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ABSTRACT

What constitutes a validated model? What are the crite-
ria that allow one to defensibly make the claim that they
are using a validated model in an analysis? These ques-
tions get to the heart of what model validation really im-
plies (conceptually, operationally, interpretationally, etc.),
and these details are currently the subject of substantial
debate in the V&V community. This is perhaps because
many contemporary paradigms of model validation have
a limited modeling scope in mind, so the validation para-
digms do not span different modeling regimes and pur-
poses that are important in engineering. This paper dis-
cusses the different modeling regimes and purposes that
it is important for a validation theory to span, and then
proposes a validation paradigm that appears to span
them. The author’s criterion for validated models pro-
ceeds from a desire to meet an end objective of “best
estimate plus uncertainty” (BEPU) in model predictions.
Starting from this end, the author works back to the im-
plications on the model validation process (conceptually,
operationally, interpretationally, etc.). Ultimately a shift is
required in the conceptualization and articulation of
model validation, away from contemporary paradigms.
Thus, this paper points out weaknesses in contemporary
model validation perspectives and proposes a concep-
tion of model validation and validated models that seems
to reconcile many of the issues.

INTRODUCTION

Loosely speaking, Model Validation is concerned with
the accuracy of models and model predictions as com-
pared to reality, or more commonly, some subset or filter
of reality that is important to predict for some purpose.
That is, in as far as we can (through appropriately de-
signed and controlled experiments and comparison
against model predictions) ascertain the degree of
agreement at specific validation point/s in the parameter
space.

There seems to be a fairly uniform agreement in the vali-
dation community on what model validation implies at a
vague conceptual level, i.e., at the level of various one-
sentence expressions like the first sentence in this sec-
tion. However, the details of what model validation
really implies (conceptually, operationally, interpretation-
ally, etc.) are subject to substantive disagreements
among many in the V&V community. The intent of this
paper is to outline the relevant issues and propose a
conception of model validation and validated models that
seems to reconcile many of the issues. This paper de-
velops and extends ideas first presented in Ref. [27].

SOME PRELIMINARIES

What are the criteria for assessing and answering
whether one has, or is using, a validated model? Be-
cause many contemporary paradigms of model valida-
tion have a limited modeling scope in mind, their an-
swers for this question do not appear to be viable across
the various modeling regimes and purposes that are im-
portant in engineering. After outlining in this section the
different modeling regimes and purposes that it is impor-
tant for a validation theory to span, in the next section
the author proposes a validation paradigm that appears
to span them.

To begin understanding the issues, a first partitioning of
the contextual space of model validation can be made in
terms of “physics-field” validation on one hand, and
“effect” validation on the other. For example, we might
be interested in how well a fire CFD simulation repre-
sents a hydrocarbon pool fire in calm wind conditions.
The fire CDF model is the validation object of attention.
We could contemplate performing validation comparison
of the simulation’s spatial-temporal field predictions
(e.g., pressure, three components of velocity, species
concentrations, etc., all as a function of time and space)
against identical quantities measurable in the experi-
ment (e.g., with laser sheets and particle image veloci-

! This paper is a work of the United States Government and is not subject to copyright protection in the U.S.

2 Contact: vjromer@sandia.gov, 505-844-5890.

® Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.


mailto:vjromer@sandia.gov

metry). Such field-based validation is very difficult and
expensive, perhaps nearly impossible—the author
knows of no instances where this has been fully accom-
plished yet. More practically, we could simply compare
the effect that the fire has on a number of sensors or
transducers of the field. Such sensors could be, e.g., flux
gauges distributed throughout the fire, and/or suitably
located and oriented calorimetric plates, objects, and
walls outfitted with thermocouples. Because the fire is
stochastically fluctuating in time and space, these sen-
sors would have to provide a sufficient amount of time
and space averaging to get well behaved quantities for
comparison. By measuring and computing such quanti-
ties, the computed effects of the fire can be compared to
measured effects.

Of course, even if predicted effects compare favorably
with measured effects, this is necessary but not suffi-
cient to conclude that the predicted physics field details
would compare favorably with the actual fire field details.
In fact, more detailed comparisons might compare quite
poorly. If the modeled physics is not precisely correct at
a detailed level, but the aggregate effect is sufficiently
accurate, the model can still prove quite useful. Because
no model is a perfect representation of reality, it is un-
avoidable that at some level of examination, agreement
will break down. We can only strongly conclude, then,
that the particular effects we have quantified are similar,
and not that the full fields are similar. Nonetheless, we
would like some reassurance that the full fields are not
drastically dissimilar but somehow coincidentally yield
similar effects. The more spatially and temporally di-
verse (well distributed) sensors used, the greater the
chances quickly go up of identifying any such coinci-
dence. This drives toward using as many diverse sen-
sors as affordable in validation experiments. Investigat-
ing a diversity of conditions/scenarios in a validation ma-
trix is another way to perhaps identify any such coinci-
dence. (A hierarchical validation approach would not
work well here to incrementally build up to the full sys-
tem (fire) to try to affirm that in the end, at the system
level, any agreement of effects is occurring “for the right
reasons”. It is not possible experimentally to build up to
the full fire by incrementally adding different mecha-
nisms, e.g., combustion, then turbulence, then soot gen-
eration/agglomeration, then radiative participation, etc.)

The next item to consider regarding contextual charac-
terization of model validation is concerned with interpre-
tation and usage of the results from model validation
activities. It is not worthwhile to go through the expense
and rigors of a validation exercise unless the results can
be interpreted in some useful manner, where salient and
meaningful conclusions can be drawn, and/or what is
learned can be used to quantitatively caveat and/or im-
prove the model. The key point here is one of informa-
tion generation versus knowledge/value generation. If a
large amount of information is generated but cannot be
interpreted or used meaningfully, then the utility of the
exercise is questionable and difficult to justify in terms of
opportunity cost of the funding and resource allocation.
Therefore, for a model validation activity to be relevant

beyond just qualitative insights, there needs to be some
plan for how the information gained will be interpreted
and packaged to provide a quantitative characterization
of model accuracy. It would be further desirable if this
accuracy characterization transferred well, or at least
optimally well, to other applications of the model beyond
the validation experiment conditions.

