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ABSTRACT

Airborne ground moving-target indication (GMTI) radar can track moving vehicles at large standoff distances.
Unfortunately, trajectories from multiple vehicles can become kinematically ambiguous, resulting in confusion
between a target vehicle of interest and other vehicles. We propose the use of high range resolution (HRR) radar
profiles and multinomial pattern matching (MPM) for target fingerprinting and track stitching to overcome
kinematic ambiguities.

Sandia’s MPM algorithm is a robust template-based identification algorithm that has been applied successfully
to various target recognition problems. MPM utilizes a quantile transformation to map target intensity samples
to a small number of grayscale values, or quantiles. The algorithm relies on a statistical characterization of the
multinomial distribution of the sample-by-sample intensity values for target profiles. The quantile transformation
and statistical characterization procedures are extremely well suited to a robust representation of targets for HRR
profiles: they are invariant to sensor calibration, robust to target signature variations, and lend themselves to
efficient matching algorithms.

In typical HRR tracking applications, target fingerprints must be initiated on the fly from a limited number of
HRR profiles. Data may accumulate indefinitely as vehicles are tracked, and their templates must be continually
updated without becoming unbounded in size or complexity. To address this need, an incrementally updated
version of MPM has been developed. This implementation of MPM incorporates individual HRR profiles as they
become available, and fuses data from multiple aspect angles for a given target to aid in track stitching. This
paper provides a description of the incrementally updated version of MPM.
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1. INTRODUCTION

Moving-vehicle tracking is an application of considerable military importance and interest. Radar provides an
attractive modality for the implementation of effective target tracking applications: it offers an all-weather,
day/night, long-standoff capability for the detection and tracking of moving vehicles. Ground moving-target
indication (GMTI) radar systems have been developed to enable effective target detection and tracking.1 GMTI-
based systems are typically quite successful in detecting and tracking particular targets of interest when they
are operating in the absence of other moving vehicles. In the presence of other vehicles, however, GMTI-based
tracking applications are susceptible to loss of track due to kinematic ambiguities between the trajectories of
targets of interest and other vehicles. Because only extremely limited vehicle-specific information is provided
by GMTI radar, GMTI imaging modes are often implemented in conjunction with high-range-resolution (HRR)
imaging modes.2 HRR imaging enables the collection of HRR profiles detailing range-dependent target returns,
or profiles, which differ significantly from vehicle to vehicle. HRR profiles provide vehicle-specific signatures that
can be used to resolve kinematic ambiguities and extend track life. In particular, HRR profiles can be used
to develop target fingerprinting applications that facilitate the recognition of individual vehicles, thus enabling
GMTI track maintenance in the presence of kinematic ambiguities.

A target fingerprinter is typically developed and implemented for use in conjunction with a number of other
radar subsystems, including a sensor resource manager (SRM) and kinematic tracker (KT).3 In general, each
subsystem is responsible for a specific set of tasks that, together, would provide a complete solution to the problem
of acquiring and maintaining tracks on vehicles of interest. The KT is responsible for grouping individual GMTI
returns into kinematically unambiguous tracklets representing trajectories of individual vehicles of interest, for
determining when tracklets become, or are in danger of becoming, kinematically ambiguous with other tracklets,
and for stitching together tracklets that have been determined to correspond to the same target. The SRM is
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responsible for allocation of radar resources, including radar pointing and image mode selection. Its resource
allocation is based at least partially on information and requests from the KT: if the KT determined that two
vehicle tracklets were in danger of becoming kinematically ambiguous, for instance, it might submit a request
to the SRM to collect HRR data on both vehicles in order to facilitate their disambiguation by the target
fingerprinter, and subsequent restitching by the KT. The target fingerprinter is responsible for encapsulating
HRR signatures from each distinct target tracklet into target fingerprints, and for calculating match scores and
confidences corresponding to specific target-association hypotheses when requested to do so by the KT in order
to resolve kinematic ambiguities.

In practice, HRR-based target fingerprinting is a difficult problem. HRR profiles are essentially coherent
integrations of target reflectivity as a function of range. As such, they tend to vary significantly with small
changes in target aspect, and to exhibit significant variations in peak amplitudes due to constructive and de-
structive interference effects. These effects make the development and implementation of a statistical framework
for the characterization and exploitation of HRR target signatures a nontrivial matter. Sandia’s multinomial
pattern matching (MPM) algorithm addresses the difficult issues associated with HRR-based target fingerprint-
ing. Section 2 provides a description of the motivating principles of MPM. Section 3 details the process by which
individual HRR profiles are used to incrementally develop MPM fingerprints. The MPM scoring process is de-
scribed in Section 4. Experimental results illustrating the utility of MPM for target fingerprinting are presented
in Section 5. Section 6 summarizes the paper.

2. MPM MOTIVATION

Sandia’s MPM algorithm was originally developed for use as an automatic target recognition (ATR) identification
algorithm4 for use on synthetic aperture radar (SAR) imagery.5 It is designed to address many of the fundamental
characteristics of radar signatures—whether SAR or HRR—that make robust recognition of these signatures so
challenging. In particular, it is robust to target amplitude variation of the type present in SAR, HRR, and
other coherent imaging modalities; it is effective in the presence of limited target signature contamination and
variation; it is robust to sensor calibration.

