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Abstract. We investigate constraints on neutron star structure arising from the assumptions that neutron
stars have crusts, that recent calculations of pure neutron matter limit the equation of state of neutron star
matter near the nuclear saturation density, that the high-density equation of state is limited by causality
and the largest high-accuracy neutron star mass measurement, and that general relativity is the correct
theory of gravity. We explore the role of prior assumptions by considering two classes of equation of state
models. In a first, the intermediate- and high-density behavior of the equation of state is parameterized by
piecewise polytropes. In the second class, the high-density behavior of the equation of state is parameterized
by piecewise continuous line segments. The smallest density at which high-density matter appears is varied
in order to allow for strong phase transitions above the nuclear saturation density. We critically examine
correlations among the pressure of matter, radii, maximum masses, the binding energy, the moment of
inertia, and the tidal deformability, paying special attention to the sensitivity of these correlations to prior
assumptions about the equation of state. It is possible to constrain the radii of 1.4 M� neutron stars to
a be larger than 10 km, even without consideration of additional astrophysical observations, for example,
those from photospheric radius expansion bursts or quiescent low-mass X-ray binaries. We are able to
improve the accuracy of known correlations between the moment of inertia and compactness as well as the
binding energy and compactness. We also demonstrate the existence of a correlation between the neutron
star binding energy and the moment of inertia.

PACS. 97.60.Jd Neutron stars – 26.60.-c nuclear matter aspects of neutron stars – 97.80.Jp X-ray binaries
– 21.65.Cd nuclear matter

1 A Brief History of Neutron Star Radii

Theoretical estimates of radii of spherically-symmetric non-
rotating neutron stars came directly from analytic and
numerical solutions of the Tolman-Oppenheimer-Volkov
equations [1,2]. At this time, the critical role played by the
maximum mass was already known. Twenty years later,
improved estimates of radii came directly from improve-
ments in nuclear physics: Ref. [3] used a recently devel-
oped zero-range nucleon-nucleon interaction (the Skyrme
interaction [4]) to compute neutron stars with masses up
to a maximum of 2 M� and radii as small as 8 km and
even larger than 27 km. It was not realized at this time
that the EOS was acausal at high densities, thus leading
to extremely small radii. Also, the extremely large radii
were found for stars with masses below what is commonly
considered to be the minimum formation mass of neu-
tron stars, about 1 M�. Later calculations of the EOS

of neutron star matter using both Skyrme and relativistic
field-theoretical interactions constrained by nuclear exper-
iment have found radii between about 9 and 15 km [5].
Astronomical observations of radio pulsations in neutron
stars followed 8 years later in 1967; observations of pul-
sars in binary systems have lead to numerous mass mea-
surements (e.g., see Ref. [6]). Importantly, the largest ac-
curately measured masses [7,8] set a lower limit to the
neutron star maximum mass, which, combined with gen-
eral relativity and causality, constrain minimum values for
neutron star radii [9] of all masses. For a 1.4 M� star,
the current minimum maximum mass Mmax = 2 M� es-
tablishes that its radius R1.4 > 8.15 km. Larger mass
measurements will increase this minimum radius. An im-
portant theoretical development was the realization that
neutron star radii for stars in the mass range 1 M� <
M < 1.8 M� are primarily determined by the EOS in
the density range ns < n < 2ns [10], where ns is the
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nuclear saturation density. This provides a direct link be-
tween both nuclear experiment and theory and neutron
star radii (though the link is weaker if there is a strong
phase transition in this density range, as demonstrated
below). One of the objectives of this paper is to use recent
developments in nuclear experiment and theory, coupled
with the assumption that neutron stars have crusts, to
establish neutron star radius constraints. In addition, we
investigate how and whether astrophysical observations of
neutron stars in X-rays can realistically further improve
these limits.

Ref. [11] proposed using photospheric radius expansion
(PRE) X-ray bursts to obtain simultaneous mass and ra-
dius measurements in 1979, but the method did not lead
to interesting constraints until 2006 [12]. Masses and radii
from PRE X-ray bursts [13,14,15] gave radii between 8
and 12 km and masses between 1.2 and 2 M� under the
assumption that the photosphere at “touchdown” has re-
ceded to the neutron star surface. Under the assumption
that this model describing PRE X-ray bursts was correct,
large radii and EOS models with high pressures between
ns and 2ns seemed to be ruled out.

