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Background

« Benoit Mandelbrot introduced the term fractal to denote an object that 1s
broken or fractured in space or time.

— However, there is no universally accepted definition of a fractal.

* Fractals provide models for many media over some finite range of length
scales with lower and upper cutoffs.

e Tarasov introduced a field theory for fractal media [1-3].

— He developed continuum-type equations of conservation of mass, linear and
angular momentum, and energy for fractals, and studied several fluid mechanics
and wave problems.

— Tarasov’s approach relies on dimensional regularization of fractal objects
through fractional integrals in Euclidean space, a technique with its roots in
quantum mechanics.

[1] Tarasov, V.E.: Continuous medium model for fractal media. Phys. Lett. A 336, 167—-174 (2005)
[2] Tarasov, V.E.: Fractional hydrodynamic equations for fractal media. Ann. Phys. 318(2), 286307 (2005)

" [3] Tarasov, V.E.: Wave equation for fractal solid string. Mod. Phys. Lett. B 1915), 721-728 (2005) "1 ﬁaagdial
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Background

 Whereas the formulation of Tarasov 1s based on the Riesz measure,
and thus more suited to 1sotropic fractal media, a model that 1s based
on a product measure was introduced by Ostoja-Starzewski and Li
[4,5].
— This measure has different fractal dimensions in different directions.
— It grasps the anisotropy of fractal geometry better than the original formulation
for a range of length scales between the lower and upper cutoffs.
 Demmie and Ostoja-Starzewski developed conservation equations for
fractal media including an energy equation [6] and applied it to a
study of waves 1n fractal media.

— This formulation is the basis of our approach to peridynamic theory for fractal
media.

[4] Ostoja-Starzewski, M. and J. Li: Fractal materials, beams and fracture mechanics. Z. Angew. Math. Phys. 60, 1-12
(2009)

[5] Li, J. and Ostoja-Starzewski, M.: Fractal solids, product measures and fractional wave equations. Proc. R. Soc. A 465,
2521-2536 (2009) doi:10.1098/rspa.2009.0101. Errata (2010) doi:10.1098/rspa.2010.0491

|| [6] Demmiey P. N. and Ostoja-Starzewski, M., “Waves in Fractal Media”, Journal of Elasticity, 104(1-2), 187-204, 201 "1 ﬁaa?dial
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hat is Peridynamic Theory?

»  Peridynamic theory (PD) 1s a theory of continuum mechanics that
uses integro-differential equations without spatial derivatives rather
than partial differential equations. |
— Bond-Based Peridynamics [7] _ PR -

— State-Based Peridynamics [8] -

Peridynamic means “near force”.

1. PD is a reformulation of
continuum mechanics that
applies everywhere regardless
of discontinuities.

2. PD provides a consistent
formulation of both

o deformation and failure of

materials.

[7] Silling, “Reformulation of elasticity theory for discontinuities and long-range forces”, in Journal of the
Mechanics and Physics of Solids, 48 (2000) , pp. 175-209.

|| [8] S..A. Silling et al. “Peridynamic States and Constitutive Modeling”, in J Elasticity, 88 (2007), pp. 151-184. "1 ﬁamﬁal
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nd-Based Peridynamic Theory

* In bond-based peridynamics the force state at a point is given by a

functional over the pairwise interactions with all other points 1n the
continuum.

nteé

o) s=(n+c=E)/ ¢
/- ¢ =x'-x f
o n=u(x"1)—u(x,r)

Bond is interaction between x and x”.
X

R

2

d
p(x) 2 u(x, t) = f(m,&)dV' + b(x,t)
R

where
X, X " are position vectors, f1s the pairwise force function (PFF),
t 1s the time, n and &are defined in the figure,
P (x) 1s the density at x, b is the body-force density, and
u 1s the displacement vector, 6 1s the horizon.

R is the domain of the body,
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terial Modeling in Peridynamics

he integrand in the fundamental equation of peridynamics,
£, 1s called the pairwise force function (PFIF) and 1s a force
per unit volume squared between particles located at two
points.