Consider modeling at the stage where a pool-fire model
is being developed by a group of researchers. The ulti-
mate objective is to employ the fire model in engineering
applications where prediction of object heating (e.g.,
weapon or structural member heating) is the engineering
purpose. Before getting to the application-modeling
stage, the fire dynamics model is usually developed in
relative isolation, say at a university or fire research
laboratory. Here, the modeling context is devoid of a
particular engineering application for which the model is
to help resolve certain issues, answer specific questions,
and/or make decisions. Thus, the modeling goal at this
stage is simply that the model replicate an actual fire as
well as possible. Beyond this, there appears to be no
absolute accuracy requirements against which the
model might be judged to be “sufficiently accurate to be
validated”, as many contemporary paradigms of model
validation would frame it. What criteria are applied, then,
in characterizing the quality and usefulness of the
model? In more stark validation terms, if one wants to
put a stamp of acceptance (validation) signifying that the
model adequately replicates the data and is therefore
suitable for use in engineering applications, then what
quality/accuracy hurdle or threshold must the model
pass?

Since the objective in this regime of modeling is simply
that the model replicate an actual fire “well”, one ap-
proach might be to apply a hypothesis test to determine
whether the model is different from the data—within the
ability to determine this as allowed by the quality of the
validation experiments. Experimental resolution level is
governed by quality control on inputs such as boundary
conditions in the experiments, and on instrumenta-
tion/diagnostic uncertainties on measured outputs. Ref.
[7] explored the paradigm that a model is validated if its
deterministic nominal prediction is biased from the mean
of the data by an amount encompassed by the experi-
mental uncertainty. Recognizing this uncertainty floor
presented by the experiments—below which any model
bias cannot be established or resolved—presents one
key to the validation puzzle. However the final interpreta-
tion in [7], even for models that do qualify by their crite-
rion, was not satisfactory as the first few paragraphs of
the next section indicate by analogy.

Another issue is that the more precise the validation ex-
periment, the more difficult it is to find a model valid by
such a test; and the more noisy and uncertain the ex-
periment, the easier it is to validate the model. Seen
another way, the same model pronounced valid (by such
a criterion) in one validation activity could be pro-
nounced not valid by a much better (cleaner) experi-
ment. In the limit, models will always fail this type of vali-



dation test, at every sensor, as the experimental resolu-
tion of the experiments becomes infinitely precise (then
any non-zero model bias will fail the test). This simply
reflects the truth that no model perfectly represents real-
ity. Even so, some models are still very useful. Hence,
ultimately the dynamics here are not what one would
want from a validation formalism.

One possible way out is to allow an acceptably small
amount of bias error between model and data (that is
larger than the experimental resolution floor), and then
test the hypothesis that the differences are likely less
than this allowed error. But, how is a meaningful non-
arbitrary accuracy limit established? Even if one could
be established, there are substantial practical and theo-
retical problems with this approach, as will be discussed
later.

Now consider use of the fire model at the engineering
applications stage. The goal is to predict heat loads on
some object of interest in the fire. If the fire model has
been successfully validated in isolation (by any scheme,
including the author’s), is it validated for use in the engi-
neering application? The difficulties in establishing an
affirmative answer are numerous and daunting. The logi-
cal implication of carrying the pronouncement of model
validity from the isolated-fire situation to the situation
with the object in the fire is that the accuracy level estab-
lished in the former situation is also the equivalent accu-
racy level in the new situation. But how is this rigorously
established? How does the validation metric transfer
mathematically/quantitatively from the old to the new
situation such that the accuracy conclusions can be said
to remain the same? Even if not remaining the same,
how might the accuracy characterization at the validation
setting mathematically/quantitatively export to the new
setting such that accuracy estimates can be made
there?

In the next section a methodology is proposed by which
the validation accuracy characterization can be mapped
from the validation setting to an application setting. How-
ever, even so, the author does not consider that the
model is valid or to be considered validated at the new
application point. Instead, the author considers the vali-
dation information mapped to the new application point
to contribute to what might be called a Best Estimate
Plus Uncertainty (BEPU) prediction with an accredited
model (as discussed in the closing section). This is in-
tended to be a much weaker and less misleading state-
ment than “We’re using a validated model in this applica-
tion” when the model was actually validated at different
conditions.

The following examples explain why the author does not
advocate claiming that a model validated under one set
of conditions in the modeling space can be considered
validated at a significantly different set of conditions.
Consider the fire/object modeling application. Putting the
object in the fire adds new physics and significant inter-
action effects between the object and fire. For instance,
the presence of the object adds surface-shear-driven

vorticity to the flow field at the object surface. Since the
fire in isolation has only buoyancy-driven shear vorticity
generation, the shear, vorticity, and perhaps turbulence
generation models might not suitably handle the new
type of surface-driven phenomena, even though they
might perform fine in the isolated fire conditions where
the model was validated. Hence, the surface-shear-
driven turbulent mixing of fuel and air may not be ade-
quately modeled, and since mixing strongly affects com-
bustion, the local combustion and consequent heating of
the object may not be represented well.

Whenever physical conditions change, new physics
modes inevitably come into play. How large the effect
will be on the validation quantities of interest, and how
well the existing (validated) model will pick up and han-
dle these new modes, is something that is very difficult
to predict. As another example, it is generally regarded
that structural dynamics models do not extrapolate par-
ticularly well. If a model is validated at one or several
points in the parameter space, this does not strongly
imply that it will be successful at other untested parts of
the parameter space. Even though good correlation
might exist at the tested points, it is unknown and un-
knowable whether it will hold up sufficiently in extrapola-
tion. (Sounds a lot like the obligatory caveat with finan-
cial markets and investing, that past history is no indica-
tor of future performance). Another example that the au-
thor is intimately familiar with are foam thermal pyrolysis
and charring/ablation/vaporization. The agreement be-
tween present day state-of-the-art models and actual
foam behavior can vary quite sensitively at different
foam densities, venting conditions, and applied heat
fluxes and heating rates. This is why the author insists
that validation conclusions can only be drawn at specific
validation points in the parameter space, and these con-
clusions cannot be expected to reliably extrapolate to
significantly different conditions. It is unknowable how
much is “significantly different” until actual testing deter-
mines this.

Hence, it is essential to design validation experiments as
close as possible (in the parameter space) to the actual
conditions of the application for which the model will be
used. (This is of course also the best philosophy for cali-
bration of models.) This would appear to maximize the
applicability and relevance of the validation results to the
intended application.