Observations of thermal emission from accreting neu-
tron stars in binary systems, known as quiescent low-mass
X-ray binaries (qLMXBs), also provide radius measure-
ments. The earliest such observations led to radius esti-
mates of less than 1 km, much smaller than that predicted
from theoretical models [16]. For accreting neutron stars,
the photosphere is expected to consist of hydrogen [17],
and Ref. [18] showed that models of thermal emission from
pure hydrogen photospheres [19,20] gave inferred radii on
the order of 10 km. Neutron star radius information from
quiescent low-mass X-ray binaries began to provide sig-
nificant constraints on radii in 2006 (at the same time
as PRE X-ray bursts), due to improved observations and
a consistent treatment of the surface gravity in the neu-
tron star atmosphere model used to fit the spectrum [21,
22]. This led to refined estimates of radii between 8 and
16 km, which, however, by themselves did not rule out a
significant number of contemporary theoretical EOS mod-
els [10].

There were two principal difficulties which prevented
these measurements from tightly constraining the EOS.
The first difficulty was the fact that taking neutron star
mass and radius measurements and constructing an EOS
formally requires an inversion of the TOV equations. A
method to invert the TOV equations was developed in
1992 [23], but this approach is subject to numerical diffi-
culties (see recent work in Ref. [24]). The second difficulty
was that the traditional approach of performing a chi-
squared fit is prohibited by the large uncertainties and the
potential for the mass-radius curve to be non-monotonic
in both mass and radius (see a more recent summary of the
possible mass-radius curve shapes in Ref. [25]). Ref. [26]
showed that, if one chooses a sufficiently generic EOS pa-
rameterization, a formal inversion is unnecessary. Ref. [27]
showed that a three-parameter model based on piecewise
polytropes (commonly used, e.g., in numerical solutions
of rotating relativistic stars [28]) is general enough to re-

produce modern theoretical EOSs to within a few per-
cent. Thus Ref. [26] used this parameterization to show
that, given simultaneous mass and radius measurements
of three neutron stars, one can marginalize over the un-
known neutron star masses to obtain probability distribu-
tions for the three unknown EOS parameters. This was
applied in Ref. [29] to three simultaneous mass and ra-
dius constraints for three neutron stars. For the EOS near
and below the nuclear saturation density (assumed to have
zero uncertainty), Ref. [29] used the Skyrme interaction
SLy4 that was fit to nuclei and theoretical calculations of
low-density neutron matter [30]. It was claimed that the
mass and radius measurements presented a challenge for
theories of neutron star matter, but it is now understood
that systematic uncertainties in the X-ray burst model are
the more likely culprit for the tension that was observed.

Soon after, Ref. [31] used Bayesian inference to com-
bine mass and radius constraints from both qLMXBs and
PRE X-ray bursts to obtain constraints on the EOS. This
work used an alternate nuclear physics-based parameteri-
zation for matter near the nuclear saturation density and
piecewise polytropes at higher densities (in a slightly dif-
ferent form than that presented in Ref. [27]). In the case
that the prior distributions for the polytrope parameters
are uniform, the Bayesian inference-based method to ob-
tain the EOS parameters is similar to the method devel-
oped in Ref. [26], except that Ref. [31] additionally ob-
tained probability distributions for the mass-radius curve
by marginalizing over the posteriors for the radius as a
function of mass. Also, the direct use of Bayesian inference
in Ref. [31] allowed the use of more parameters which more
fully explored the uncertainties in the EOS near saturation
densities and led to constraints on the density dependence
of the nuclear symmetry energy. Finally, Ref. [31] showed
that the assumption that the photosphere at touchdown
is coincident with the surface (i.e., not extended) is not
consistent with the data (within the context of the model
being used for PRE X-ray bursts in Refs. [31] and [29]).
The final result was a radius range of 10.7 to 12.5 km for
a 1.4 M� neutron star. Radii smaller than 10.7 km were
ruled out, in contrast to earlier results based on PRE X-
ray bursts. These improved radius constraints came prin-
cipally as a result of the marginalization from Bayesian
inference. However, it was reported in Ref. [31] that there
were several systematic uncertainties which potentially in-
validated this result.