Bond Force

— Peridynamic interaction between two points is called a bond.
— Constitutive properties of materials are given by specifying the PFF.

— Bond properties are derivable from measured material properties.
e Material Failure

— A bond fails when its stretch exceeds an input value called the critical stretch.

* Newton’s third law and conservation of angular momentum 1mply
that the PFF' 1s of the form

fm®) = Fm)@ +§) forall n,§
where the scalar function such that F(-5,-&) = F(,¢).
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ower Law and Fractional Integrals

* By afractal medium, we mean a medium with a pre-fractal geometric

structure.

— A pre-fractal geometry is fractal-like at some scale with cutoffs.

* In order to deal with general anisotropic, fractal media, we use a
power law relation with respect to each coordinate and the mass 1s
specified via a product measure as

m(W) =

w

p(xy, x5, x3)dly (1) dly(xy) dls(x3)

e The length measure in each coordinate 1s provided using the
transformation coefficients

dlﬁ(xu) = cl(”) (“w Xy )dxu, u=1,2,3 (nosum)
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ransformation Coefficients

* We adopt the modified Riemann-Liouville fractional integral of
Jumarie [8,9] for the transformation coefficients

I~ o \%L
cl(”) = a, (“TO”> , u=1,2,3 (nosum)

where /, 1s the total length (integral interval) along x, and / , 1s the
characteristic length 1n the given direction, like the mean pore size.

* In the product-measure formulation, the resolution length scale 1s
given by

R = |l

[8] Jumarie, G.: On the representation of fractional Brownian motion as an integral with respect to (d¢)a . Appl.
Math. Lett. 18, 739-748 (2005)
[9] Jumarie, G.: Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville
] derivative for non-differentiable functions. Appl. Math. Lett. 22(3), 378385 (2009) "1 Sandia
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inuum Mechanics for Fractal Media

characterized by a mass (or spatial) fractal dimension, a surface fractal
dimension, and a resolution length scale.

i lag(m)“
000,
Fine ' o :
microstructure | C)Oo O OE Fractal
i o o : I
°O%00; |
| |
1
! I
1

L log(R)

Homogenized Pre-fractals with cutoffs

micropolar point

: -
Q ‘J
S A

*. 2 C)

: & 'a'lo_:“.
Fractal RVE @D,de,dVD)

RVE (representative volume element)
Homogenized RVE

(dx,dS,,dVy)

e The continuum theory 1s based on dimensional regularization, 1n

which global mass, momentum, and energy laws employ fractional
integrals.

I
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c3(x)
c3(X)
dl,
dL,

Jp

J

C3 (x) dV3
Cu (xu)

_Cﬂ()

C1(M) (xu) dx,

n,dSp = cf(xy, x5)dS;
iy, xg) HEUVUECVEC
2(Xy,X;) UV UFOCVEC

(no sum on )

c iﬂ)

det

A
det(

(XM) dX, (nosum on u)

al
<aLP:,> = c;(X)c; 7 (X))

axﬂ
X,

dVp

Fractal Space _

A

enization Process for Fractal Media

(X

U

>

Euclidean Space

dVp = Jp deg)

dv, <€ avy
A A
=|c3(x) dVs dV9 =|c3(X)dVy
dv, <€ avy |
C T an=jy T @,




'
p ;’”ocities and Time Derivatives

e From the expression,

dl, = cl(”) (x,) dx, (nosum on y)

we get the following relationship between the velocities in fractal and
Euclidean spaces,

p_ dly

v —
H dt

* In terms of the fractal velocity and derivative,

dx
= ci”) (xu) d_tu = ci”) (xﬁ) v, (nosumon u)

dP _ 0P 9P _ 0P dP
dc ~ oc " Mox, ot - mwUT\ar)
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ctional Integral Theorems and