With this mind, we return to the problem above where
the objective is to predict heat loads on an object of in-
terest in the fire. Let us assume that several objects of
different size and/or thermal mass and/or surface rough-
ness and/or rotational orientation are to be analyzed in
model calculations after validation to one specific case.
Since the physical regime is such that the object’s pres-
ence substantially affects the fire, through the flow field
changes it causes and because it's thermal mass has a
back-coupling effect that moderates fire intensity, it is
best to design a validation experiment that has a repre-
sentative object in it.



In this modeling regime, the validation context is one
where the object is a sensor that provides an effect
measure (of the fire field) with connectivity to a concrete
engineering issue. Perhaps it is then possible that the
fire model can be validated for this effect (imparted heat
to the object) to have the required accuracy to resolve
the engineering issue of importance. This case would
therefore appear to have a different validation contextu-
alization than the modeling regime described above,
which is devoid of a specific engineering object and ac-
curacy requirement, and different also from the modeling
regime discussed at the end of this section, which is also
generically non-specific to a particular engineering appli-
cation. However, on closer examination below, this dif-
ferentiation is typically only cosmetic as regards model
validation.

On the surface, it would appear that an engineering ap-
plication with stated performance requirements would
yield commensurate accuracy (validation) requirements
on selected effects monitored in the model validation
activity. However, this is not usually the case. Accuracy
allowables on top-level engineering requirement(s) such
as performance, tolerance, or safety requirements can-
not be uniquely mapped down to the physics effects
level. Assume for the sake of argument that perform-
ance, tolerance, or safety “requirements”4 at the system
level can be transformed into modeling accuracy allow-
ables on performance predictions at the system level. At
best this is a difficult type of mapping to perform, but the
author does have affirmative experience that it is possi-
ble, with sufficient conventions and constraints applied
to get a unique mapping. Applied to our example prob-
lem, say that the mapping yields a requirement that the
predicted temperature response of components in a fire-
engulfed weapon not differ by more than 10% from ac-
tual component response in a validation experiment. In
trying to map this error budget at system level into mod-
eling error budgets in the various elements of the
fire/object model, however, an essentially infinite number
of non-unique combinations will satisfy the top-level er-
ror budget.

For example, in a hierarchical model validation approach
the requirement could be semi-arbitrarily parsed into an
equivalent top-level effect of 2% for thermal modeling
errors within the weapon plus an equivalent top-level
effect of 8% for fire-modeling errors. Then, in a fractal
manner, within the thermal model itself it is possible for
an infinite number of different combinations of error
budgets in, e.g., the foam pyrolysis and contact-
resistance submodels, to meet a top-level error of 2%.

* Such “requirements” at the system level are unavoid-
ably subject to some degree of arbitrariness from, e.g.,
decision-maker knowledge limitations and subjective
variabilities in risk perception and tolerance based on
individual predispositions and experiences; uncertainty
and conflict in program objectives and resource con-
straints; and non-uniqueness of any tradeoffs involved,
etc.

Say that one such combination happens to be a relative
error in the foam model of 18%, and in the contact resis-
tance model of 30%, and that the actual modeling errors
qualify to these levels. The only way to determine the
18%/30% mix, unfortunately, is to propose an 18% error
in the foam model, and then inversely solve the thermal
model to determine the maximum error in the contact-
resistance model that would yield a top-level error of 2%.
If one instead started with a proposal of 25% error for
the foam model, then this by itself might lead to a larger
than 2% error at the system level, so a lower foam mod-
eling error would have to be proposed, but how much
lower? Only trial and error could tell. Say that a 20% er-
ror for the foam model qualified, resulting in an allowable
of 10% error for the contact-resistance model. If the con-
tact-resistance model has a lower attainable limit of 25%
error because of uncertainties in its inputs, does it make
sense to reject it? No, because the system error re-
quirement can still be made with this model. Up to a
30% error is allowable with this model, when coupled
with an 18% or less error in the foam model. Thus, if the
system-level error budget is met, all submodels are valid
by definition, no matter what their individually assigned
(non-unique) error budgets are, and conversely, if the
system requirement is not met then all submodels fail
together, irrespective of any non-unique error budgets
assigned.

Thus, trial and error, inverse calculations, and arbitrari-
ness would be involved pervasively. Imagine the per-
plexity when error budgets for all the other submodels
are brought into the mix—since none can be required to
have zero error!

Now consider the fire model with its (non-unique, sub-
stantially arbitrary) budget of 8% top-level equivalent
error. The 8% allowable error at top level could be de-
composed into an infinite number of spatial-temporal
error fields of incident flux at the weapon surface. An
infinite number of spatial-temporal error fields also don’t
meet this requirement. The only way to know is to
propagate the errors up to the system level and see
whether they meet the 8% “requirement”. Say that such
error fields are somehow proposed, and the errors are
propagated to system level. Then the first one that re-
sults in error less than but hopefully close to 8% at sys-
tem level would be logically picked. Say that an error
field yielding 7% equivalent error was found. Does this
error field make a suitable standard against which actual
fire model error field (determined from comparison with
data) should be judged in hopes of validating the model?
Consider that the model could be rejected by this stan-
dard if the actual spatial-temporal field of model errors
was not everywhere lower than the reference error field,
even if the actual error field produces less than 7% error
at system level.

What does all this suggest? Evaluate conformance with
accuracy requirements at the top level instead of trying
to map accuracy requirements down. At the lower levels,
bound the actual modeling error and propagate this up-
ward to the system level. To the author, a validated



model at any modeling level is one that properly bounds
the actual error in a form that can be transmitted or
propagated effectively in downstream use of the model.
The next section concentrates on this perspective.

The impropriety of validation paradigms that potentially
reject models based on arbitrary accuracy “require-
ments” is now clear. Beyond this, hypothesis tests them-
selves have subjectivity in their level-of-significance cri-
teria. Small perturbations in the level-of-significance
threshold can variously switch between rejecting and
accepting a model. Another problem is hypothesis test-
ing when multiple accuracy requirements are involved.
“To be validated, the model must be y% accurate in this
region of the fluid domain and w% accurate in that re-
gion.” The error field in space and time discussed above
is an example of this. The multiplicity might in combina-
tion or alternatively be with respect to different physics
fields: “The model must calculate total body drag to
within u% error and total heat transfer gain to within v%
error.” If some of the multiple accuracy requirements are
met and some are not, is the model considered validated
or not? Is the model of no use or value if it does not
meet all the prescribed accuracy requirements to the
stipulated degree of significance, even if the ones not
met were just barely not met? How would one formulate
and interpret a weighted hypothesis test for multiple ac-
curacy objectives? In short, hypothesis tests are very
subjective and volatile measures of model qual-
ity/value/usefulness, even when they can be applied.