MPM provides a robust means for statistical characterization of radar signatures and for manipulation of
those characterizations to yield match scores that can serve as the basis for target identity declarations. MPM
is motivated by three fundamental premises:

1. Intra-class modeling premise. Target identity declarations (and, by extension, the models used to obtain
declarations) should be based on intra-class similarities—that is, on specific characteristics inherent to a
particular target class—and not on differences between target classes. Target models that characterize
individual classes can be used directly to reject signatures that do not conform to a previously observed
target type, because such models are designed to classify signatures as “target A” or “not target A”. Target
models based on the differences between classes, however, cannot be used directly to reject signatures from
previously unobserved targets: they are designed to classify signatures as “target A” or “target B”.

2. Signature stability premise. Target models should be based on the stable information inherent in the
signatures of a given class, and should, as much as possible, discard highly variant or nuisance information
within each class. In the context of HRR-based fingerprinting, this suggests that target models should be
based on information such as the relative locations of bright and dim samples (which are stable within
a target class over moderate changes in aspect) instead of on the precise amplitudes of samples in these
profiles (which are extremely fickle and highly variant with small changes in aspect).

3. Match robustness premise. Target identity declarations should be based on match statistics that are robust
to isolated outlying measurements. For instance, individual arbitrarily bad sample values within a profile
should not be able to drive association results, but should have a limited impact on the overall match
statistic and resulting association decision.

These three premises suggest a particular form for an effective target fingerprinting algorithm, and serve as
the basis for the MPM algorithm. A high-level block diagram of MPM is depicted in Figure 1. Target profiles
from kinematically unambiguous tracklets are separated into distinct sets, and then subjected to a fingerprinting
process that is independent of the profiles associated with other tracklets by the KT, as motivated by the intra-
class modeling premise. The details of the statistical characterization inherent in the fingerprinting process are
motivated by the signature stability premise, and are structured to yield a model that captures the relevant,
stable signature information within each target class. Fingerprints of distinct sets of tracklets—for instance,
one set of pre-ambiguity tracklets preceding a period of kinematic confusion, and a second set of post-ambiguity



Figure 1. Top-level block diagram of MPM training and tracklet-association scoring.

Figure 2. Block diagram of MPM training process.

tracklets following a period of kinematic confusion—can be compared using a match statistic motivated by the
match robustness premise to yield a set of match scores which can in turn be used to generate a confidence
matrix specifying levels of belief in each possible resolution of a particular kinematic ambiguity.

The algorithmic details and implementation of the training component of MPM is described in Section 3.
The algorithmic details of the scoring component of MPM is described in Section 4.

3. MPM TRAINING DETAILS AND IMPLEMENTATION

MPM training is a continuous incremental process, in which additional profiles are incorporated into existing
tracklet fingerprints as soon as they become available. For any given tracklet, MPM maintains a set of multiple
fingerprints, each representing a collection of HRR profiles in a particular aspect range. An MPM fingerprint, or
template, consists of two components: first, a statistical characterization of the HRR profiles for the particular
tracklet and aspect range, and second, a set of sample penalties that enable the fingerprint to be scored against
any other HRR fingerprint or observed HRR signature.

A block diagram of the MPM training process is depicted in Figure 2. (Note that each individual tracklet
is in effect an independent training stream, so that if the overall system is maintaining track on M separate
vehicles, there will be M separate parallel training streams.) Profiles within a tracklet are first binned by aspect
using aspect estimates provided by the KT. (Typically, the MPM aspect bin width is chosen to be 10◦, which is
wide enough to populate aspect bins with multiple profiles over even a short tracking engagement, but narrow
enough to preclude drastic changes in target signature over the width of the aspect bin.) The profiles within
each aspect bin are then stabilized to increase self-similarity, as described in Section 3.1. This is followed by two
key steps in the MPM training process: first, multinomial transformation, described in Section 3.2, and second,
generation of the actual MPM template, described in Section 3.3.

3.1. Profile Stabilization
Profile stabilization consists of several steps intended to maximize the self-similarity between profiles within any
aspect bin. Maximizing this self-similarity is an important prerequisite for the ensuing training steps, because in
effect, it removes nuisance information and noise that would significantly complicate or invalidate the following
stages.

MPM profile stabilization consists of profile alignment followed by optional length-normalization and smooth-
ing steps. Profile alignment is performed using a leading-edge detector that estimates the location of the nearest-
range target sample in a profile. All profiles in a given aspect bin are cropped or zero-padded so that their
estimated leading edges fall into the same range bin, and so that their overall lengths are identical.

For narrow aspect bins, this alignment process generally yields an acceptable registration between profiles.
For wider aspect bins, in which the apparent length of the target may change appreciably across the aspect bin,



target length normalization may aid registration. If desired, this length normalization is implemented using a
trailing-edge detector to estimate target length in each profile, and then interpolating to stretch or compress the
target component of the profile to a fixed number of samples.