A T
} Fractal Derivatives

 Using the conventional Gauss theorem and noting that each ¢, does
not depend on the coordinate x, , we obtain

fu'u

(u)
1

vy,

f-ndS, = |fke, W], av, =
ow w w C

e Based on this expression, we define the Fractal Derivative, VﬂD as

oD 1 0 dx, 0 0 ( )
— = = — no sum
g (B (x) 0x, 0l ox, 9l

* Based on this definition, Gauss Theorem for Fractal Media becomes

f-ndS, = (v.Pf,) dvp = (VP - ) dVp
w w
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;

Fractal Derivatives

ctional Integral Theorems and

We generalize the Reynold’s Transport Theorem as follows:

w

|G (2

pPdv, = 4 Pjp, dvy =
D £ D D

dt

d w w

dP

d
a (P/p) dVlg) =

>] W =91, KE + 72 (vl P) >] Jp VP =

vy,

[— + 7P (P P)

* The Reynold’s Transport Theorem for Fractal Media is:

dc J17,,

PdVD=

[— + VD(vgp)] av, =

14

A

dP) a
— D
dt b
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uum Mechanics for Fractal Media

« We specify the relationship between surface force, F°, and the Cauchy

I

stress tensor, o,,,, using fractional integrals as

2%

For small deformations, we detine the strain, €, in terms of the
displacement u as
1 11 1 1
_ ~(pD D — Z|— _

The fractal equations for continuity, momentum, and energy follow
from the balance laws for mass, momentum, and energy.
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'
B ;’%‘actal Continuity Equation

* Consider the equation for conservation of mass in a region W

d
dc J17,,

pdVD =0

» Using the fractional Reynolds transport theorem, we obtain

d dVp =
dt Wp D — W

0
6_5 + VMD(pvﬁ)

dVD= O

e Since W is arbitrary, the Fractal Continuity Equation 1s

0 dp
ac + (o) = 0 or 4 pB(uR) = 0
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ractal Momentum Equation

e Consider the balance law of linear momentum for W, with F? the
body force, and F? the surface force,

d
dc J17,,

pvfl) dVD = FB+ FS

» Using Reynold’s transport and Gauss theorems and the continuity
equation, we obtain

d dv P

— pv. dVp = p——dVp = b,dVp + # Oy dSp =

b,dVp + (v,Pa,)dVp
w w

e Since W s arbitrary, the Fractal Linear Momentum Equation 1s
dvp
pd—g = b, + V7o,
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used to obtain the fractal energy equation.

— The time rate of change of the kinetic energy K plus the internal energy E of a region, W,
in a continuum equals the sum of the rate of work performed on W by external agencies
plus the flux Q of all other energies supplied to or removed from W by external agencies
across the boundary of W.

¢ most general form of balance (conservation) of energy must be

* In terms of the kinetic energy K, specific internal energy e, and flux
per unit area ¢,

K =

w

D., D
pv,-v, dVp,

E =

w

pedVp, Q= _jj anudSD
ow

and using the fractal momentum equation, we obtain

de

p_
Dt

dVD -

w

O-MV(VMDUV)dVD —

w

(V‘uD qV) dVD

* Since W 1s arbitrary, the Fractal Energy Equation 1s

I

Par = UMV(VMDUE)_ Vi 4,

de
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ynamic Theory for Fractal Media

« We obtain the bond-based peridynamics momentum equation by
replacing the divergence term in the fractal momentum equation by
the regularized integral from the fundamental equation of
peridynamics.

:
p— =P fP(EP,n")dv, + b
R
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Summary and Conclusions

e We extended continuum thermomechanics to fractal media.

— The continuum theory is based on dimensional regularization, in which we
employ fractional integrals to state global balance laws.

— We derived fractal continuity, linear momentum, and energy equations, which
through dimensional regularization can be cast into equations in E3.
* We extended this continuum thermomechanics to peridynamic theory
for fractal media.

* Future work includes implementation of this extension in a computer
code, specification of appropriate force states, and failure predictions
for fractal media subject to high-impulse loading.
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