Furthermore, a practical problem exists with the concept
of model rejection itself. In most modeling initiatives,
resources are constrained and we have to ultimately use
the model when the development resources run out, but
simply want its error to be characterized so we can ac-
count for this in the predictions. Even if the model does
not achieve the hoped-for accuracy, we can still use the
model with lowered expectations as determined from the
validation activity. Since the model will have to suffice in
this case, it is “good enough” by default. The other alter-
native is to truly reject the model. However, this would
normally represent a rejection of presumably the best-
available codified knowledge of the physics application
at hand. Since model development and validation activi-
ties are relatively expensive and time-consuming, rarely
is the luxury afforded to build multiple models and apply
the validation process. Rather, project resources are
concentrated on developing what available experience
and tools allow to be the best model possible under the
resource constraints. If the model is rejected, then to
avoid “analysis paralysis” at the modeling stage of the
program, another (what would likely be inferior) model
would have to be quickly thrown together and
used—likely without having gone through the model
validation process to characterize its accuracy.

Yet another set of problems normally exists with the hy-
pothesis testing approach. Validation experiments are
usually conducted under at least slightly different condi-
tions than the intended application(s) of the validated
model. This occurs often because of the need to control

input conditions in the validation experiments in order to
maximize resolution power to isolate modeling error in
the validation activity. Cost and technical practicality
usually also drive validation experiments to be simpler
than the real applications. In many cases, such as nu-
clear weapons testing and nuclear power plant acci-
dents, tests in the intended application space are not
possible or feasible. A technical issue then exists in
mapping requirements from the application space to the
validation space, and in mapping validation results back
from the validation space to the application space. This
mapping cannot even in principle be accomplished
unless there is a continuous, parameterized mapping
between the validation and application domains. That is,
any changes in the conditions from one domain to the
other have to be recoverable by smoothly morphing the
model from the application domain to the validation do-
main. This means that the degrees of freedom and
model forms in the model must span both domains. In
other words, the “same” model must exist for both do-
mains, with only the values of the parameters being dif-
ferent. Needless to say, current modeling technology
and practice do not support models that can morph be-
tween the different geometries, physics modes, and
boundary conditions that normally exist between valida-
tion and application domains. The lack of a parametric
relationship between the validation and application do-
mains poses a discontinuous mapping between the two
spaces, preventing even the possibility of a rigorous
mapping of requirements (which would be non-unique
anyway).

A discontinuous mapping also prevents a rigorous
propagation of information the other way, from the vali-
dation setting to the application setting. Therefore, any
potential statistical confidence statements that model
error is less than some tolerance in the validation do-
main cannot be transferred to the application domain.
This eliminates the hope of being able to perform ex-
trapolative predictions with rigorous statistical confi-
dence assignable to the predictions. Nonetheless, very
useful information gained from the model validation ac-
tivity can be captured and parameterized in a form that
allows propagation from the validation domain to the
application domain, as explained in the next section.

Hence, the author concludes that hypothesis testing is
not a viable way of validating models in even the model-
ing regime where engineering performance require-
ments exist at the system level. A different approach to
establishing validated models in this regime will be pre-
sented in the next section.

To finish up this section, we consider one last modeling
regime. Examples in this regime are material property
and constitutive models, turbulence models, convection
correlations, thermal contact-resistance correlations, etc.
This modeling regime exists, like the first one, in relative
isolation from analysis, design, and decision-making as-
sociated with a specific engineered system. Here as
well, there are no evident accuracy requirements against
which the model could be judged to be “sufficiently accu-



rate to be validated”. Nonetheless, model qual-
ity/accuracy can still be quantitatively expressed and
transmitted to downstream uses of the model. The tradi-
tional manner for doing this will be cited in the next sec-
tion. It will then be argued that this same philosophy also
applies to models in the other regimes of modeling de-
scribed above.

A HALLMARK FEATURE OF VALIDATED
MODELS (EXTENDED TO NEW MODELING
REGIMES)

What are the hallmarks of a model and its usage that
allow one to defensibly make the claim that they are us-
ing a validated model in an analysis? Here a hallmark
criterion for validated models is presented that applies in
all three modeling regimes discussed in the previous
section. It is explained how existing precedent from one
modeling regime can be extended to the other two.

First consider the modeling regime at the constitutive
level. What constitutes a validated model in this model-
ing regime? Lacking an external accuracy criterion for
validation, one could look for some type of natural or
intrinsic criterion. One possibility is to require that the
model results lie within “the error bars”® of the experi-
mental data. This philosophy could also be applied in the
other model regimes discussed above. Indeed, many
validation activities reported in the present-day literature
advocate this philosophy. However, there are a few seri-
ous problems with it. First, the larger the uncertainty in
the experiments, the larger the experimental error bars
are. So in this conception of model validation, the less
precise the experiments, the easier it is to accept or vali-
date a model. The other problem is that a contemplation
of the downstream implications of model usage leads
the author to the opposite as a rational criterion: the er-
ror bars of the experimental data should lie within error
bars associated with the model. That is, the model pre-
dictions with error bars should be validated to encom-
pass reality, rather than the other way around. A few
simple examples bring this point home.

Figure 1 presents some hypothetical data for an illustra-
tive example of a measured material property as a func-
tion of temperature. The solid straight line shown is de-
termined by a Least-Squares regression of the meas-
ured data points (i.e., the bias-corrected experimental
readings shown at the midpoints of the affiliated uncer-

° Many complications, choices, and caveats are involved
in forming such error bars on experimental data (as will
be discussed later in this paper), so they are always
somewhat subjective. Nonetheless, reasonable results
are obtainable in many engineering validation activities
with readily available uncertainty quantification and
propagation technologies (e.g., [6] — linearized propaga-
tion for first-order estimates of mean and variance of
experimental uncertainty, [26] — Monte Carlo propaga-
tion of uncertainties for higher-order estimates of mean
and variance).

tainty bars). The large error bar and associated intervals
(dashed lines) shown about the straight line are reflec-
tive of the total experimental uncertainty. Their construc-
tion will be addressed later, but for now suffice it to say
that these represent the best estimate within which the
material property values are reasonably expected to
lie—in all but the most unforeseen of instances. That is,
at any given temperature, we expect that actual surface
property values will fall within the large interval.