Profile smoothing is an optional final step in the stabilization process. Smoothing involves a fundamental
trade-off between resolution and stability. Unsmoothed data will display more fine-resolution structure, including
fine-resolution features that might aid target characterization; at the same time, unsmoothed data will exhibit
more noise and spurious amplitude variations that are not truly informative. The use or omission of the optional
smoothing step is dictated by the particular characteristics of the data under consideration.

3.2. Multinomial Transformation

A key step in the MPM training process is multinomial, or quantile, transformation. This transform maps each
sample in a profile from a raw magnitude to a quantile index specifying the relative intensity of that sample in
comparison to all other profile samples. It thus transforms profiles from representations of absolute amplitude to
representations of relative amplitude. This quantile transform is motivated by the second premise of Section 2:
it preserves information that is stable within a target class, and is easy to model—namely, the locations of
bright and dim samples—and discards information that is highly variant within a target class, and is relatively
difficult to model—namely, the nature of the precise amplitude variations of individual samples. Rather than
attempting to model a continuous amplitude distribution at each sample, MPM attempts to model a discrete
quantile distribution—typically a much easier task.

The MPM quantile transform is defined as follows. Let xk be the observed magnitude of sample k of an HRR
profile, where k is a sample index that takes on integer values between 1 and K. The K profile samples can be
rank-ordered by magnitude and assigned rank-order indices r1, . . . , rK so that

xr1 ≤ xr2 ≤ . . . ≤ xrK
. (1)

The quantile transform that maps magnitude values xk to quantile values qk is then defined in terms of the
rank-order indices and a specified number of quantiles, Nq, as follows:

qk =





1 if 1 ≤ rk ≤ K
Nq

,

2 if K
Nq

< rk ≤ 2K
Nq

,
...

Nq if (Nq−1)K
Nq

< rk ≤ K.

(2)

The dimmest K/Nq profile samples in a profile thus are mapped to quantile 1, the next-dimmest K/Nq samples
are mapped to quantile 2, and so on, with the brightest K/Nq samples mapped to quantile Nq. An illustration
of the quantile transform is depicted in Figure 3.

Although there is certainly more information in the collection of xk than in qk, the information discarded by
the quantile mapping—namely, the precise nature of amplitude variations at any sample—is extremely variable
and difficult to model reliably with a limited amount of data. The information preserved by the quantile
mapping—namely, the relative amplitude at each sample, compared to other samples in the same profile—is
much more stable and much better suited for efficient, robust statistical modeling.

3.3. MPM Template Generation

The quantile-transformed profiles within each aspect bin are used to generate an MPM template for each aspect
bin. As described previously, an MPM template consists of two components: first, a compact statistical charac-
terization of the quantized profiles from the tracklet and aspect bin in question, and second, a compact collection
of sample penalties that enable templates to be scored against each other, as described further in Section 4. The
construction of the statistical-characterization component of an MPM template is described in Section 3.3.1; the
construction of the sample-penalty component is described in Section 3.3.2.

3.3.1. MPM Template: Statistical-Characterization Component

In principle, a set of HRR profiles could be “characterized” simply by storing all members of the set. In practice,
however, such an exhaustive characterization would be cumbersome or impossible. Over the course of a single
target engagement, many tens of thousands of HRR profiles might be collected. Storing a complete collection of
profiles, and manipulating these profiles to yield match scores in real time, would be impractical or impossible.
In practice, it is necessary to encapsulate the relevant statistical features of profile sets into a compact, fixed-size
representation that lends itself to efficient manipulation.



Figure 3. Illustration of multinomial transformation. The three plots on the left are raw-magnitude HRR profiles; the
three plots on the right are the corresponding HRR profiles after multinomial transformation.

Quantile transformation produces data that is perfectly suited to compact representation and to robust
statistical estimation given a limited amount of data. In particular, the probability distribution of an Nq-
quantile-level sample is completely specified by Nq − 1 parameters (the Nqth quantile probability is constrained
to make the collection of Nq quantile probabilities sum to 1), and can be robustly estimated with relatively few
(i.e., not many more than Nq − 1) observations. Hence, if all profiles are cropped or padded to a fixed number
of samples K, then the collection of marginal sample distributions of a set of quantile-transformed HRR profiles
can be specified with only (Nq−1)K parameters, and robustly estimated with not many more than Nq−1 profile
observations. (Of course, a marginal sample-distribution model neglects dependencies between observed quantile
values at different sample locations, but robust estimation of such parameters would require significantly more
data than robust estimation of the simpler marginal model.)

In practice, it is intuitive and convenient to specify the marginal quantile model as a K ×Nq matrix of ob-
served quantile probabilities P̂, with the row-k, column-m entry P̂k,m corresponding to the empirical probability
of the kth sample having quantile value m. This empirical-probability matrix not only provides a complete
marginal specification of the empirical sample quantile probabilities, but it has extremely convenient computa-
tional properties: it is compact and fixed size, and it lends itself perfectly to incremental updates as additional
profiles become available within a class. In particular, if the empirical-probability matrix after N profile ob-
servations is specified by a matrix P̂[N ] of values P̂k,m[N ], then elements of the updated empirical-probability
matrix P̂[N + 1] incorporating qk[N + 1], the quantized representation of the (N + 1)st profile observation xk,
can be specified as

P̂k,m[N + 1] =

{
N

N+1 P̂k,m[N ] + 1
N+1 if qk[N + 1] = m,

N
N+1 P̂k,m[N ] if qk[N + 1] 6= m.

