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Outline of the Presentation

« Context and perspectives of predictive capability
 Proposed perspective
- Validation metrics and predictive uncertainty

 Closing Remarks

Work in collaboration with Marty Pilch and Tim Trucano, SNL,

and Scott Ferson and Jon Helton, consultants.
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Progress in Computer Speed
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- How do We Measure Progress In
Predictive Capability?

* By the number of finite elements/volumes we have in a
simulation?

* By the number of atoms/molecules we have in a
simulation?

* By the size of the vortices we can resolve in a turbulent
flow simulation?

* | contend that predictive capability for a system should be
measured more by how well we answer the questions
posed by Kaplan and Garrick (1981):

— What can go wrong?
— How likely is it to happen?
— What are the consequences?
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Our View of the Elements
Contributing to Predictive Capability

* l[dentification of the scenarios, or initiating events, under
which the system must operate, perform, fail safe, etc

* Fidelity of modeling of the physics, geometry, initial
condition, boundary conditions, etc

* Level of software quality and code verification
* Level of numerical accuracy of the discretized solutions

* Assessment of simulation results by comparison with
experimental measurements

* Estimation of the uncertainty in system responses due to all
plausible sources of uncertainty

* Understanding the sensitivities of the system responses to
all sources of uncertainty
@ Sandia
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Predictive Capability Maturity Model

(Pilch, Oberkampf, Trucano)

MATURITY | Maturity Level 0 Maturity Level 1 Maturity Level 2 Maturity Level 3
Low Consequence, Moderate Consequence, High-Consequence, High-Consequence,
Minimal M&S Impact, Some M&S Impact, High M&S Impact, Decislon-Making Based on M&S,
ATTRIBUTE ¢.9. Scoping Studles ¢.9. Design Support ¢.9. Qualification Support ¢.9. Qualification or Certification
* Judgment only » Significant simplification |e Limited simplification or stylization of | Essentially no simplification or stylization
Represemaﬂon and » Little or no or stylization of the major components and BCs of components in the system and BCs
Geometric Fldellty representational or system and BCs * Geometry or representation is well * Geometry or representation of all

Are Important features neglected
because of simplifications or
stylizations?

geometric fidelity for
the system and BCs

Geometry or
representation of major
components is defined

defined for major components and
some minor components

components is at the detail of “as built”,
e.g., gaps, material interfaces, fasteners,
welds, adhesive bonding, surface finish

Physics and Material
Model Fidelity

How fundamental are the physics
and material models and what Is
the level of model calibration?

* Model forms are either

unknown or
completely empirical
Few, if any, physics-
informed models

No coupling of models

Some models are
physics-based and are
calibrated using data
from related systems
Minimal or ad hoc
coupling of models

Physics-based models for all
important physics

Significant calibration needed using
Separate Effects Tests (SET) and
Integral Effects Tests (IET)
One-way coupling of models

All models are physics-based

* Minimal need for calibration using SETs,

and IETs,

Sound physical basis for extrapolation
and coupling of models

Full, two-way, coupling of models

Code Verification
Are software errors and algorithm
deficlencles corrupting the
simulation results?

e Judgment only

Minimal testing of any
software elements
Little or no SQE
procedures specified
or followed

Most codes managed by
SQE procedures

Unit and regression
testing conducted with
significant code
coverage

* All codes managed by SQE

procedures

Verification test suites regularly
used for key algorithms and
coverage of key Features &
Capabilties (F&C) used

* SQE procedures reviewed by

independent, external panel

Test suites conducted for all important
algorithms, all important F&Cs used, all
important coupled physics, and all
important coupled codes

Solution Verification
Are human procedural errors or
numerical solution errors
corruptlng the simulation results?

* Judgment only

Numerical errors have
an unknown or large
effect on simulation
results

Effect of numerical errors

and parameters is small
for some relevant SRQs
Input/output verified only
by the analysts

Numerical effects are quantitatively
estimated to be small on most
relevant SRQs

Some input/output data verified by
experts internal to the organization

Numerical effects are quantitatively
estimated to be small on all important
SRQAs for all codes and code couplings
All input/output data verified by
independent, external experts

Model Validation
How accurate are the simulation
results at various tiers In a
validation hierarchy?

Judgment only

Few, if any,
comparisons with
measurements from
similar systems

Quantitative assessment

of accuracy of SRQs not
directly relevant to the
application of interest

Large or unknown @xper-,

imental uncertainties

Quantitative assessment of
predictive accuracy for some key
SRQs from IETs, and SETs,
Experimental uncertainties are well
characterized for most SETs, but
poorly known for IETs,

Quantitative assessment of predictive
accuracy for all important SRQs from
IETs,and SETs, at conditions/geometries
directly relevant to the application
Experimental uncertainties are well
characterized for all IETs and SETs,

Uncertainty
Quantification

and Sensitivity
Analysis

What Is the Impact of varlabllities
and uncertainties on system
performance and margins?

e Judgment only
* Only deterministic

analyses conducted
for system margins
Informal “what if”
analyses conducted
for system margins

Aleatory and epistemic
(A&E) uncertainties
represented and
propagated without
distinction

Sensitivities to some
uncertainties and
conditions are explored

.