One important systematic uncertainty was the poten-
tial for accretion to muddle the interpretation of PRE X-
ray bursts. In 2011, Ref. [32] used longer bursts and a
more complete model of the neutron star atmosphere to
obtain a radius greater than 14 km for the single source
studied. For the qLMXB sources, the composition of the
atmosphere plays an important role. Ref. [33] showed that
a helium (rather than hydrogen) atmosphere changes the
inferred radius range for the neutron star in M28 from 6 to
11.5 km to 7 to 17 km. Both of these systematic uncertain-
ties continue to play a role in interpreting mass and radius
measurements. At around the same time, work progressed
on constraining the nature of the nucleon-nucleon interac-
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tion from neutron star mass and radius observations [34,
35], showing that current observations suggested a rela-
tively weak density dependence in the nuclear symmetry
energy, predicting radii less than 14 km.

In 2013, Ref. [36] re-analyzed the qLMXB and PRE
data including some systematic uncertainties ignored in
previous works, including variations in the color correc-
tion factor used to infer masses and radii from the PRE
X-ray bursts. This systematic uncertainty extended the
radius range from 10.4 to 12.9 km. Another critical sys-
tematic included in Ref. [36] is the ambiguity in the choice
of the prior distribution. Marginalizations over model pa-
rameters include a choice of prior distribution, whether
implicit as in Refs. [26,29] or explicit as in Ref. [31]. The
ambiguity from the choice of prior is not important if the
number of parameters is sufficiently small. Also, prior as-
sumptions are not important if uncertainty in the parame-
ter that represents the independent variable of the model
function (e.g., the mass of the neutron star) is small. If
both of these conditions held, one could perform the clas-
sical chi-squared fit and directly obtain the mass-radius
curve and the associated EOS. However, these conditions
did not then (and still do not) hold for neutron star mass
and radius observations.

One way the choice of prior distribution is important
is the extent to which it favors or disfavors the presence
of phase transitions where the pressure is nearly flat with
increasing density. Polytropic EOSs, when used with uni-
form prior distributions for the polytropic exponent, natu-
rally disfavor phase transitions. The reason for this is that
all polytropes go through the origin, thus the polytropic
exponent must be very small in order to produce a nearly
flat pressure as a function of energy density (which would
result from a strong phase transition). Ref. [36] found that
this prior ambiguity was also important and also that the
14 km radius obtained in Ref. [32] was difficult to reconcile
with the smaller radii obtained from qLMXB sources.

Ref. [37] combined new qLMXB observations and a
constant radius model (motivated by the vertical shape of
the mass-radius curves obtained in Ref. [36]) to obtain a
very small preferred neutron star radius with rather small
error, 9.0± 1.4 km. However, when individually analyzed,
the sources produced predicted radii in a wide range (7
to 20 km). Ref. [38] concluded that two systematic un-
certainties were responsible for this result: (i) some of the
small radius neutron stars may have helium rather than
hydrogen atmospheres (as discussed above) and (ii) uncer-
tainties in the hydrogen column density may give incor-
rect radii. Ref. [39] confirmed that the hydrogen column
density inferred for one neutron star in the data set was
indeed systematically shifted. Ref. [39] also showed that
the choice of galactic abundance model was an important
systematic.

Ref. [38] also introduced the use of the Bayes factor 1 to
decide between various models. In the case of a chi-squared

1 The Bayes factor is sometimes referred to as the “odds
factor” or “likelihood ratio”. The latter term, however, is often
used to describe the ratio of the maximum likelihoods, rather
than the ratio of the integrals.

fit, the model with the smaller value of chi-squared gives
a better fit. In the frequentist approach, an equivalent
method is the maximum likelihood test: the preferred mo-
del is the one with the largest maximum likelihood. A
test using the Bayes factor is the Bayesian analog of the
maximum likelihood test. The Bayes factor for model A
versus model B is a ratio of the “evidence”. The evidence,
in turn, is defined as the integral over the posterior (see
Ref. [38] for a brief review and Ref. [40] for additional
discussion).

Bayesian inference continues to be an important tool
for analyzing neutron star mass and radius observations,
in part because the uncertainties are still large and the
problem of determining the mass-radius curve (or the EOS)
is underconstrained. For this reason, the Bayes factor re-
mains one of the best tools to compare the evidence for
(or against) the various models and assumptions which
are employed. Models with tightly constrained posteriors
are not preferred because they correspond to small values
of the evidence. One way to think about this result is to
note that models with tightly constrained posteriors are
too finely-tuned because there are only a very few subset
of model parameters for which the model is not ruled out.