[]

emissivity

200 400 600 800
temperature. K

Figure 1: Material property measurements and associ-
ated uncertainty intervals, with regression line through
the data.

The regression line can be recognized as a deterministic
model of the surface-property behavior over the tested
temperature range. Certainly, the model results lie within
the uncertainty of the experimental data. Some concep-
tions of model validation would therefore deem the
model ‘validated for use’. However, the actual material-
property data can deviate significantly from the regres-
sion line, i.e., from the deterministic linear model Y(x) =
ax + b. Thus, the deterministic model by itself does not
suffice to represent material-property expectations at
some given value of the temperature state variable. If
the deterministic model alone (now claimed ‘validated’)
was utilized in downstream simulations at compo-
nent/subsystem/system level, the material property re-
alizations would be misrepresented as being much more
precisely known than is actually the case. This would
lead to under-representation of the actual uncertainty
associated with use of this property model. Therefore, to
claim a model validated because it lies within the uncer-
tainty of the experimental data appears to the author to
be wholly inappropriate, and inviting of trouble.

Rather, a legitimately validated model should include a
reasonable formula for representing the uncertainty as-
sociated with the model's predictions. This would seem
to be an essential element of what would constitute “best
estimate plus uncertainty” (BEPU) predictions.



A convenient and perhaps optimal way to model the pre-
diction uncertainty is via an uncertainty representation
parameterized into the model itself, producing a “com-
bined or augmented model”. Examples will be provided
shortly. Thus, the validation uncertainty, parameterized
into the model at the validation point(s) in the parameter
space, would be carried in the augmented model to pre-
diction points in the parameter space. Evaluation there
would provide an estimate of the uncertainty associated
with the prediction.

As an example, the deterministic model Y(x) = a=x + b
can be conveniently augmented with an appropriate
parameterization of the uncertainty of the experimental
material-property values. The uncertainty represented by
the large intervals in Figure 1 can be parameterized into
the deterministic model Y(x) = a=x + b though its ordi-
nate-intercept parameter b. For instance, this parameter
can be made to vary from (b — h) to (b + h) with a uni-
form density function, where h is the vertical distance
from the reference regression line to the lower or upper
large interval. Alternatively, if these intervals signify the
approximate 0.025 and 0.975 percentiles (20 intervals)
of what is being modeled as a normally distributed un-
certainty from the experiment, then replacing b by a
normal distribution of variance o centered about b
would parameterize the experimental uncertainty into the
material-property model.

Note that the effect of parameterizing the experimental
uncertainty into the model is to associate an uncertainty
intrinsically with the model, such that its representation
is no longer the infinitely thin line Y(x) = a=x + b in Figure
1, but a thick prediction band with extents the same as,
and driven by, the experimental uncertainty. It is this
augmented model that is the appropriate one for model-
ing the material in downstream component/subsys-
tem/system simulations where prediction uncertainty
associated with this model is to be accounted for. This is
the essence of the author’'s assertion above that a le-
gitimately validated model should have error bars that
contain or encompass the error bars of the experimental
data, instead of vice-versa as some would define the
criterion for a validated model. As another example, the
author does not deem a carefully developed convection
correlation to be a validated model unless appropriate
uncertainty intervals are cited along with it. Indeed, such
correlations are usually presented in the literature with
admonishments that the resulting point estimates can
have typically £20-30% error, and should be used with
this kept in mind. Accordingly, the author deems use of
such models to be improper in applications of substantial
importance unless this uncertainty affiliated with the vali-
dated models is propagated to the predictions.

Note that in this conception of model validation, there is
no “free lunch” where noisier or more uncertain experi-
ments allow less accurate models to be validated than if
the experiments were of higher quality. Instead, greater
uncertainty in the validation experiments is reflected in
greater uncertainty in the augmented (validated) model,
which is carried forward into predictions.

These considerations for what is required of a validated
model at the material-property modeling level can be
extended to other modeling regimes, including those
discussed in the previous section involving very complex
systems (this will be elaborated later). This requirement
remains invariant over all modeling regimes: the error
bars of a validated model should encompass the total
uncertainty of the experimental data for pragmatically
important measures of the system. (The physics field
effects discussed earlier are included here as measures
of the system.) This stated criterion is necessary for vali-
dated models, but perhaps not sufficient in all modeling
regimes and for all modeling purposes. Other criteria
may exist in various circumstances.

Construction of the large uncertainty band in Figure 1
will now be addressed briefly. In general, total experi-
mental uncertainty may include contributions from:
a) stochastic variability of system response and associ-
ated confidence intervals due to finite numbers of repeat
experiments; b) bias uncertainties associated with any
models used to correct and/or interpret the measured
data; c) measurement uncertainty on system outputs
and contributed uncertainty from experimental inputs to
the system, including apparatus/setup, test conditions,
and boundary conditions.

For example, in Figure 1 let the small uncertainty bars
about each data point represent the measurement un-
certainty on the output of the experiment (emissivity
value) due to sensor/diagnostic variability and bias un-
certainties. To make things easier for illustrative pur-
poses, assume that the measurement uncertainties are
not significantly affected by temperature of the material,
even though the property value itself is. Thus, the error
bars are the same size about each data point.

Experimental uncertainty also exists with respect to the
inability to exactly control and measure critical input fac-
tors such as boundary conditions in the experiment.
Here, this means the temperature of the material sam-
ple, as well as its surface condition. Uncertainties in the
inability to exactly control and measure material tem-
perature can be transformed into implied uncertainty on
the output of the experiment (emissivity as a function of
temperature) through standard techniques.6 This implied

®For many engineering purposes it is adequate to treat
the system in the validation experiment as having locally
linear behavior over the uncertainty of the experimental
inputs to the system. Then the following relationship can
be used:

Variance of [system response or output]que to input factor

= Var[input factor]*[aresponse/ainput_factor]**Z. The par-
tial derivative above would usually be approximated by
one-sided or central differencing using the model of the
system. Since the model is actually the subject of the
validation activity, this is somewhat suspect. However,
the model is only being used for relative trend informa-
tion here, so does not need to be accurate in an abso-
lute sense, but only in a much weaker relative sense.



uncertainty on the experimental output is convolved with
the measurement uncertainty (error bars) on the output.

