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Batteries Limit Independent MEMS
Devices

Batteries have not shrunk as fast as the
systems they support.
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New MEMS Applications Call for
On-Board Power

* Sensor arrays using wireless communications
* Mobile microsystems

* Isolated microsystems (space exploration)
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Power Requirements of MEMS
Devices

« MEMS devices require 100’s nW to mW
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Chemical Batteries Perform Poorly
When Scaled Down

* silver oxide watch batteries (mm thick)
energy density: 2000 J/cm?

e N1/Zn batteries (100um thick)
energy density: 44 J/cm?

e 2mm X 2mm N1/Zn battery would provide 200nW
for 1 day
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Energy from Nuclear Decay

for example, several beta emitters:

energy density half-life

SH (tritium stored in MgT,) |55 MJ/cm? 12 years

N1 281 MJ/cm? 100 years

SEN 277 MJ/em? 88 days

* many orders of magnitude greater energy density
than chemical batteries
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Power from Nuclear Decay

for example: ,
maximuim

power density  halfilife

SH (tritium stored in MgT,) |0.098 W/cm? | 12 years

N1 0.062 W/cm?® | 100 years

SEN 25.3 W/ecm? 88 days

e comparable to chemical batteries
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Power of Radionuclide Batteries 1s
Comparable to Chemical Batteries

To produce 200nW:
Ni1-63 battery (5% eff)
Ni/Zn battery (15% fuel)
footprint 2mm X 2mm 2mm X 2mm
height 100um 100um
useful life 1 day decades
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Radioisotope Thermoelectric

Generators (RTGs)

used in 41 NASA missions

Pu-238 generates heat from alpha decay
114 cm long, 42 ¢cm in diameter

276 W

does not scale down well
(insulation)
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Generating Power 1n a Semiconductor
Junction

 In photovoltaics (solar
cells), each photon creates
an electron-hole pair in a
semiconductor junction,
producing electrical
power.

* A charged particle from a
radionuclide can produce
many electron-hole pairs.

silicon photovoltaic
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Device Layout
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Doped Semiconductors Create Intrinsic
Electric Field
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Radioactive Source of Energetic
Charged Particles
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Radionuclide Selection

Most beta emitters also release a gamma
A few are pure beta emitters (°H, %N, ...)

Low-energy betas: no Bremsstrahlung can escape
device

Stable daughter CH — *He, Ni — %Cu, ...)

max average max range
half-life energy  energy (in polymer)

SH [12yr 19keV |6keV |5 pum :

63Nj | 100 yr |67keV |18 keV |64 um
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Safety and Licensing

Not external radiation hazard
Betas stopped in outer layer of dead skin cells

Internal radiation hazard (following ingestion or
inhalation)

200nW ©Ni battery, 5% efficient — 30 mCi

Exceeds 200 uCi ingestion limit for non-radiation
workers

NRC license? (gun sights have 12 mCi tritium, exit
signs have 20 Ci tritium)
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Silicon Radionuclide Battery

» work by Blanchard, et. al.

* N1-63 source

Short circuit current (A)

optimal depth of junction: 2 um
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Pi1-Conjugated Materials

Polymeric semiconductors
have advantages over silicon

— radiation damage
resistance

— thousands of different
materials available

— easily fabricated
(amorphous)

— flexible & robust
— light weight

Challenges
— poor solubility
— controlling properties
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Testing with an Electron Beam

e 20 keV electron gun
* Monoenergetic
* Monodirectional

e Can adjust angle of
device to beam
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Bulk Heterojunctions
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Bulk Heterojunctions
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Bulk Heterojunctions
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Response a Function of Incident
Energy and Angle
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And Now for Something Completely

Different...
H, —,
-0
f ,
ionizing radiation — | polymer PEM
\
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fuel cell
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Electron Beam Experiments
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4.4% nuclear to electric
Possible to get much higher.

Practical dose rates are approx.
10* higher than in real device
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Beta Range Drives Physical Design

Ni1-63 Betas Average energy Maximum Energy
18 keV 67 keV
range 1n N1 0.6 um 8 um
range in polymer 5 um 64 um

« Two potential designs

— Ni particles in a polymer matrix

— alternating N1 & polymer layers (with possible H, diffusion layer)

e To limit self-shielding, Ni particles or layers: 0.1 um-0.5 um

e To limit system volume, 100s of layers

 Fabricate by automated extrusion or rolling a single layer
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Power Density and Device Lifetime
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Questions?
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Backup Shdes
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Most Applications Need Constant
Power

=
o

reduces available energy
by 63% or more
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What does n-conjugated mean?

Synthetic metals, polyacetylene

conducting polymers,

organic semiconductors, lTI ||_I I|_| |T|
organic metals NAN AN A A%
Alternating double-single \(|: \(|: \(|: \cl:
carbon-carbon bond H H H H

The & electrons overlap l_e-

Materials are insulators +
unless doped, typically with §C /C\\\C /C\C /C§C /C§

an acid
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Types of m-conjugated materials

* Polymers- polyaniline, polythiophene, poly vinylene,
polyacetylene, etc.

e Small molecules- anthracene, aluminum quinolate,
pentacene, eftc.

« Carbon nanoparticles- C,, fullerenes, single walled
nanotubes, multiwall nanotubes

« DNA?

SO3-  SO3-

OO e 00T

Polyaniline sulfonic acid =~ Poly para phenylene vinylene  pentacene

Carbon nanotube
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Bi-layer Heterojunctions
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Bulk Heterojunctions

Sandia

electrodes have different workfunctions @ National

Laboratories



Carbon Nanotubes
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Diffusion length of s a few nm @ Sandia
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Energy Density Comparisons

Poor Conserv. Optimistic Very Li/Mn 3V DARP
Optimistic 0, CR24320 A
Propr.
FC
Hydrogen 3 6 8.5% 12%
Recovery, wt. %* | (21% ofavail) | (43% ofavail) | (60% ofavail.) | (84% of Avail)
Fuel Cell Eff. 45% 50% 60% 60%
H=> electric
Lifetime 5 yrs. 10 yrs. max. 20 yrs. 40 yrs. 8 yrs. 8 yrs. 10 yrs.
System package 40% 30% 20% 15%
wt. pkg/wt. total
Energy Density 280 740 1420 2200 180 250 900
W-hr./kg
Energy Density 340 880 1700 2600 650 530 950
W-hr./L**

* Metal hydrides such as LiAlH react with water to about 7% Hydrogen by mass
** Assumes 1.2 g/l system density
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