More recently, Ref. [38] showed that Bayes factors im-
ply that an extended photosphere at touchdown is pre-
ferred in PRE X-ray bursts (the posteriors for an extended
photosphere are broad and thus that the evidence for the
model is large) and helium, rather than hydrogen, atmo-
spheres are favored in some qLMXBs. However, this work
did not rule out the potential for other interpretations and
Ref. [41] has since suggested that rotation and tempera-
ture corrections to the Eddington limit may also play a
role.

Nevertheless, Ref. [42], implementing new data which
resolved some difficulties in the previous study [37], but
retaining their assumptions of a common radius and hy-
drogen atmospheres for all sources, continued to obtain a
small radius (9.4± 1.2 km).

2 The Role of Prior Distributions

The choice of prior distribution continues to play an im-
portant role in interpreting observations and theory. This
statement trivially holds true, as in the context of Bayesian
inference all model assumptions can be viewed as a par-
ticular choice of prior distribution. Nevertheless, it is im-
portant when one can quantify the effect that these as-
sumptions have. A recent analysis of both the qLMXB
and PRE data in Ref. [43] gives two different ranges for
the radius of a 1.4 solar mass neutron star under different
prior assumptions. Model A (based on polytropes) gave
a radius range of 10.8 to 12.4 km while Model C (which
allows for stronger phase transitions) gave a radius range
of 10.2 to 11.9 km (this distinction was first observed in
Ref. [36]). Since the Bayes factor for Model A versus Model
C is not significantly different from 1, one must presume
that either model could be correct, and the full range of
allowed radii for a 1.4 M� neutron star is between 10.2
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and 12.4 km. The prior ambiguity increases the uncer-
tainty by at least 30%. The constraints on the pressure
at twice the saturation density, as inferred from neutron
star radius measurements, are also sensitive to the prior
distribution: Model A gives a range between 9.1 and 23.0
MeV/fm3 while Model C gives a range between 2.3 and
17.0 MeV/fm3 [43]. Had one considered only a polytrope-
based parameterization of the EOS one would have over-
estimated the lower limit on the pressure by a factor of
four. Recently, Ref. [44] found a similar variation in the
radius when analyzing X-ray bursts in the hard state. The
final result was 11.3 to 12.8 km for a 1.4 M� neutron star
for Model A and 10.5 to 12.5 km for Model C.

Ref. [45] compared two different methods for obtaining
masses and radii from PRE X-ray bursts. The first method
is basically the method given in Ref. [29] and Ref. [31]. In
this first method, the marginalization over model parame-
ters includes a Jacobian factor which transforms between
a two-dimensional space over touchdown flux and normal-
ization to a two-dimensional space over mass and radius.
In the second method of Ref. [45], this Jacobian is re-
moved. Ref. [45] confusingly refers to their first method
as the “frequentist” approach and the second method as
a “Bayesian” approach, even though the presence of the
Jacobian is simply a transformation of variables (and is
widely used by Bayesian practitioners [46]). In this article,
we employ a language that is more typical in the statistics
literature. In Ref. [45], these two methods are compared
by a qualitative examination of “bias” in the method. Bias
is measured by comparing the posterior in the mass-radius
space distribution to the prior distribution in mass-radius
space.

A quantitative approach which is more similar to the
language of the statistics literature would compute the ev-
idence for these two methods and form the ratio to com-
pute the Bayes factor. The Bayes factor is not the same
as the “bias” used in Ref. [45]: it measures the integral
under the posterior rather than its location in parameter
space relative to the prior. In the case that the relative
Bayes factor between these two models is near unity both
methods would need to be considered, just as was done
with Models A and C in Ref. [43] and also below.

Prior distributions are also relevant for determining
the nature of “correlations” or “universal relations”. There
have been several correlations observed within nuclear struc-
ture and between nuclear structure and neutron stars: the
correlation between the EOS of neutron matter and the
neutron skin thickness of lead [47], the correlation be-
tween the pressure of neutron-rich matter and neutron
star radii [10], and the correlation between the neutron
skin thickness of lead and neutron star radii [48]. These
correlations are principally explored by studying a range of
several model parameterizations. They reflect the nature
of the uncertainties in two quantities vis à vis the current
knowledge of the nucleon-nucleon interaction. In the con-
text of Bayesian inference, these correlations describe the
nature of the posterior distribution of two quantities given

a particular prior distribution. The shape of the correla-
tion is thus dependent on the prior distribution2.