(3)

Incremental updates of the empirical-probability matrix are thus trivial.

3.3.2. MPM Template: Sample-Penalty Component

Although the K×Nq matrix P̂ provides a compact, convenient statistical representation of the profiles in an MPM
fingerprint, it does not provide a direct means for comparing profile observations to templates, or templates to
templates. The second component of an MPM template is a K×Nq matrix t of sample penalties tk,m expressing
the penalty to be assigned to any quantile observation at any sample, and enabling the calculation of scalar
profile-to-template or template-to-template match scores as a sum of sample penalty values. In particular, the
matrix t serves as a lookup table enabling the extremely efficient calculation of a profile-to-template match score
Z as

Z =
1√
K

K∑

k=1

tk,qk
, (4)



where qk is the quantized profile to be scored against the template with sample-penalty matrix tk,m, and where
the motivation for scaling by 1/

√
K will be made clear shortly. Similarly, the matrix of t enables the efficient

calculation of a pre-to-post-template match score S as a weighted sum of sample-to-sample penalties:

S =
1√
K

K∑

k=1

M∑
m=1

P̂k,m · tk,m, (5)

where the collection of P̂k,m empirical-probability values from the post-ambiguity template serve as weights on
the corresponding tk,m sample-penalty values from the pre-ambiguity template. (Note that the template-to-
template match score of (5) is exactly equivalent to the average of the profile-to-template match scores in (4)
over the component post-ambiguity profiles used to calculate P̂k,m, against the pre-ambiguity template tk,m.)

Given (4) and (5), construction of the sample-penalty component of an MPM template entails specification
of a mapping from P̂k,m to tk,m. The mapping chosen for MPM is motivated by the match robustness premise
in Section 2. In particular, the chosen mapping imposes limits on the contribution of any one sample to the
overall match score in (4) or (5). It utilizes a matrix of “hedged” empirical probability estimates, constructed as
follows:

P̃k,m =
NP̂k,m + ν

N + Nqν
, (6)

where N is the number of profiles that were used to calculate P̂, and where ν is a free parameter that may be
set to any positive value. Note that a positive ν prevents any P̃k,m from achieving a value of 0 or 1. Intuitively,
(6) can be interpreted as a safeguard against drawing overly strong conclusions from a limited amount of data.
Mathematically, (6) can be interpreted as the Bayesian combination of the observed distribution P̂ with a uniform
prior to yield a posterior distribution P̃k,m. In this interpretation, the parameter ν specifies the relative weight
of the prior, relative to the observational term.

The tk,m are simply taken as a quadratic penalty (1− P̂k,m)2, normalized by statistics calculated from P̃k,m:

tk,m =
(1− P̂k,m)2 − µ̂k

σ̂k
, (7)

where

µ̂k =
Nq∑

m=1

P̃k,m(1− P̂k,m)2 (8)

and

σ̂2
k =

Nq∑
m=1

P̃k,m(1− P̂k,m)4 − µ̂2
k. (9)

Note that (7) maps lower-probability events to higher penalties. Note also that µ̂k and σ̂k are simply estimates
of the mean and standard deviation of the quadratic penalty term, calculated using the hedged probability
estimates P̃k,m.

The implication of (7) is that in-class comparisons—that is, tests of individual profiles or templates against
templates of the same class—will yield sample penalties with means of approximately 0 and standard deviations
of approximately 1. Out-of-class comparisons—that is, tests of individual profiles or templates against templates
of a different class—will yield sample penalties with unknown statistics, but which generally have significantly
positive means. Assuming conditional independence of profile samples, the central limit theorem6 can be used
to show that in-class profile-to-template match scores Z calculated as in (4) and in-class template-to-template
match scores S calculated as in (5) will be approximately standard normal. As with the sample penalties, no
specific claim can be made for the statistics of out-of-class Z and S—other than the fact that they will almost
certainly have significantly positive means. In other words, it is extremely likely that for any collection of profiles
for a particular tracklet in a particular aspect bin, the in-class and out-of-class match-score distributions will be
separable.

4. MPM SCORING DETAILS AND IMPLEMENTATION

The MPM templates generated by the target fingerprinter according to the process described in the previous
section are used to score particular target-association hypotheses when requested by the KT. In general, the KT
may request scoring for all joint or pairwise tracklet-to-tracklet association possibilities for a kinematic ambiguity



Figure 4. Block diagram of MPM scoring process.

in which Npre tracklets enter a kinematically ambiguous state and Npost tracklets emerge. Additionally,the KT
will generally require not only raw match scores, but also a measure of the likelihood or confidence associated
with each possible joint or pairwise tracklet association.