The particulars of propagating the uncertainties associ-
ated with control and measurement of the temperature in
the experiment will be avoided for simplicity in the follow-
ing discussions by presuming these uncertainties small
enough to have negligible mapped impact on the uncer-
tainty of the output measured quantity, emissivity. None-
theless, it is important to mention the generic presence
of this type of experimental uncertainty, and its mapping
to output uncertainty. In many validation experiments,
the output uncertainty due to e.g. uncertain input bound-
ary conditions is not negligible, and can in fact be the
dominant contributor to the aggregate uncertainty on the
output(s) of the experiment. This was the case with the
heating boundary conditions in a recent validation of a
thermal model of a complex electromechanical device

([29]).

The other critical input factor in our example is the sur-
face condition of the material. This implies surface finish
as well as surface preparation in the experiments (such
as cleaning and polishing). In our example, the surface
condition of the material as employed in the field varies
substantially. Our experiment is therefore designed to
employ different material samples covering a represen-
tative variety of surface conditions, in a randomized or-
der as temperature is increased in the experiment. Use
of a different surface sample for each temperature ex-
periment is presumed for the sake of illustration here to
cause the oscillations (from linear) seen in the seven
data points as the temperature state-variable increases.

If many more experiments could be afforded, it would be
better to take each of the seven surface samples and
test each of them through the temperature range. This
might, for instance, give seven experimental data points
at each of the seven temperature stations in the figure.
To form the total experimental uncertainty (analogous to

Note that this makes any numerical nonconvergence
bias or uncertainty of the model immaterial to final re-
sults except for any non-constant bias under the small
perturbations of the input factors. Because such pertur-
bations frequently do precipitate small-scale bias non-
uniformity or “noise” in the computed response (see
[25]), care should be taken to assure derivative accuracy
in view of interaction effects between finite-difference
step size, model noise, and model solver tolerances.
Whether system behavior is linear enough over the un-
certainty ranges of the inputs for the above approxima-
tion to be effective can be tested by probing the model
over the uncertainty ranges. If nonlinearity is found to be
too great, then a Monte Carlo approach to the uncer-
tainty mapping can be taken. This approach avoids the
expense of any model runs to ascertain whether the be-
havior is linear enough, and the expense of forming the
derivatives and assuring their numerical accuracy. For
validation activities involving more than 3 or 4 input fac-
tors, the author finds the Latin-Hypercube Monte Carlo
approach to be less expensive regardless of linearity.

the large error bar in the figure), one of three routes
would be taken. One route addresses the foreseeable
case where the same sensor/instrumentation is sys-
tematically used for all seven emissivity measurements
at a given temperature. In this case, the associated
measurement uncertainty (small error bars in the figure)
would be convolved with a density function estimated to
contain the population from which the seven data values
are likely to have come. This density function would ac-
count for confidence intervals on the mean and variance
due to the limited number of data samples.

If instead, a different sensor/instrumentation unit was
used for each of the seven emissivity measurements,
then options 1 or 2 below are taken.

1) If the seven measurement packages used have
random bias errors (random accuracy errors) rea-
sonably represented by the manufacturer-published
uncertainty or other characterization activity, then
the associated variance may be used to decrement
the variance (width) of the density function men-
tioned above. The result is called the reduced ex-
perimental variance. Because some of the original
variance in the data would be due to sensor vari-
ability, and this is independently characterized, this
knowledge can be used to decrease the realized
variance in the experimental data, thereby reducing
the measurement-uncertainty penalty from the ex-
periments that must be carried with the augmented
model.

2) If a separate characterization of sensor bias uncer-
tainty is not available, or is not deemed to be repre-
sentative for the current experiments, then reduc-
tion cannot be applied to the raw experimental vari-
ance. Hence, any variability in the different meas-
urement units adds to the perceived data variability
in the experiments, and comprises an experimental-
resolution uncertainty penalty that must be carried
along with the validated model.

Returning to the example in Figure 1 where only seven
data samples exist over the entire temperature range,
the following is a simplistic way to construct the larger
error bar applicable at any temperature in the range.
(More sophisticated and correct approaches take into
account confidence intervals from limited sampling, but
the added complexity detracts in making the essential
point here.) The Least-Squares regression of emissivity
rise as a function of temperature serves as a reference
mean trend line about which the random deviations of
the data can be parameterized by a nominal variance
value o°. The associated uncertainty is increased, dec-
remented, or unchanged by the measurement uncer-
tainty (small error bars) to arrive at the uncertainty rep-
resented by the larger error bar, according to whether
the measurement uncertainty is systematic, perfectly
random, or somewhere in-between, over the set of ex-
periments.



A much more involved example is presented in refer-
ence [26] that involves several systematic and random
experimental uncertainty contributors to the total uncer-
tainty in the failure level of a device. Failure is character-
ized as a function of two state variables of heating rate
and surface area being heated of the device, for use in
downstream risk calculations for a fire-heated weapon
containing the device. The total uncertainty from the fail-
ure characterization experiments (analogous to the large
error bars in Figure 1) was mapped cleanly into two pa-
rameters y and o of the failure threshold model, cate-
gorically similar to how the experimental uncertainty de-
picted by the large error bars in Figure 1 is mapped one-
to-one into an uncertainty in the parameter b of the lin-
ear-regression emissivity model.

The mappings of total experimental uncertainty into pa-
rameters of the emissivity and failure models are rela-
tively straightforward because the models have purpose-
fully simple and convenient mathematical forms for ac-
complishing such mappings. Even the more complex
models in this modeling regime, such as turbulence
models, have convenient free parameters whose values
are determined by what is effectively statistical regres-
sion to best fit the relevant data. Hence, it would appear
feasible to map (to these regression parameters of the
model) the total experimental uncertainty from physical
stochastic variance and instrumentation uncertainty in
the experiments. In fact, a practical formalism for map-
ping the total experimental uncertainty into the regres-
sion parameters of the model may be derivable from
existing Bayesian model calibration techniques (e.g.

[18]).

