

Influence of MgO Filler on Deformation of MgO and Li-Halide Composites

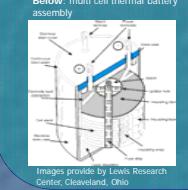
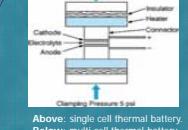
Scarlett J. Widgeon¹, Marlene E. Chavez¹, Erica L. Corral¹, Karen Waldrip², Ron Loehman¹

¹Ceramic Processing and Inorganic Materials, Sandia National Laboratories, Albuquerque, NM

²Advanced Power Sources Research and Development, Sandia National Laboratories, Albuquerque, NM

Abstract

MgO powder properties, electrolyte and composition were optimized for electrolyte-MgO powder pellet deformation. Two different MgO powder sources were used to process the composites and each was calcined to 600, 800 and 1000 °C for 4 hours to control the particle size and surface area of the powder. The composites were then mixed with two different electrolytes, LiCl-KCl and LiCl-LiBr-KBr, and pressed into pellets of the same density. The melting points of the electrolytes range from 300–350 °C and were mixed into MgO:electrolyte ratios of 65:35, 70:30 and 80:20. The deformation of the pellets was measured using a thermal mechanical analyzer and measured from room temperature to 550 °C under a constant load. These measurements were then used to calculate viscosity and modulus values at temperature. The powder properties and composite viscosity values are used to discuss proposed interaction mechanisms for electrolyte-MgO powder pellets at temperature.



Introduction

Magnesium oxide is studied to understand the effect of oxide morphology on compaction response and electrolyte interaction with MgO. The MgO-electrolyte mix powders will be used as a separator pellet in thermal batteries. The MgO powder must exhibit properties that will enable an optimal flow of ions, but not leak out of the battery, causing a short circuit.

Thermal Batteries are used in a widespread range of applications:

- Ejector seats in fighter aircrafts
- emergency energy sources for industry purposes (safety systems for drilling platforms, surveillance systems, etc.)
- Space launchers

Thermal Batteries

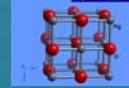
Images provide by Lewis Research Center, Cleveland, Ohio

Material Properties

Inframat MgO Powder

Impurities	Al ₂ O ₃	B ₂ O ₃	CaO	Fe ₂ O ₃	MnO ₂	Na ₂ O	NiO	SiO ₂	ZnO
Max Level (ppm)	200	2	500	10	10	10	5	10	5

Inframat Advanced Materials LLC, 74 Batterson Park Road, Farmington, CT 06032 USA


Maglite S MgO Powder

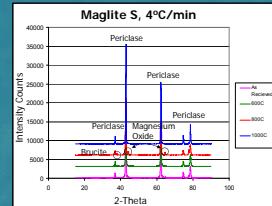
Impurities	Ca	Si	Na	Fe	Al	Li	B	Mn
Max Level (ppm)	400	600	60	150	80	4	350	30

Merck/Celgon Corporation

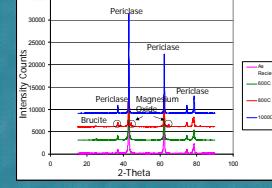
Thermal Decomposition of Brucite

Precursor structure of Inframat and Mag S powders is brucite ($Mg(OH)_2$). Upon calcination, H_2O is given off, leaving a MgO structure. Depending on the ramp rate used, the precursor morphology can be retained in this process. A lower ramp rate creates an oxide structure where the overall shape is that of the brucite crystals, retaining the external shape and apparent porosity of 54%.

Brucite ($Mg(OH)_2$)


Periclase (MgO)

Crystal Structure: hexagonal


Crystal Structure: cubic

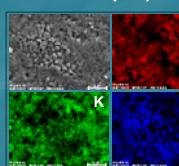
X-Ray Diffraction

Maglite S, 4°C/min

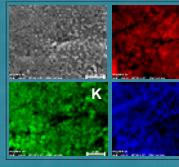
Inframat, 4°C/min

Scanning Electron Microscopy

EB Mix Series



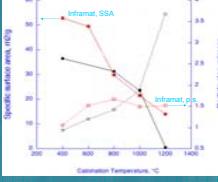
Maglite S MgO-E1C mix calcined to 600°C



Inframat MgO-E1C mix calcined to 600°C

Energy Dispersive X-Ray Spectroscopy (EDS) Maps

Mag S EB mix powder


Inframat-EB mix powder

- Mag S EB mix powder is heterogeneous
- Inframat EB mix is uniform

EDS uses x-ray that are emitted from the analyte upon bombardment by an electron beam. It characterizes the elemental composition of the analyte. Using this technique, it can be determined whether the MgO-electrolyte mixes are homogeneous or heterogeneous.

Surface Area/Particle Size Analysis

Surface Area and Particle Size at High Ramp Rate

Effect of Heating rate on Surface Area

	Mag S, 800°C	Inframat, 800°C
4°C/min	29	33
20°C/min	29	36

- Higher heating rates lead to higher surface area
- As surface area decreases as particle size decreases

Surface area analysis done using BET

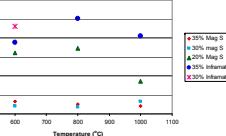
Particle size analysis done using dynamic light scattering (DLS)

Compaction Density

Theoretical Densities

Wt% MgO	Wt% LiCl-KCl	Theoretical Density (g/cm³)
35	65	2.43
30	70	2.37
20	80	2.26

- Higher electrolyte in pellet gives higher density
- Inframat pellets are closest to theoretical densities


Maglite S-LiCl-KCl (35:65) Pellet Calcined to 600°C

Inframat-LiCl-KCl (35:65) Pellet Calcined to 600°C

Thermal Mechanical Analysis

TMA Results

- Pellets with higher electrolyte content deforms most
- Inframat deforms more than Magite S

Future Work

- Long term calcination of MgO using lower ramp rate to study if meta stable structure is dependent of temperature only
- Wetting study to understand the interaction between the MgO and the electrolyte

Conclusions

- The operation of a thermal battery is affected by the oxide morphology and the wetting behavior of the MgO powder
- The oxide morphology is dependent on calcination rate and calcination temperature
- Oxide morphology of Magite S is not identical to that of Inframat
- A higher density leads to higher deformation: there is an optimal compaction density

Acknowledgements