The MPM scoring process is designed to provide match scores, likelihoods, and confidences for a general Npre-
in, Npost-out assignment problem. It consists of four fundamental steps, as illustrated in the block diagram of
Figure 4. The first step is the enumeration of all possible joint tracklet-association hypotheses for the particular
assignment problem at hand. The next step is the calculation of tracklet-to-tracklet match scores for each
pairwise pre-to-post-tracklet assignment. The third step is the conversion of match scores to likelihoods, and
the final step is the conversion of likelihoods into a matrix of confidences that can be reported to the KT. These
steps are described in Sections 4.1 through 4.4, respectively. Note that although in general the KT will make
its own tracklet-stitching decisions using the confidence information provided by the fingerprinter, it is possible
to specify a simple threshold-based decision rule that will yield a target-identity declaration directly out of the
tracker; this is discussed in Section 4.5.

4.1. Hypothesis Enumeration

The first step in the MPM scoring process is the enumeration of all joint pre-to-post-tracklet assignment hypothe-
ses for the particular Npre-in, Npost-out problem at hand. This calculation, while not the most conceptually or
computationally challenging stage of the MPM scoring process, is still non-trivial. It is complicated by the need
to account for “hiding targets,” i.e., targets that enter a kinematic ambiguity but do not emerge, or emerge from
a kinematic ambiguity without entering it. (Although the presence of hiding targets is a necessity in assignment
problems in which Npre 6= Npost, it is also a possibility in problems in which Npre = Npost, and must be con-
sidered in either case.) An additional complication is imposed by the combinatorial nature of the enumeration:
although the number of possible pairwise pre-to-post tracklet assignments is linear in both Npre and Npost, the
number of possible joint pre-to-post tracklet assignments is combinatorial in both Npre and Npost.

As an example of the accounting required for hypothesis enumeration, consider a two-in, three-out scenario.
There are thirteen possible joint tracklet-association hypotheses: six in which both pre-ambiguity tracklets asso-
ciate with post-ambiguity tracklets (leaving one post-ambiguity tracklet as a hiding target); six in which one of
the pre-ambiguity tracklets associates with one of the post-ambiguity tracklets (leaving one pre-ambiguity track-
let and two post-ambiguity tracklets as hiding targets), and one in which no post-ambiguity tracklets associate
with any pre-ambiguity tracklets (leaving both pre-ambiguity tracklets and all three post-ambiguity tracklets as
hiding targets). Note that specification of all joint tracklet-association hypotheses becomes considerably more
involved for larger Npre or Npost.

4.2. Match Score Calculation

After hypothesis enumeration, the next step in MPM scoring is the calculation of match scores for each of the
Npre ·Npost possible pairwise pre-to-post tracklet assignments. This is accomplished by calculating a collection
of template-to-template match scores S according to (5) for each aspect-bin-to-aspect-bin comparison in each
possible pre-to-post pairwise tracklet association. Note that because, in general, any tracklet will include profile
observations from multiple aspect bins, this entails the calculation of a collection of scores S. In particular, if
profiles are separated into Nφ aspect bins within each tracklet, then a single tracklet-to-tracklet match-score
calculation may involve the computation of up to N2

φ template-to-template match scores. In the general case, in
which profiles have been observed within only a subset of all available aspect bins, fewer than N2

φ template-to-
template match scores will need to be generated.

Rather than combine template-to-template match scores to yield an overall scalar tracklet-to-tracklet match
score, the full collection of all available template-to-template match scores is preserved as-is for further manipu-
lation. In particular, the template-to-template match scores are combined in the likelihood stage, as described
in the following section.



4.3. Likelihood Calculation
The likelihood calculation step of MPM scoring involves converting collections of template-to-template match
scores for each pairwise tracklet comparison into likelihoods using estimates of the in-class and out-of-class
template-to-template match-score distributions. If all in-class and out-of-class distributions were considered
independent, this would suggest that we need to estimate (Npre + Npost)2N2

φ separate distributions to capture
the behavior of match scores for pairwise associations that do not involve hiding targets, and (Npre + Npost)N2

φ

additional distributions to capture the behavior of match scores for hiding-target associations. Furthermore,
many of these distributions would correspond to tracklet or aspect pairings for which no observational data
would be available from which to estimate distribution parameters.

We employ several simplifications to make this distribution estimation problem tractable. Simplification
of the in-class distribution estimation is based on two convenient properties of in-class match scores. First,
recall that in-class comparisons at the same aspect bin yield template-to-template match scores S that are
approximately standard normal, by design. Second, empirical observation reveals that match scores obtained
for cross-aspect comparisons of any particular target are approximately Gaussian, with means and standard
deviations that increase with the the aspect-bin separation ∆θ. Based on these two observations, we model
all in-class distributions as Gaussians and impose a parametric structure on their statistics. In particular, the
means and standard deviations of all in-class distributions are specified as parametric functions incorporating a
pre-specified prior that varies with ∆θ; the free parameters in the parametric representation can be estimated
in closed form from the available data within each class. The out-of-class distributions for each target are also
modeled as Gaussians, with statistics obtained by fitting available out-of-class data to a different parametric
function representation. The result of the distribution estimation is thus a collection of (Npre +Npost)N2

φ in-class
mean and standard deviation estimate pairs and (Npre + Npost)N2

φ out-of-class mean and standard deviation
estimate pairs. We denote the in-class mean and standard deviation estimates as µ̂i,i,j,k and σ̂i,i,j,k, with i
specifying the tracklet index 1, . . . , (Npre + Npost), and with j and k specifying aspect-bin indices 1, . . . , Nφ. We
denote the out-of-class mean and standard deviation estimates as µ̂i,0,j,k and σ̂i,0,j,k.