Now consider a different type of model for emissivity as
a function of temperature. Instead of a purely calibrated
model having free parameters determined from regres-
sion to the data and not constrained by physics princi-
ples such as conservation laws, consider a model de-
veloped from physics principles.7 To convey a subtle

" Even models based on physics principles usually in-
volve some degree of calibration, where parameters of
the model are empirically set through characterization
experiments. For example, a finite-element model of
heat diffusion (based on thermal energy conservation
and transport principles) through a geometrically com-
plex 3-D stainless steel plate relies partly on the thermal
conductivity parameter in the partial-differential-equation
diffusion model, Fourier's Law. The stainless-steel con-
ductivity is obtained empirically by iterating for a conduc-
tivity value that makes predictions (using a 1-D version
of Fourier's Law for the heat transport through a rod
specimen of the material) best match 1-D experimental
results. Hence, a self-consistent matched set of the par-
tial-differential-equation (PDE) model and its conductivity
parameter are arrived at that best replicates the experi-
mental data. The presence of state-variable-dependent
material properties, such as temperature-dependent
thermal conductivity, signifies that the extent of the PDE
model’s predictive capability is limited. Since the model
does not explicitly include mechanisms for the increased

distinction regarding a new term to be introduced in con-
nection with a complete model validation process to be
proposed below, presume that the physics-based model
(with a nominal set of values for the model inputs) pre-
dicts emissivity behavior exactly the same as the re-
gression line in Figure 1. Also assume here that the
model results are completely converged numerically.

Unlike regression models—with their malleable struc-
tures which facilitate molding to the data, physics-based
models have parameters that are estimated a priori,
from independent experimental characterization (such
as discussed in Footnote 7), or from analysis (e.g. mo-
lecular dynamics simulations for material properties).
These parameters may have significant associated un-
certainty. For example, input electromagnetic and/or sur-
face molecular properties in our emissivity model may
be quite uncertain. If these uncertainties, which are in-
trinsic to the model, when propagated through the
model encompass the large experimental uncertainty
interval in Figure 1, then this {model + uncertainty repre-
sentation} as a set meets the conditions for BEPU pre-
diction, and therefore meets the author’s criterion for a
validated model. (See [4] for a validation case in this
realm that the author recently served as an advisor for.)
Of course, these intrinsic uncertainties must be present
in downstream use of the model, and are propagated to
the associated predictions, along with any other uncer-
tainties specific to the particular application setting.

If the intrinsic uncertainties when propagated through
the model do not completely encompass the total ex-
perimental uncertaintya, then additional action is re-

molecular vibration modes and activity at elevated mate-
rial temperatures, this lack of explicit representation is
compensated by recalibrating the value of conductivity
that produces the best match at elevated temperatures.
The outward appearance is a temperature-dependent
material property, which when coupled with the PDE
model outwardly appears to be predictive over a range
of temperatures. However, this is only true in a post-
dictive sense, where a moving calibration was devel-
oped over the temperature range to prevent empirical
divergence of the model predictions otherwise. Even so,
models that explicitly incorporate the important physics
principles and constraints in an application would appear
to have the best opportunity for predicting well in ex-
trapolation, so they are preferable for such purposes—
though this is not necessarily true for interpolation (see
e.g. _[29]). _

This is often the case because the independently char-
acterized or estimated intrinsic uncertainties of the sepa-
rate elements of the system or subsystem have no rec-
ognition of any potential nonlinear interactions and/or
stochastic variability present in the assembled
sub/system. Nor do the intrinsic uncertainties reflect the
experimental uncertainties present in the validation ac-
tivity at the assembly level. Hence, the so-called “Top-
Down” ([30]) assessment at the assembly level is nec-
essary for ascertaining whether the “Bottom-Up” propa-



quired before it can be deemed validated. One possible
course of action consists of identifying one or more suit-
able parameters through which the additional uncertainty
in the validation experiment can be mapped into the
model—although such mapping is typically not as
straightforward as for purely calibrated models.® Thus,
the mapped uncertainty in the selected parameters, plus
the intrinsic parameter uncertainty, propagate through
the model together to produce an uncertainty interval
which bounds the total uncertainty interval from the vali-
dation experiments. Hence, the augmented uncertainty
(intrinsic + mapped) is transported to the application set-
ting via uncertainties in various parameters of the model,
and is propagated to the associated predictions along
with any other uncertainties specific to the particular ap-
plication setting.

Although illustrated at the material modeling level, the
validation reasoning here applies fractally to more com-
plex modeling endeavors.

The author refers to the mapping of experimental uncer-
tainty to the model as “model conditioning” with re-
spect to the validation experiments. Note that this is dis-
tinguished from model calibration in that the purpose
and result of model conditioning is not to bias-correct the
model to the data.’ Nonetheless, the conditioning op-
eration also unavoidably perturbs the model being vali-
dated (just as calibration does). Hence, the author ob-
serves that the model validation process often involves
model conditioning based on the validation experiments
in order to validate the model for BEPU predictions.

Even when a model’s intrinsic uncertainty by itself
bounds the total experimental uncertainty (so that no
model conditioning is needed), it stands that a {determi-
nistic model + associated uncertainty representation} are
validated together as a complementary set. Therefore,

gation of the intrinsic uncertainties encompasses the
experimental characterization at the assembly level.

® For physics-principles models like finite-element PDE
models, the model forms usually imply nonlinear map-
pings between input parameters and model outputs, and
various interactions between parameters (specific to the
different model outputs). Therefore, inverse techniques
are required to map output uncertainties (i.e., total ex-
perimental uncertainty) to uncertainty/ies on model in-
put/s. Hence, for such models it is much more difficult to
apply the mapping step. Many considerations are in-
volved in selecting the optimal input parameter or subset
of parameters to map the experimental uncertainty to,
and in selecting the most appropriate procedure for ac-
complishing the inverse mapping. In fact, this is a wide-
open area of research. More discussion of the issues is
%iven in [29].

Calibration of physics-based models has the potential
to be either beneficial or detrimental depending on the
choices of calibration parameter(s) and procedure, and
the particular extrapolation or interpolation involved, so
is not necessarily a model improvement. This is dis-
cussed further in Ref. [29].

“model validation” is really validation of the complemen-
tary set {model + uncertainty representation} that com-
prises the augmented model. Previous thinking on
model validation does not seem to explicitly promote this
idea.

