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11.5 MJ stored energy

~20 MA peak current

~200-300 ns rise time

Target Chamber

The Sandia Z Accelerator
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• pulse of electric current through 
rectangular coaxial electrodes (shorted 
at one end) induces magnetic field

• JB  magnetic force transferred to 
electrode material

shorting cap cathode
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Magnetic drive on the Z accelerator can
produce smooth ramp loading to very high pressures
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Isentropic Compression Experiments (ICE)*

Magnetically launched flyer plates

Techniques have been developed on Z for
accurate EOS studies—both major advances

Magnetically produced Isentropic Compression
Experiments (ICE) to provide measurement

of continuous compression curves to ~3 Mbar
- previously unavailable at Mbar pressures

Magnetically driven flyer plates for shock
Hugoniot experiments at velocities to ~ 34 km/s

- exceeds gas gun velocities by ~ 4X and
pressures by ~ 7-8X with comparable accuracy

* Developed with LLNL



Outline

 (Quasi) Isentropic compression experiments
 High pressure Isentropic compression

 Phase transformations

 Strength

 Hugoniot experiments
 Ultra-high pressure material response

 Sound speed measurements to identify melt

 Summary



Pulse shaping and MHD modeling has
enabled loading of aluminum to ~250 GPa at > 1.5 mm
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Backward analysis of profile pairs
determines sound speed cL(us): third order fit to data



Inferred stress-strain response distinguishes 
between commonly used models for aluminum

differences are due mainly 
to zero-Kelvin isotherm
differences are due mainly 
to zero-Kelvin isotherm



Detection of phase boundaries

Determination of kinetics

ICE technique is very well suited for
study of solid-solid polymorphic phase transitions

- Transition in Fe
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non-equilibrium calculations
Hayes/Andrews model
Ptrans = 15.7 GPa

(  6 ns)
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Ramp loading

X = P + 2/3Y

Unloading

X = P - 2/3Y

Time-resolved measurements of loading and 
unloading profiles allows estimates of strength



 Provide accurate strength 
data for shock & quasi-
isentropic loading

 Provide database of 
strength properties for 
model development

 Evaluate effects of:
• Initial material properties
• Stress history
• Phase transitions
• Loading rate

 Validate continuum and first 
principles models of 
strength Huang and Asay, 2005

Aluminum, shock loading

Sandia program in high
pressure strength measurements



Difference method Self-consistent method

 = P + 2/3Y

Y 

 = P - 2/3Y

Experimental techniques are being developed
for estimating shear strength in ICE experiments



Preliminary strength data in
aluminum for quasi-isentropic loading
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Future directions in strength research

 MHD simulations to improve VELOCE 
strip line drives

 Characterization of LiF/other windows

 Analysis of rate-dependent elastic 
yielding

 Effects of strain-rate on compressive 
strength

 Verification of first principles strength 
models

 Simultaneous strength and post-loading 
microstructure analyses
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Hugoniot data for silica illustrates
the accuracy and precision achievable on Z 

0.9 Mbar
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11.8 Mbar

High pressure 
response of 
Silica is of 

fundamental 
importance to 
geophysics

Quartz is 
becoming the 
standard of 

choice for high 
pressure laser 

Hugoniot 
measurements

Dissociation 
of dense 

fluid

Silica

3.8 Mbar
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Flyer plate configuration and multiple samples
allow for consistency checks and greater insight 
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The C melt experimental configuration
provides for very accurate Hugoniot measurements

Us = 12.31 + 1.01up

Micro-crystalline
samples
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McQueen, et al., Rev. Sci. Instrum. 53, 245 (1982)

Melt on the Hugoniot is determined by
measuring sound speed using wave overtake technique 

gauge location

SolidLiquid



Be stepped target (500, 700, 900, and 1100 m steps) 
with 100 m Cu on impact side (20 mm length) Quartz (or LiF) windows

(4mm )

700 m Al / 150 m Cu flyer

Target design for
the Be melt experiments on the Z accelerator

vf 7 km/s
CuH 2.9 Mbar
BeH 1.25 Mbar

vf 14 km/s
CuH 8.9 Mbar
BeH 3.5 Mbar

These velocities are 
easily achievable on Zto

30 mm
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High quality data is being
obtained from the Be melt experiments

Quartz 
shock front 
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Copper 
flyer plate Quartz 

shock front

Sample data at ~250 GPa in Be
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~140 GPa
in Be

Classic elastic/plastic release
observed at lower stresses with LiF window
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Release profile at ~200 GPa suggests
initial longitudinal release and thus Be is solid 

200 GPa 240 GPa

Solid-like behavior Liquid-like behavior



Preliminary sound speed measurements for Be

Preliminary results suggest
the melt transition begins ~210 GPa 

Ratio of longitudinal 
and bulk sound speed 
gives a measure of the 

Poisson’s ratio

Extrapolation of the 
Poisson’s ratio to 0.5 
provides estimate of 

the onset of melt

Preliminary results 
suggest Be melts at 

~210 GPa on the 
Hugoniot
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The Hugoniot exits the coexistence region around 263 GPa

QMD Solid Hugoniot 

BCC

QMD Melt Curve

QMD Liquid 
Hugoniot

coexistence 
region

QMD calculations predict that shock melting
of Be begins ~213 GPa consistent with experiment 



Summary

 ICE developments
 Continuing to develop experimental techniques and data 

analysis methods to address ultra-high pressure ICE 
experiments on Z

 Experimental techniques to infer strength being 
investigated on VELOCE

 Very successful first set of SNM experiments on Z

 Hugoniot experiments
 Significant real estate for experiments on Z enable high 

fidelity, self-consistent shock wave experiments at very 
high pressures