Once the full collections of in-class and out-of-class statistic estimates are available, the likelihood of any
particular template-to-template match score can be computed under any particular pairwise tracklet-association
hypothesis. For instance, suppose we observe a match score Si,j,k,l for the comparison of the pre-ambiguity
tracklet-i, aspect-bin-k matrix t with the post-ambiguity tracklet-j, aspect-bin-l matrix P̂. The likelihood of
observing Si,j,k,l under a hypothesis specifying a pairwise association between pre-ambiguity tracklet i and
post-ambiguity tracklet j is

Li,j,k,l =
1

σ̂i,i,k,l

√
2π

exp

(
− 1

2σ̂2
i,i,k,l

(Si,j,k,l − µ̂i,i,k,l)2
)

. (10)

Similarly, the likelihood of observing Si,j,k,l under a hypothesis indicating that pre-ambiguity tracklet i and
post-ambiguity tracklet j are not associated is

Li,0,k,l =
1

σ̂i,0,k,l

√
2π

exp

(
− 1

2σ̂2
i,0,k,l

(Si,j,k,l − µ̂i,0,k,l)2
)

. (11)

In-class and out-of-class likelihoods of the match scores for each aspect-bin-to-aspect-bin comparison in each
possible pre-to-post pairwise tracklet association (calculated in the previous MPM scoring step) are calculated
using (10) and (11). Note that, in general, although they represent dual pre-to-post and post-to-pre representa-
tions of the same pairings, Si,j,k,l 6= Sj,i,l,k and Li,j,k,l 6= Lj,i,l,k. Because both terms offer information, both are
computed in the likelihood calculation step of MPM scoring.

4.4. Confidence Calculation
The calculated match-score likelihoods can be compared to obtain information about the relative certainties of
the possible pairwise or joint tracklet-association hypotheses. For instance, consider the likelihood ratio

Ri,j,k,l =
Li,j,k,l

Li,0,k,l
(12)

formed from the in-class and out-of-class likelihoods specified by (10) and (11). If Ri,j,k,l > 1, it is an indication
that tracklet i and tracklet j share the same target identity, and should accordingly be associated. Alternatively,
if Ri,0,k,l < 1, it is an indication that tracklet i and j have different identities, and should not be associated with
each other.



The confidence calculation step of MPM scoring entails calculating Ri,j,k,l for all in-class and out-of-class
likelihood pairs calculated in the previous MPM scoring stage. As with the likelihoods, both the pre-to-post
Ri,j,k,l ratios and the post-to-pre Rj,i,l,k ratios are calculated. MPM confidence assignment then involves com-
bining ratios for each of the joint tracklet-association hypotheses enumerated for the particular Npre-to-Npost

assignment problem. This is first done by combining all aspect-bin pairings to yield pairwise whole-tracklet
ratios of the form

Ri,j =
∏

k,l

αk,lRi,j,k,l, (13)

where the αk,l terms are pre-selected coefficients that can be chosen to weight comparisons at different aspects
differently, or can simply be set to unity to treat all comparisons equally. The pairwise whole-tracklet ratio terms
Ri,j are in turn combined according to the pairwise components of each joint tracklet-association hypothesis to
yield joint tracklet-association-hypothesis ratio terms. For instance, consider an assignment problem in which
pre-ambiguity tracklets 1 and 2 enter a kinematic ambiguity and post-ambiguity tracklets 3, 4, and 5 emerge.
For the joint tracklet-association hypothesis H1:3,2:5,4:0 assigning tracklet 1 to tracklet 3, tracklet 2 to tracklet
5, and tracklet 4 to a hiding target, the joint tracklet-association ratio term is:

R(H1:3,2:5,4:0) =
R1,3R2,5

R1,4R1,5R2,3R2,4
· R3,1R5,2

R3,2R4,1R4,2R5,1
. (14)

This is simply a product of two compound terms, one representing the pre-to-post assignment and the second
representing its post-to-pre dual. Each compound term is simply a fraction in which the numerator contains a
term for every pairwise tracklet association that is made in the particular joint tracklet-association hypothesis,
and the denominator contains a term for every pairwise tracklet association that is not made in the particular
joint tracklet-association hypothesis. Note that if the given joint tracklet-association hypothesis H1:3,2:5,4:0 is
correct, then all of the numerator terms will tend to be greater than 1 and all of the denominator terms will
tend to be less than 1, making the overall product significantly greater than 1. If the given joint tracklet-
association hypothesis H is incorrect, then some of the numerator terms will tend to be less than 1 and some of
the denominator terms will tend to be greater than 1. This will tend to reduce the overall product.

