
William L. Oberkampf
Distinguished Member Technical Staff

Validation and Uncertainty Quantification Department
Sandia National Laboratories, Albuquerque, New Mexico

505-844-3799, wloberk@sandia.gov

2007 Salishan Conference
Confidence in Predictive Simulations

April 23 - 26, 2007

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Predictive Capability in
Computational Science and Engineering

SAND2007-2316C



2

Outline of the Presentation

• Context and perspectives of predictive capability

• Proposed perspective

• Validation metrics and predictive uncertainty

• Closing Remarks

Work in collaboration with Marty Pilch and Tim Trucano, SNL,

and Scott Ferson and Jon Helton, consultants.
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Progress in Computer Speed

ASC
begins
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How do We Measure Progress in
Predictive Capability?

• By the number of finite elements/volumes we have in a
simulation?

• By the number of atoms/molecules we have in a
simulation?

• By the size of the vortices we can resolve in a turbulent
flow simulation?

• I contend that predictive capability for a system should be
measured more by how well we answer the questions
posed by Kaplan and Garrick (1981):
– What can go wrong?
– How likely is it to happen?
– What are the consequences?
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Our View of the Elements
Contributing to Predictive Capability

• Identification of the scenarios, or initiating events, under
which the system must operate, perform, fail safe, etc

• Fidelity of modeling of the physics, geometry, initial
condition, boundary conditions, etc

• Level of software quality and code verification

• Level of numerical accuracy of the discretized solutions

• Assessment of simulation results by comparison with
experimental measurements

• Estimation of the uncertainty in system responses due to all
plausible sources of uncertainty

• Understanding the sensitivities of the system responses to
all sources of uncertainty
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Predictive Capability Maturity Model
(Pilch, Oberkampf, Trucano)
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Approaches
to Predictive Capability

• Traditional approach:
– Characterize all sources of uncertainty, aleatory and epistemic
– Calibrate deterministic model parameters
– Use the model to extrapolate in space, time, boundary conditions,

forcing functions, loading conditions, etc. to the application of
interest

• Bayesian approach:
– Assume prior distributions for uncertain parameters in the model
– Update the prior distributions for uncertain parameters using

available experimental data and Bayes formula
– Use the updated parameters in the model to make predictions for

the application of interest

Bayesian approach is founded on the concept of calibration of
model parameter distributions, assuming the model is correct.
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Interpolation: Application Domain
Within the Validation Domain
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Proposed Perspective
to Predictive Capability

• Characterized all of the uncertainties
– Aleatory: inherent variation associated with the parameter
– Epistemic: uncertainty due to lack of knowledge of the quantity

• Calibrate uncertain model parameter distributions before model
validation activities

• Assess the model accuracy by quantitative comparisons with
experimental validation data, i.e., validation metric

• Use the model to extrapolate:
– In space, time, boundary conditions, forcing functions, loading

conditions, etc. to the application of interest
– Model-form inaccuracies observed from validation experiments

• Advantages over traditional and Bayesian approaches:
– Proven to be very effective in identifying weaknesses in models
– More reliable when using the model to predict system responses:

• Far from the conditions of the validation experiments
• When the complete system can not be tested
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Large Extrapolation Beyond
the Validation Domain
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Example of Extrapolation Within a
Validation Hierarchy (Weapon in a Fire)
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Desirable Validation Metric Characteristics

• Validation metric is a measure of the mismatch between the
model prediction and the experimental data

• Should be a statistical “distance” between the distribution of
the prediction and distribution of the experimental data

• Should be expressed in physical units, not normalized relative
to some statistical measure

• Should not mix calibration of the model and accuracy
assessment of the model

• Should be a true metric
• Should be sensitive to how many function evaluations

(numerical solutions to the computational model) are available
• Would be very useful if the validation metric could be

computed when only one experimental realization is available
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Typical Method of Comparison
of Computation and Experimental Data
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Compare Computation and Data
Using the Cumulative Distribution Function
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distribution Sn and the
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Validation Metric Reflects the
Difference Between the Full Distributions
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Effect of Few Function Evaluations
on the Validation Metric
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Single Observation (two of them)
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• A single datum can never match the entire predicted distribution, d ≠  0

• Single datum has a minimum value of d when it matches the median of
the predicted distribution
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Uncertainty Quantification
Methodology

• The propagation of input quantities through a mathematical
model to obtain outputs can be written as

– where      is a vector of uncertain input quantities
– f  is the mathematical model describing some physical process
–    is a vector of uncertain output quantities

• f is typically a solution of nonlinear partial differential
equation that is solved numerically
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Why Require Physical Units
for the Validation Metric

The simulation on the left is much
closer to the experimental data
than the simulation on the right
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Predictions with Extrapolation
Including Extrapolation of ± d

• The model form
uncertain is
represented as the
magnitude of the
validation metric d

•d is treated as an
epistemic uncertainty

700 800 900 1000 1100
0.0

0.2

0.4

0.6

0.8

1.0

Surface temperature, Tx=0,t=1000 (°C)

E
xc

ee
da

nc
e 

pr
ob

ab
ili

ty

d = 24



21

Concluding Remarks
• For engineering decision making, predictive capability should

be measured with respect to the maturity of:
– Identification of scenarios
– Physics modeling fidelity
– Software quality and code verification
– Solution verification
– Validation accuracy assessment
– Uncertainty quantification
– Sensitivity analysis

• Predictions for systems for which we have little or no
experimental data, we must”
– Improve separation between calibration and prediction
– Begin to stress the uncertainty due to extrapolation of models

• Synergistic coupling of computational simulation and
experimental activities becomes paramount