In the past several years, other kind of correlations
within neutron stars, which have been referred to as “uni-
versal relations”, e.g., the correlation between the moment
of inertia and the Love number of a neutron star [49]. The
uncertainties in these universal relations are also depen-
dent on the prior assumptions, though the magnitude of
this prior dependence can be very different from one cor-
relation (or one universal relation) to another.

3 The Equation of State

3.1 Neutron Star Crusts and the Low-Density EOS

We assume that neutron stars have crusts, i.e., they have
a surface region with densities less than approximately
1014 g cm−3 composed largely of nuclei, neutrons and elec-
trons in beta equilibrium [50]. The pressure in this region
is largely due to relativistic, degenerate electrons with at
most a 5% contribution from nuclei and neutrons. Since
the nuclei are in pressure equilibrium with the neutrons,
they individually contribute almost no pressure since their
baryon density is close to the nuclear saturation density
ns ' 0.16 fm−3 or ρs ' 2.7×1014 g cm−3 where uniformly
dense symmetric matter has zero pressure. The major con-
tribution of baryons to the pressure is from the collective
Coulomb pressure due to the nuclear lattice, and is there-
fore largely independent of uncertainties in the equation
of state of nuclear matter. Various calculations indicate
that the transition from crustal material to uniform nu-
clear matter, nt, occurs in the range ns/4− ns/2.

Recent calculations of the properties of pure neutron
matter have produced estimates of the pressure-energy
density relation up to about 2ns. Matter in neutron stars
at densities between nt and 2ns is extremely neutron-rich
because it is in beta equilibrium. This condition is equiv-
alent to minimization of the total energy per baryon with
respect to the charge fraction x = np/n where nn and np
are the neutron and proton baryon densities, respectively,
and n = nn + np. The difference between the energy of
pure neutron matter and symmetric matter (with equal
numbers of neutrons and protons) is called the nuclear
symmetry energy S(n), and the energies of intermediate
proton fractions can be approximated with a quadratic
interpolation between these extremes:

E(n, x) ' E1/2(n) + S(n)(1− 2x)2, (1)

where E1/2(n) is the energy per baryon of symmetric mat-
ter. A crude estimate for the symmetry energy near ns is

S(n) = Sv(n/ns)
γ ; (2)

nuclear experimental information and neutron matter cal-
culations indicate that 26 MeV <∼ Sv <∼ 34 MeV and

2 Alternatively, in the context of a hierarchical Bayesian
analysis, the shape of the correlation is dependent on the
hyper-prior distribution of hyper-parameters.
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0.3 <∼ γ <∼ 0.7. The pressure corresponding to Eqs. (1)
and (2) is

p(n, x) = n2
∂E(n, x)

∂n
' p1/2(n) +

Svγns(n/ns)
γ+1(1− 2x)2, (3)

where p1/2(n) is the pressure of symmetric matter. Note
that, by definition, p1/2(ns) = 0; to leading order, near
ns, the symmetric matter pressure increases linearly with
density, p1/2(n) ' (Ks/9)(n− ns), where Ks ' 240 MeV
is the nuclear incompressibility parameter.

As stated above, matter in neutron stars is in beta
equilibrium:

∂[E(n, x) + Ee(n, x)]

∂x
= µp + µe − µn = 0, (4)

where Ee = (3/4)h̄cx(3π2nx)1/3 is the electron energy per
baryon assuming relativistic degenerate electrons, and the
µ’s are chemical potentials. This is equivalent to

4S(n)(1− 2x) = h̄c(3π2nx)1/3. (5)

This equation can be solved as a cubic equation for x at
a specific density with the approximate solution

x ' 64S(n)3

3π2(h̄c)3 + 128S(n)3
(6)

which has the value x ' 0.04 when n = ns. The pressure
of pure neutron matter with ansatz Eq. (2), at ns, is p =
γnsSv. In beta equilibrium, the approximate neutron star
pressure at ns is

p(ns, xβ) ' γnsSv

[
1−

(
4Sv
h̄c

)3
4γ − 1

3π2γ

]
. (7)

The correction term in Eq. (7) is of order 1.4%, and can
be ignored to good approximation. At higher densities, the
proton fraction and the correction term generally increase
due to the increasing symmetry energy. There is also a
contribution from p1/2(n). However, for densities up to 2ns
the neutron star matter pressure is essentially equivalent
to pure neutron matter pressure.

