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Reactions of Alkyl Radicals with O2 Are Central
to Low Temperature Hydrocarbon Oxidation

Motivation

•Despite the fact that many fuels contain cyclic
alkanes, the oxidation of this class of molecules has
received less attention than that of straight-chain alkanes

•Cyclohexane is also interesting because it possesses the 
six-membered ring of benzene, the formation of which is 
thought to be the rate-limiting step of formation of polycyclic 
aromatic compounds

•HO2 and OH are two important radical products of this
oxidation, and the time behavior of their formation can be 
observed by absorption spectroscopy

•The results of these experiments can be compared with the 
predictions of detailed kinetic modeling and previous 
measurements on R + O2 systems

Measurement of product 
formation in R + O2 uses 

Cl-initiated alkane oxidation

•Photolysis of Cl2 initiates reaction:
Cl2 (355 nm)  2 Cl

Cl + c-C6H12  HCl + c-C6H11

c-C6H11 + O2  c-C6H10 + HO2

c-C6H11 + O2  C6H10OOH 
epoxy/aldehdye/ketone + OH

•Probe A-X transition of HO2 in near infrared
•HO2 yield determined by comparison to a 
reference system with 100% yield

Cl + CH3OH  HCl + CH2OH
CH2OH + O2  CH2O + HO2 (100%)

•OH experiment use oxalyl chloride as Cl atom 
source:

(ClCO)2 (266 nm)  2Cl + 2CO
Cl + c-C6H12  HCl + c-C6H11

•Probe A-X transition of OH at 308 nm

Product Formation Monitored by Long-Path Absorption Potential Energy Surface Diagram of c-C6H11 + O2
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•Cl2, cyclohexane, O2, and helium (total density of 8.5 x 1017 cm-3) 
•Oxygen concentration maintained ~ 30 times greater than Cl2 to 
minimize competing chlorination
•Oxalyl chloride photolysis allows use of lower O2 concentrations
•Herriott-type multipass cell increases effective path length

•Phenomenological rate coefficient for HO2 self-
reaction from reference reaction signal decay
•Experimental signal is corrected for recombination
•Corrected signal is a lower bound to
actual HO2 production, as other less significant
removal pathways also contribute

Temperature Dependence of HO2 Yield

•HO2 produced by two mechanisms
•prompt formation from initial activated RO2*
•slower production via stabilized RO2 intermediate

•Prompt yield steadily increases with temperature
•Sharp increase in delayed yield observed near 600 K, where RO2

becomes thermally unstable
•At higher temperatures, total yield approaches but does not reach 1
•Less than 100% yield of HO2 at high temperatures suggests 
substantial branching to OH
•Above 700 K, “delayed” rise indistinguishable from the prompt rise
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Temperature Dependence of Delayed HO2 Formation

•Arrhenius plot suggests effective energy of activation of 
approximately 22 kcal mol-1

•Slightly less than the apparent activation energies for C2H5

+ O2, C3H7 + O2, and c-C5H9 + O2

•Apparent A-factor, which is inversely related to the change 
in entropy between reactants and transition state, is high 
(as in c-C5H9)
•Relatively small entropy change from reactants to ring 
intermediate because cyclohexylperoxy is already restricted 
rotationally

OH Formation Between 530 and 800 K
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•Product channels with every transition state below reactant 
energy are expected to be significant
•HO2 is directly formed from RO2

•Ring fission channel allow efficient formation of OH
•Other channels, with higher barriers, contribute less to 
product formation

•Detailed kinetic modeling is underway to glean 
information from OH formation measurements
•Contributions of side and secondary reactions are 
more significant than for HO2 because of the 
reactivity of OH
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