Another method of model conditioning involves trans-
porting the uncertainty in the validation experiments as a
separate “uncertainty layer” to the model. This can be as
simple as e.g. the blanket prescription that a £20% un-
certainty should be placed on a calculated convection
coefficient from a given correlation. Much more involved
parameterizations of uncertainty layers for various types
of models can be imagined. For example, [13] and [30]
appear to provide frameworks for generating a bias-
correcting layer to the model, with residual uncertainty
included.

In some cases, transportation of the experimental uncer-
tainty is only accomplishable (or is best accomplished)
through such a layer or some combination of a separate
layer and inverse mapping to inputs of the model. In [25]
the magnitude of the experimental uncertainty for a sub-
system model was so large due to uncertainty of ex-
perimental boundary conditions that the uncertainty
could not be sufficiently captured through uncertainties
on model inputs applicable at the system modeling level.

CONCLUDING REMARKS

The author sees much reason and value in extending to
other modeling regimes what he sees as existing prece-
dent for validated models for BEPU predictions in certain
modeling regimes—at least as a necessary although
perhaps not sufficient condition for validated models in
these other regimes. That is, a validated model is one
that (at least) has—mapped into selected parameters of
the model and/or carried as a separate “layer” to the
model—an uncertainty representation that reasonably
bounds the experimentally established uncertainty of
system measures pragmatically important at that point in
the parameter space. In this new conception of valida-
tion, the {model + uncertainty representation} is vali-
dated as a set, rather than the model alone being
thought of as the object of validation.

One of the criteria for claiming “use of a validated model
in an analysis” is that the model is being used for essen-
tially interpolatory predictions, such as use of a material
model or failure model within the state-variable range
over which it was properly established. This would also
include, for example, more aggregate models such as
the 1-D PDE model in Footnote 7 where it's accuracy
has been established over the temperature range of cali-
bration, as discussed earlier. However, consider a 3-D
version of the PDE model applied to the complex steel
plate, for temperatures within the said range. The author
does not consider the validated 1-D diffusion model, ex-
trapolated to the 3-D application, to be validated for the
3-D application (even assuming isotropic material prop-
erties and accurate geometry modeling in the 3-D set-
ting). Unmodeled phenomena could be masked in the 1-



D calibration setting that could show up as modeling er-
ror in the 3-D setting.

Hence, if making extrapolatory predictions, the author
does not think it justifiable to claim that a validated
model is being used for the predictions. Rigorously, all
bets are off in extrapolation. What is reasonable is to
imply a non-trivial degree of quality control and risk as-
sessment by claiming an ‘accredited model’ for the pre-
dictions, if it has been validated at proximal points in the
parameter space, and in the analyst’s experienced opin-
ion, is anticipated to give a reliable or trustworthy result
for the issue resolution purposes of the analysis. Thus,
validation implies hard direct evidence, but accreditation
is an expertise-based belief (a leap of faith) that a model
properly validated at proximal point(s) will perform ade-
quately enough in extrapolation to support effective
resolution of the issues of interest.

If a model is not validated at point(s) in the parameter
space sufficiently near to the extrapolation conditions, it
is difficult to defensibly argue that it is accredited for
making predictions there. However, since accreditation
is a subjective value judgment—an assertion by the
modeler/analyst and an acceptance by the modeling
customer—the determination depends on how convinc-
ing the arguments are. The author does accept that an
adequately diverse and credentialed group of experts,
adequately peer-reviewed, as in the case of nuclear
power plant accident modeling, can deem a model ac-
credited for their modeling purposes—with stated con-
straints on what the modeling can be used for. For in-
stance, “To be used only for ascertaining which of sev-
eral accident perturbations appears to be worse, or to
determine which model parameters most affect out-
comes.” Such ordinal ranking purposes are fairly forgiv-
ing of model inaccuracies. This is crucial because with-
out validation which enables approximate compensation
for model-form error in the extrapolated result, it is not
apparent how this error is otherwise estimated and com-
pensated for. Ref. [8] offers detailed considerations and
formal procedures concerning model accreditation when
actual validation cases are rare. The accreditation proc-
ess is one of assessing risk and weighing benefits of
model use, with associated statements of what the mod-
els can reasonably be used for.

As another example, the discontinuous modeling ex-
trapolation from the 1-D rod to the 3-D plate is a case
where the author’'s experience strongly suggests that
such an extrapolation is likely to be effective. Hence, the
author would be amenable to accrediting the model for
the 3-D problem, based on the evidence from the 1-D
problem. Although there is undeniable risk here, the au-
thor considers this extrapolation risk to be a minimal,
and in fact this is the standard practice in most engineer-
ing modeling.

Another aspect is that the author might, for instance,
accredit a physics-based model for a small extrapola-
tion, while not granting this for a neural network model,
even if both match the data reasonably well at the vali-

dation points. This might be because the author’'s ex-
perience with the physics-based model suggests that it
is likely to extrapolate acceptably to the given conditions,
whereas he is personally inexperienced with neural net-
work models, or his experience indicates that they usu-
ally don’t extrapolate well.

Importantly, even if a model cannot be defensibly
claimed to be ‘accredited’ for a given extrapolatory pre-
diction, this does not necessarily mean that the model
should not be used for the prediction. This just means
that the risk involved is relatively unmanaged. Nonethe-
less, empirical indications are that such usage has been
successful on balance. The author has seen countless
instances where models have been developed in certain
settings, and very effectively used in extrapolatory set-
tings where there is a significant discontinuity in the pa-
rameter mapping between the two settings. In fact, this
is most often the case in the real world, where the em-
pirical evidence is that, although industry has not typi-
cally used strictly validated and/or accredited models,
the modeling benefits seem to have outweighed the
costs and risks, as the use of modeling in industry is cur-
rently very popular and continues to grow.

In closing, although we cannot guarantee accuracy of
predictions or accompanying uncertainty bands, we can
still set about the objective of contextualizing and im-
proving our estimates as well as possible through ap-
propriate quality control procedures. That is, we can at-
tempt to maximize accuracy potential through optimized
design of validation experiments and optimized model
development, validation, and extrapolation procedures
for a given prediction task. Additionally, we can assess
modeling risk through InfoGap [3] type analyses like that
discussed in [27] to determine the degree to which the
models can be incorrect before changing the conclusion
obtained with the model. This having been said, quality
assessment and control in modeling and simulation is an
engineering science still in the very early stages of de-
velopment, and much needs to be done to bring this
young science to a mature state.
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