A&E uncertainties segregated,
propagated and properly interpreted
Quantitative sensitivity analyses
conducted for some uncertainties
Some environments and scenarios
of the system are analyzed

Minimal estimation of margins due
to extrapolation of models

A&E uncertainties due to all plausible
environments and scenarios of the
system are analyzed

Comprehensive sensitivity analyses
conducted for parameters and models
Extensive estimation of system margins
due to extrapolation of models and
physics-coupling effects
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to Predictive Capability

* Traditional approach:
— Characterize all sources of uncertainty, aleatory and epistemic
— Calibrate deterministic model parameters

— Use the model to extrapolate in space, time, boundary conditions,
forcing functions, loading conditions, etc. to the application of
interest

* Bayesian approach:
— Assume prior distributions for uncertain parameters in the model

— Update the prior distributions for uncertain parameters using
available experimental data and Bayes formula

— Use the updated parameters in the model to make predictions for
the application of interest

Bayesian approach is founded on the concept of calibration of
model parameter distributions, assuming the model is correct.
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*J Interpolation: Application Domain

Within the Validation Domain
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P /./i’ Proposed Perspective
| to Predictive Capability

* Characterized all of the uncertainties
— Aleatory: inherent variation associated with the parameter
— Epistemic: uncertainty due to lack of knowledge of the quantity

e Calibrate uncertain model parameter distributions before model
validation activities

* Assess the model accuracy by quantitative comparisons with
experimental validation data, i.e., validation metric

* Use the model to extrapolate:

— In space, time, boundary conditions, forcing functions, loading
conditions, etc. to the application of interest

— Model-form inaccuracies observed from validation experiments

* Advantages over traditional and Bayesian approaches:
— Proven to be very effective in identifying weaknesses in models

— More reliable when using the model to predict system responses:
* Far from the conditions of the validation experiments
* When the complete system can not be tested
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Large Extrapolation Beyond
the Validation Domain
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% Example of Extrapolation Within a

Validation Hierarchy (Weapon in a Fire)

Deployed System

Components

Separable
Effects
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Desirable Validation Metric Characteristics

* Validation metric is a measure of the mismatch between the
model prediction and the experimental data

* Should be a statistical “distance” between the distribution of
the prediction and distribution of the experimental data

* Should be expressed in physical units, not normalized relative
to some statistical measure

* Should not mix calibration of the model and accuracy
assessment of the model

* Should be a true metric

* Should be sensitive to how many function evaluations
(numerical solutions to the computational model) are available

* Would be very useful if the validation metric could be
computed when only one experimental realization is available

Sandia
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> Typical Method of Comparison
of Computation and Experimental Data
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- Compare Computation and Data

-

" Using the Cumulative Distribution Function

1_

Define the metric = Area (or
average horizontal distance)
between the empirical
distribution S, and the
predicted distribution

Probability

200 250 300 350 400 450
Temperature
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Validation Metric Reflects the
Difference Between the Full Distributions
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/..‘? ffect of Few Function Evaluations
on the Validation Metric
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Single Observation (two of them)

1 -

Probability

0 1 2 3 4

* A single datum can never match the entire predicted distribution, d # 0

* Single datum has a minimum value of d when it matches the median of

the predicted distribution
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Uncertainty Quantification
Methodology

* The propagation of input quantities through a mathematical
model to obtain outputs can be written as

y = f(x)
— where X is a vector of uncertain input quantities

— f is the mathematical model describing some physical process
— Yy is a vector of uncertain output quantities

* fis typically a solution of nonlinear partial differential
equation that is solved numerically

Scenarios
Physics parameters =g System response
quantities of interest
Geometry — System of PDE’s e
Initial conditions ~ ——pe ~ 3nd sub-models
Boundary conditions =iy
Environments 1) Propagation of uncertainties

through the model
2) Estimation of model form
uncertainty
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/..’ Why Require Physical Units
for the Validation Metric

Probability
_
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The simulation on the left is much
closer to the experimental data
than the simulation on the right
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g Predictions with Extrapolation
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Concluding Remarks

* For engineering decision making, predictive capability should
be measured with respect to the maturity of:

— ldentification of scenarios

— Physics modeling fidelity

— Software quality and code verification
— Solution verification

— Validation accuracy assessment

— Uncertainty quantification

— Sensitivity analysis

* Predictions for systems for which we have little or no
experimental data, we must”
— Improve separation between calibration and prediction
— Begin to stress the uncertainty due to extrapolation of models

* Synergistic coupling of computational simulation and
experimental activities becomes paramount
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