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Project Team and Roles

Fraction
Name Role Responsibilities of time*
Robert M. Biefeld P.M. Project Manager
Daniel D. Koleske* P.l. MOCVD growth and reports 0.40
Arthur J. Fischer I LED “quick tests” and full fabrication 0.15
David M. Follstaedt |. TEM investigations 0.10
William R. Wampler . RBS to determine alloy contents 0.10
Mary H. Crawford I PL and IQE measurement 0.10
Stephen R. Lee | XRD analysis 0.15

*Fraction of time includes any technical-support personnel allocated to

each investigator.

**Jerry Thaler was hired as a post-doc to work with Dan Koleske on the

MOCVD growth research.
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Project Objective

To red-shift the wavelength of the most efficient InGaN-based LEDs
in the near UV and blue to longer wavelengths in the green, yellow,
orange, and possibly red by adding Sc and Y to the QWs.

From Lumileds via Wetzel et al.
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Bandgap of GaN = 3.4 eV, ScN =2.15eV, YN = 0.8 eV are assumed.
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} Achieving white light with an RGB approach

With RGB approach can achieve
all colors within triangle

Eye most sensitive to 555 nm (green) light.
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For tricolor approach (RGB) need a brighter green LED.



Expected Benefits

Targets for CRI and luminous efficacy shown as white dots

100 7In§éndescent
If this research is - |
successful, companies G * . N o T
that manufacture InGaN- s _ Fluorescent
based LEDs should be g - B 3
able to add Scand Y to % w : —
the InGaN quantum wells £ ighinensly 3| O
to produce high efficiency 8 ® R
LEDs over the entire 0 A

visible wavelength range. 0 50 100 150 200 250

Luminous Efficacy (Im/W)

*Estimate of the CRI based on the luminous efficacy was performed by Jeff Tsao (SNL) using a quantitative luminous-
efficacy-CRI simulator developed by Yoshi Ohno at NIST. For the characteristics of the white light, we assume a constant
color temperature of 4000K, with no allowed deviation from Planckian white. For the characteristics of the LEDs and
phosphors we assumed: 50% efficiency and 20 nm linewidths for the LEDs and 90% efficiency and 80 nm linewidths for the
phosphors. This calculation takes into account the stokes shift energy loss in the phosphors.

Tricolor RGB may be only approach to meet DOE SSL Goals
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A‘oncessions Necessary to Grow InGaN on GaN

» Lower growth temperature
— GaN grown at 1000-1100 °C, InGaN grown at 700-800 °C

— May introduce defects, impurities, metal inclusions, V-defects,
changes in surface morphology — increased roughness, etc...

» Can only use N, carrier gas for growth, no H..
— Surface H may be beneficial in reducing CH,- fragments.
* Have to use higher NH; flow rates.
— Lower NH; cracking efficiency — non-stoichiometric defects.
e Strain increases as indium content and thickness increase.
— Have to work below the critical thickness — film coherency.
— Strain relief produces defects.
— May prevent growth of higher In content alloys to < 20 %.
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hat mechanisms limit the growth of high quality,
higher In content InGaN alloys and InGaN/GaN quantum wells?

Despite more than a decade of research, InGaN materials growth is characterized
by a complex interplay of phenomena that are still not entirely understood:

2D - 3D growth mode evolution Inclusion growth at InGaN/GaN QW
with lower growth temperatures depending on strain, growth temp interface, depending on growth
and higher Indium, (also dependingon and defect po;;ulations ’ temp, hydrogen flow, leading to

pressure, NH; flow, TMI flow, etc.) thermal instability

Distinct morphological defects,

Growth
direction

Figure from Oliver et al., Figure from Scholz et al., Figure from Ting t al.,
JAP 97 013707 (2005) Mat Sci Eng B 50, 238 (1997) JAP 94 1461 (2003)

What limits the materials quality and performance of higher In content
InGaN and InGaN/GaN MQWs? What limits the incorporation of indium?
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} Quantum wells are coherently strained

Both the dynamic diffraction simulation and reciprocal space maps suggest layer coherency.
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Impact of strain on indium incorporation

» strain plays a critical role in limiting indium incorporation

~100-nm-thick InGaN on
GaN at 760 C:

InGaN

GaN

M. Rao, et al., APL 85, 1961 (2004).

Related observations:

Z. Liliental-Weber, et al., J. Electron. Mat. 30 (2001) 439.
S. Pereira, et al., APL 80 (2002) 3913.

Shimizu, et al., JJAP 36 (1997) 3381.

In Fraction in Solid
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» Strain-relaxed InGaN templates could enable significantly higher In concentrations
at reasonably high growth temperatures ( ~760°C) — Mike Coltrin — NETL project.

Fundamental question: How does indium incorporation of only 20 % influence green
and longer wavelength emitters?




Wavelength , nm

Green possible with 20% In and QW thickness of 30 A

Line 3 is the bulk InGaN PL wavelength vs, indium composition
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# Possible advantages of ScGaN or YGaN

« Same growth temperature as GaN.