The complete set of NH separate R(H) terms, each calculated for a particular joint tracklet-association
hypothesis according to the example of (14), are used to assign confidences to each joint tracklet-association
hypothesis. In particular, for each of the NH joint tracklet-association hypotheses Hi, we compute a confidence
according to the formula

C(Hi) =
R(Hi)∑NH

j=1 R(Hj)
. (15)

This assigns a value between 0 and 1 to each of the NH joint tracklet-association hypotheses, with higher values
indicating more likely hypotheses. Note also that, by design, the full set of NH joint-hypothesis confidences sums
to 1. (The confidence metric described here has other useful properties, as well, as described elsewhere.7)

If desired, the raw joint tracklet-association hypothesis confidences can be reported directly to the KT.
Often, however, the KT requires specification of pairwise tracklet-association confidences. These can be directly
obtained from the set of NH joint tracklet-association confidences: the confidence in the pairwise association
of pre-ambiguity tracklet i with post-ambiguity tracklet j can be specified as a function (typically the sum
or maximum) of the C(Hk) for which the corresponding joint tracklet-association hypothesis Hk involves the
pairwise association of tracklet i and tracklet j. This process can be used to yield an Npre × (Npost + 1) matrix
C of pairwise confidences, in which the row-i, column-j entry corresponds to the confidence of associating pre-
ambiguity tracklet i with post-ambiguity tracklet j if j = 1, . . . , Npost, or to the confidence of assigning a “hiding
target” label to pre-ambiguity tracklet i if j = (Npost +1). (If desired, this same process can be used to generate
a dual (Npre +1)×Npost matrix of pairwise confidences keyed to the post-ambiguity tracklets instead of the pre-
ambiguity tracklets.) The function combining the joint tracklet-association confidence terms C(Hk) is typically
chosen to ensure that each row of C sums to 1, so that the total confidence in all possible pairwise associations
involving any pre-ambiguity tracklet is always unity.

4.5. Optional Decision Rule

If the target fingerprinter is being used in conjunction with a KT, then the fingerprinter would typically report
the confidence matrix C to the KT and let the KT make the final tracklet-association declarations or deferrals.
If the fingerprinter is being used as a standalone application, however, then the confidence matrix C can be used
to produce target identity declarations. There are many ways in which this can be done. A simple but effective



decision rule that can be applied to C to yield target identity decisions is the application of a pre-selected decision
threshold η, as follows.

Suppose the fingerprinter produces a confidence matrix C for an Npre-in, Npost-out association problem. Let
Cmax(i) denote the maximum value observed in the ith row of C, and let jmax(i) be the column in which this
maximum value is achieved. Then for each pre-ambiguity tracklet i, we can specify an identity declaration or
deferral according to the following rule:

declare “tracklet i assigns to tracklet jmax(i)” if jmax(i) ≤ Npost and Cmax(i) ≥ η;
declare “tracklet i is a hiding target” if jmax(i) = Npost + 1 and Cmax(i) ≥ η;
defer decision if Cmax(i) < η.

(16)

This rule results in a target assignment only when the confidence in that assignment exceeds the pre-selected
threshold η. Note also that if no possible assignments for a particular pre-ambiguity tracklet i exceed the specified
threshold, then no explicit decision is made. By judicious selection of the decision threshold η, then, it is possible
to increase the conditional probability of correct assignment (Pca) at the expense of a larger deferral rate (Pdef).
For instance, selecting an η value near 1 will tend to result in a large Pdef , but because all declarations will
correspond to high confidences, Pca will also tend to be large. Selecting an η value near 1/(Npost + 1) will tend
to result in a small Pdef , but at the expense of a greater fraction of incorrect declarations, i.e., a smaller Pca.

Finally, note that the decision rule of (16) does not safeguard against the possibility that multiple pre-
ambiguity tracklets might be assigned to the same post-ambiguity tracklet, which obviously represents a physical
impossibility. It is easy to preclude such an eventuality with a slightly more sophisticated decision rule. In
practice, for η that are not close to 1/(Npost+1), such “double assignment” is rarely observed.

5. EXPERIMENTAL RESULTS

We tested MPM using HRR profiles generated from SAR imagery in the publicly available MSTAR (Moving
and Stationary Target Acquisition and Recognition) data set.8,9 The MSTAR data was collected by Sandia
National Laboratories for the Defense Advanced Research Projects Agency (DARPA). The publicly available
MSTAR data are HH-polarization X-band SAR image chips with range and cross-range resolution of 0.3 m.
This data set includes ten targets: BTR-60 transport, 2s1 gun, BRDM-2 truck, T-62 tank, ZIL-131 truck, ZSU-
23-4 gun, D-7 bulldozer, BMP-2 tank, BTR-70 transport, and T-72 tank. For this study, we used SAR data
collected at depressions of 15◦ and 17◦ to form HRR profiles which were then used as inputs to MPM. The
profile-generation process is described in Section 5.1; the tracklet-association experimental setup and results are
presented in Section 5.2.

5.1. Profile Generation

HRR profiles were generated from SAR imagery using a multi-step process. Each SAR chip was first cropped in
azimuth to isolate the columns (i.e., azimuth bins) containing target returns. This was accomplished using an
automated segmentation algorithm: the maximum value in each column was computed, and all columns whose
maxima exceeded a threshold of twice the mean of those maximum values were identified as target columns.

