d}{dt} \iiint_W \rho \, dV_D = \iiint_W \left[\frac{\partial \rho}{\partial t} + \nabla_\mu^D (\rho v_\mu^D) \right] dV_D = 0$$

- Since W is arbitrary, the *Fractal Continuity Equation* is

$$\frac{\partial \rho}{\partial t} + \nabla_\mu^D (\rho v_\mu^D) = 0 \quad or \quad \frac{d\rho}{dt} + \rho \nabla_\mu^D (v_\mu^D) = 0$$

Fractal Momentum Equation

- Consider the balance law of linear momentum for W , with \mathbf{F}^B the body force, and \mathbf{F}^S the surface force,

$$\frac{d}{dt} \iiint_W \rho v_\mu^D dV_D = \mathbf{F}^B + \mathbf{F}^S$$

- Using Reynold's transport and Gauss theorems and the continuity equation, we obtain

$$\begin{aligned} \frac{d}{dt} \iiint_W \rho v_\mu^D dV_D &= \iiint_W \rho \frac{dv_\mu^D}{dt} dV_D = \iiint_W b_\mu dV_D + \oint_{\partial W} \sigma_{\mu\nu} n_\mu dS_D = \\ & \iiint_W b_\mu dV_D + \iiint_W (\nabla_\nu^D \sigma_{\mu\nu}) dV_D \end{aligned}$$

- Since W is arbitrary, the **Fractal Linear Momentum Equation** is

$$\rho \frac{dv_\mu^D}{dt} = b_\mu + \nabla_\mu^D \sigma_{\mu\nu}$$

Fractal Energy Equation

- The most general form of balance (conservation) of energy must be used to obtain the fractal energy equation.
 - *The time rate of change of the kinetic energy K plus the internal energy E of a region, W , in a continuum equals the sum of the rate of work performed on W by external agencies plus the flux Q of all other energies supplied to or removed from W by external agencies across the boundary of W .*
- In terms of the kinetic energy K , specific internal energy e , and flux per unit area q ,

$$K = \iiint_W \rho v_\mu^D v_\mu^D dV_D, \quad E = \iiint_W \rho e dV_D, \quad Q = - \iint_{\partial W} q_\mu n_\mu dS_D$$

and using the fractal momentum equation, we obtain

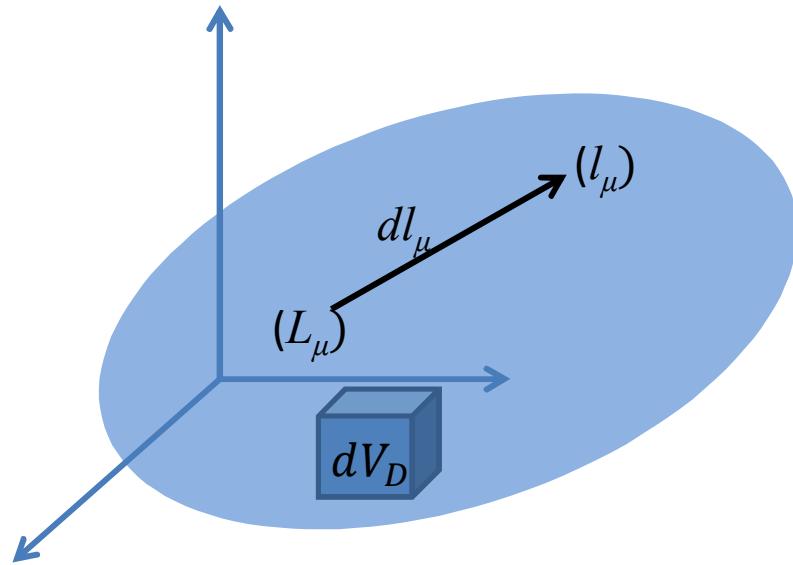
$$\iiint_W \rho \frac{de}{dt} dV_D = \iiint_W \sigma_{\mu\nu} (\nabla_\mu^D v_\nu) dV_D - \iiint_W (\nabla_\mu^D q_\nu) dV_D$$

- Since W is arbitrary, the **Fractal Energy Equation** is

$$\rho \frac{de}{dt} = \sigma_{\mu\nu} (\nabla_\mu^D v_\nu^D) - \nabla_\mu^D q_\mu$$

Peridynamic Theory for Fractal Media

- We obtain the bond-based peridynamics momentum equation by replacing the divergence term in the fractal momentum equation by the regularized integral from the fundamental equation of peridynamics.



$$\rho \frac{d\mathbf{v}^D}{dt} = \iiint_R \mathbf{f}^D(\xi^D, \boldsymbol{\eta}^D) dV_D' + \mathbf{b}$$

Summary and Conclusions

- We extended continuum thermomechanics to fractal media.
 - The continuum theory is based on dimensional regularization, in which we employ fractional integrals to state global balance laws.
 - We derived fractal continuity, linear momentum, and energy equations, which through dimensional regularization can be cast into equations in E^3 .
- We extended this continuum thermomechanics to peridynamic theory for fractal media.
- Future work includes implementation of this extension in a computer code, specification of appropriate force states, and failure predictions for fractal media subject to high-impulse loading.