— GaN grown at 1000-1100 °C, since Sc and Y are more
refractory — grow at higher temperatures.

— Chemistry of Sc and Al are similar — AlGaN is grown at high T.
— Reduced phase separation — AlGaN alloys are mixed.
» Can use both N, and H, carrier gases for growth.
— Increased rehydrogenation and desorption of CH,- fragments.
» Can use lower NH; flow rates.
— Higher temperature leads to more efficient NH; cracking.
* No strain issues with ScGaN but strain issues with YGaN.
— ScN has the same lattice constant as GaN.
— YN lattice constant is larger than GaN, but not as large as InN.
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ScN and YN bandgaps are lower which should
decrease the group lli-nitride LED wavelengths.

Estimation of the emission wavelength for ScGaN and YGaN alloys.
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Calculated assuming that bandgaps
energies are
3.4 eV for GaN,
2.15 eV for ScN,
0.8 eV for YN.
Assume that the bandgap changes
linearly though out alloy mixture.

Should be able to cover all visible
wavelengths. Same is true for InN.

0 The bandgap shift for ScGaN alloys

Bandgap (eV)
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Linear Regression
95% Confidence Interval
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Little and Kordesch, Appl. Phys. Lett. 78, (2001)
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For coherent layers on GaN we might expect

DFT calculations using full potential inearized augmented plane wave (FP-LAPW) method.
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Rock salt lattice constants
for ScN, YN, and InN.

Note that coherent InGaN
alloys can be grown on GaN
up to 20 % indium, so this
may not be a large concern.

Calculations by Moreno-
Armenta et al., phys. stat.
sol. (b) 238, 127 (2003),
suggests that the wurtzite
structure is preferred for
ScGaN up to 65% Sc. The
bandgap is also direct for
wurtzite ScGaN and
decreases in energy as Sc is
added.
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}Possible issues with ScGaN or YGaN alloys

* Little is known about these alloys!

— Are the bandgaps of ScGaN and YGaN alloys direct or
indirect? Preferred lattice type on GaN?

— Many other material parameters are also unknown.

— ScGaN and YGaN alloys are disordered due to rock-salt
lattice preference on wurtzite GaN.

* [ssues with Sc and Y MO precursors.
— Sc and Y form oxides, precursors might contain oxygen.
— Low vapor pressure Sc and Y MOs — hard to deliver.
— Precursors are new and untested in MOCVD growth.

* Chemistry of Sc (and Y) closer to Al than Ga or In.

— AIN and AlGaN compounds harder to grow than GaN or low
indium (< 5%) content InGaN films.

» Still have strain issues for YGaN films on GaN.
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Subtask 1.1: Purchase and evaluate Scand Y

>~

MO sources and modify the reactor is necessary.

- Evaluate Sc and Y metalorganic (MO) sources.

— Compound: Initially we will explore substituted cyclopentadienyl
MOs for deliver of Sc and Y precursors. Later other sources will
also be evaluated. Work with Epichem.

— Compatibility: The sources will be evaluated for compatibility
with the reactor environment, vapor pressure measured, and
maximum growth rates determined.

— Purity: The sources will also need to be purified for the later
stages of this work, due to the high oxygen content in starting Sc
and Y precursors.

* Modifications to the MOCVD reactor may also be necessary.

— Delivery: May need to add separate bubbler lines for MO
delivery, heating of the MO lines, and increasing the mass flow
controller size to deliver adequate MO.

— Maintenance: The effect of using Sc and Y MOs on the reactor
will also need to be evaluated. May need increased reactor
maintenance.
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}j Subtask 1.2: Add Sc and/or Y to
\ c

onventional blue and green InGaN based LEDs.

« Add Sc and/or Y directly to current InGaN based
LEDs to:

— determine if the wavelengths of these blue and green
LEDs can be extended to longer wavelengths.

— Have quick “proof-of-concept” to validate the entire
proposal and possibly uncover potential problems.

* Once we have the precursors, we plan to start
this work in a custom designed high speed
rotating disk reactor.

* We are also hiring a post-doc to devote 100 % of
their time on this project under Dan Koleske’s
direction.
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#‘ Subtask 1.3: Develop growth and character-

ization capabilities for ScGaN and YGaN alloys.

* Once growth of ScGaN and YGaN alloys commences we
will need rapid feedback to determine the optical and
structural properties of the alloys.

— ScGaN and YGaN will be grown on GaN on sapphire.

« Reason: these alloys will have thicknesses of 20 to 30 A and will
be put into GaN based LEDs.

— Growth conditions such as temperature, pressure, and flow
rates will be evaluated to increase Sc and Y content.

— Characterization such as X-ray, RBS, photoluminescence
(PL) and secondary ion mass spectroscopy (SIMS) will be
used to determine the Sc and Y content in the alloys.