Once the target columns were segmented from the surrounding clutter, a Fourier transform was applied across
azimuth within each target row (i.e., range bin). This effectively reverses the azimuth-compression step of the
underlying SAR image formation process. The resulting data is then processed to remove the Taylor window
applied during the original SAR image formation process (characterized by a sidelobe level of −35.0 dB and an
n̄ value of 4). The result of this processing is a matrix in which each column could be considered a single-pulse
HRR profile. To yield a single high-signal-to-noise-ratio profile, this matrix was converted into magnitude and
then averaged across azimuth.

5.2. Tracklet Association Results

The profiles generated from the MSTAR data were used to demonstrate the performance of the MPM algorithm in
several experiments, each involving simulation of a particular kinematic ambiguity scenario. In each experiment
discussed here, a randomly selected set of vehicles enters a kinematic ambiguity, and the same set of vehicles
emerges from the kinematic ambiguity. As discussed previously, the goal of MPM is to correctly associate the
“pre-ambiguity” targets with the “post-ambiguity” targets.

We performed two sets of experiments: one set involving two-in, two-out kinematic ambiguities, and set
one involving three-in, three-out kinematic ambiguities. In each case, the pre- and post-ambiguity targets were
randomly selected from the 10 available MSTAR targets. The HRR profiles used as input data for each target



Figure 5. Two-in, two-out experimental results.

Figure 6. Three-in, three-out experimental results.

were distributed in n randomly selected 10◦ aspect bins, with six HRR profiles randomly selected per bin. For
both the two-in, two-out and three-in, three-out scenarios, three separate values of n (3, 5, and 10) were tested.
Additionally, to demonstrate the impact of correlation between pre-ambiguity aspect and post-ambiguity aspect,
we performed one set of experiments in which the n randomly selected aspect bins were the same for all pre-
ambiguity and post-ambiguity targets, and one set of experiments in which the n randomly selected aspect bins
for the pre-ambiguity targets were chosen independently from the n randomly selected aspect bins for the post-
ambiguity targets. In each trial, profile selection was done without replacement, to ensure that the same profile
could not be present in both the pre- and post-ambiguity data.

The results of the full set of experiments are depicted in Figure 5 and Figure 6. The plots in Figure 5 depict
the results of the two-in, two-out experiments, and the plots in Figure 6 depict the results of the three-in, three-
out experiments. The left plot in each figure shows the results of the experiments in which the n aspect bins were
chosen independently for pre- and post-ambiguity data, and the right plot shows the results of the experiments
in which the n aspect bins were the same for pre- and post-ambiguity data. Each plot contains three traces,
one for each of the three n values used (3, 5, and 10). Each plot is similar to a receiver operating characteristic
(ROC) plot: the x-axis indicates probability of deferral (Pdef), and the y-axis indicates declaration-conditional
probability of correct assignment (Pca); each point on a given trace is a particular Pca and Pdef pairing achieved
using a particular confidence threshold η applied according to the decision rule specified in Section 4.5.



Several trends are immediately apparent from Figures 5 and 6. First of all, note that each trace illustrates the
fundamental ROC-like trade-off between Pca and Pdef , in which a higher Pca can be achieved at the expense of a
higher Pdef . (Although some of the traces exhibit local deviations from this behavior due to statistical variation
and limited test data, the qualitative nature is apparent in the overall shape of each trace). Note also that in
each plot, performance increases with more data—that is, as the number of aspect bins in which data is observed
increases from 3 to 5, and from 5 to 10. Additionally, note that consistency in aspect between pre-ambiguity and
post-ambiguity bins has a positive impact on performance, as is evident from a comparison of the left-hand and
right-hand plots in each figure; this is attributable to the comparative ease of recognizing a target at a previously
observed aspect, rather than at a randomly selected, and possibly as-yet-unobserved, aspect. Finally, note that
performance is relatively consistent between the two figures: in other words, the inclusion of additional targets
does not significantly impact MPM performance. Figures 5 and 6 illustrate that MPM is capable of excellent
Pca and Pdef performance even with limited data, and in a variety of kinematic ambiguity scenarios.

6. SUMMARY

We have presented the multinomial pattern matching (MPM) algorithm for HRR target fingerprinting. The
MPM target fingerprinting algorithm enables track stitching to facilitate long-term track maintenance of tar-
gets of interest even in the presence of kinematic ambiguities. MPM makes tracklet-association declarations
based on characteristics inherent to each target class, rather than on the differences between classes. Its target
class descriptions are based on information that is relatively stable within a target class—namely, the relative
amplitudes of HRR-profile scattering responses, rather than the absolute amplitudes. MPM relies on a match
metric that is robust to limited signature contamination and variability, ensuring that localized discrepancies
between otherwise comparable target-class descriptions do not drive association decisions. MPM is structured
and implemented to enable continuous real-time incremental training as new HRR data becomes available, and
to enable tracklet-association hypotheses to be scored, and tracklet-association declarations to be made, at any
point in time. MPM is not only capable of producing tracklet-association declarations, but also assigns a mean-
ingful confidence value to all possible pairwise or joint tracklet-association hypothesis, enabling a more nuanced
management of tracks and targets by a kinematic tracker, a sensor resource manager, or another application op-
erating in conjunction with MPM. Performance was demonstrated on HRR profiles generated from the MSTAR
data set. Results indicated excellent performance in several different scenarios.
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