— During this subtask ScGaN alloys with 20 % Sc content
(392 nm) and YGaN with 10% Y content (395 nm) will be
demonstrated.

Have expertise in X-ray, RBS, and PL characterization of nitrides at Sandia
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* Subtask 1.4: Demonstrate ScGaN with

50% Sc content and YGaN with 30% Y content.

* This subtask is a continuation of subtask 1.3, however,
— the Sc content in the alloy will be increased to 50% (446 nm).
—the Y content in the alloy will be increased to 30% (475 nm).

— XRD will be used to verify the crystal structure of the ScGaN
and YGaN alloys.

— SIMS used to determine Sc and Y content.

— PL will be used to determine the wavelength shift vs. Sc and Y
content in the alloys.
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? Subtask 1.5: Determine PL wavelength

dependence on the Sc and Y contents in alloys.

 For this subtask, the alloy growth will be varied to
improve the crystalline structure.

— Growth parameters that most influence the crystalline
structure will be determined.

— PL will be used to determine the wavelength shift as a
function of Sc and Y content in the alloys.

— The alloy content will be determined using XRD, RBS,
and possibly SIMS if needed.

— At the conclusion of this subtask, we should know the
Sc and Y contents that will be needed to achieve,
green, yellow and orange wavelengths.
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# Budget Period Tasks and Schedule

* Task 1 - MOCVD growth of ScGaN and YGaN alloys — year 1.

— Goal: develop ScGaN and YGaN alloys and use them as active
layers in green and yellow LEDs.

— Work will include
« evaluating MO precursors,
* investigating the growth of ScGaN and YGaN,
 developing methods to characterize the Sc and Y content

» determine to what degree ScGaN and YGaN alloys increase the PL
emission wavelength.

* Task 2 - Increase brightness of InScGaN and InYGaN LEDs - year 2.

— Goal: develop ScGaN and YGaN based MQWs and LEDs with
green and longer emitting wavelengths.

— Work will include

» Determining MQW wavelengths using PL and LED wavelengths and
power output through “quick-test” and full LED fabrication.

* Increase Sc and Y contents to produce the desired green, yellow, and
orange wavelengths.

» Determine feasibility of InScGaN and InYGaN based-LEDs.
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Budget Period Milestones

Task 1 Completion
(First Year) | MOCVD growth of ScGaN and YGaN alloys. Time
Milestone Purchase and evaluate metalorganic scandium and Month 2
1.1 yttrium sources and modify reactor. (Critical to 1.3)
Milestone Add Sc and/or Y to conventional blue and green Month 5
1.2 InGaN-based LEDs. - Achieve a wavelength shift of

20 nm without loss in output power.
Milestone Develop ScGaN and YGaN growth and character- Month 7
1.3 ization capabilities. -Achieve ScGaN alloys with 20%

Sc (392 nm) and YGaN alloys with 10% Y (395 nm).

(Critical to 1.4)
Milestone Achieve ScGaN alloys with 50% Sc (446 nm) and Month 9
1.4 YGaN alloys with 30% Y (475 nm). (Critical to 1.5)
Milestone Determine PL wavelength dependence on Sc and Y Month 12
1.5 contents in alloys. - Determine target Sc and Y

concentration needed in alloys to achieve green,
yellow, and orange LEDs. (Critical to Task 2)




NMR spectra of the tris-methylcyclopentadienylyttrium, (Mecp);Y. Hydrogen peaks from the cyclo-
pentadienyl ring (labeled H’) occur near 5.9 ppm and hydrogen peaks form the methyl groups (labeled H)

occur near 2.0 ppm. From the NMR, the material does not show any organic impurities. There appears to be

some oxygen species in <100 ppm concentration.
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Fig. 2. Thermogravimetric (TGA) analysis of the yttrium precursor. The TGA analysis indicated a very
clean material with a low residue of <5 %, while residue due to the yttrium metal alone would have been
around 27 %.
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Yttrium precursor has a low vapor pressure
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Vapor pressure curves vs. temperature for the (Mecp);Y compound (open and filled squares and black solid
line) and other common metalorganic precursors used for growth and doping of the group III nitrides.




UV transmission measurement of precursor delivery

The UV transmission through the cell for different bubbler flow rates is shown. The bubbler loop pressure was held at 600 torr and
bubbler temperature at 50.7 °C. Note that once the bubbler is first opened there is a larger decrease in the UV transmission due to an
increase in the absorption from the cyclopentadienyl groups flowing through the UV cell. Flow conditions ranged from 50 to 800 sccm.
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Using the UV transmission data, the product of the UV absorption and the flow rate through the bubbler is plotted vs. the flow rate. This
product should be proportional to the molar flow rate out of the bubbler. If the precursor saturates the gas phase then the ideal behavior
is observed and the molar flow rate depends linearly on the flow rate through the bubbler. However if the precursor does not saturate the
vapor phase then the molar flow rate will be sub-linear as shown by the data in red.