Therefore, for densities between the core-crust tran-
sition density and about 2ns, experimental information
about the symmetry energy and calculations of pure neu-
tron matter pressures offer viable constraints on the equa-
tion of state. Experimental information concerning the
symmetry energy is usually encoded in the parameters Sv
and L, defined as

Sv ≡
1

8

[
∂2E(n, x)

∂x2

]
ns,1/2

(8)

L ≡ 3

8

[
∂3E(n, x)

∂n∂x2

]
ns,1/2

. (9)

For the symmetry energy of Eq. (2), one finds L = 3γSv
so that 0.9Sv <∼ L <∼ 2.1Sv.

3.2 Piecewise Polytropes For the High-Density EOS

In our first model, we assume the crust-core transition
density is n0 = ns/2.7, and use the crust EOS from Ref. [50],
for which the pressure is p0 = 0.243 MeV fm−3, the energy
density is ε0 = 56.39 MeV fm−3, and the internal energy
per baryon is E0 = 12.13 MeV. For densities above the
core-crust transition density, a scheme similar to a three
piecewise polytrope scheme explored by Ref. [27] is used.
There are 7 parameters. Four parameters correspond to
boundary density points (ni, i = 0− 4), and three corre-
spond to the polytropic exponents (γi) of the region be-
tween the densities ni and ni−1. Read et al. [27] discovered
that a variety of equations of state were successfully ap-
proximated by piecewise polytropes with a common set
of boundary densities n1 ' 1.85ns and n2 ' 3.7ns. As-
suming that the core-crust transition pressure p0 and en-
ergy density ε0 are fixed by the crustal equation of state,
and the core-crust transition density n0 is chosen to be
ns/2.7, fixes two more parameters. In this case, the three
remaining parameters are the polytropic exponents γi. We
choose, equivalently, the pressures p1, p2 and p3 at the
boundaries as parameters, following Ref. [26]. The poly-
tropic exponents are given by

γi =
ln(pi/pi−1)

ln(ni/ni−1)
, (10)

for i = 1–3. Assuming continuity of both energies and
pressures at the boundary points ni, the density and en-
ergy density within ni−1 < n < ni, for i = 1 − 2, and for
ni−1 < n, for i = 3, are

n = ni−1

(
p

pi−1

)1/γi

, (11)

ε =
p

γi − 1
+

(
εi−1 −

pi−1

γi − 1

)
n

ni−1
, (12)

where εi−1 = ni−1(mn + Ei−1) and Ei−1 are the energy
density and energy per baryon at the point ni−1, respec-
tively.

The boundary n1 is sufficiently close to ns that neu-
tron matter calculations, which are claimed to be reliable
to such densities, offer a viable method of estimating p1
and ε1, and therefore γ1. We shall adopt the approach that
p1 is bracketed by the range of neutron matter calculations
performed by Refs. [51] and [52]. As noted in Ref. [10], the
neutron star matter pressure between ns and 2ns essen-
tially determines the radii of neutron stars in the mass
range 1 M� to 1.6 M� (as long as one assumes no strong
phase transitions in this region, see e.g. Fig. 7). We there-
fore expect that the value of p1 will play the same role
in this EOS. Refs. [51] showed that the neutron matter
energy for densities less than about 2ns was adequately
approximated by the double power law

E(n, 0) ' a(n/ns)
α + b(n/ns)

β (13)

where a, b, α and β are parameters. For this energy for-
mula, and assuming the validity of a quadratic symme-
try energy interpolation (Eq. 1), we immediately find that
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Model a α b β Sv L p1 γ1
MeV MeV MeV MeV MeV fm−3

GCR 0 12.7 0.49 1.78 2.26 30.5 31.3 7.272 2.113
GCR 1 12.7 0.48 3.45 2.12 32.1 30.8 10.402 2.335
GCR 2 12.8 0.488 3.19 2.20 32.0 40.6 10.537 2.343
GCR 3 13.0 0.475 3.21 2.47 32.0 44.0 13.274 2.487
GCR 4 12.6 0.475 5.16 2.12 33.7 51.5 14.304 2.533
GCR 5 13.0 0.50 4.71 2.49 33.8 56.2 18.678 2.700
GCR 6 13.4 0.514 5.62 2.436 35.1 63.6 20.933 2.770
DSS 0 10.94 0.459 4.106 1.977 31.1 39.4 8.125 2.182
DSS 1 11.00 0.460 4.425 1.947 31.4 41.0 8.453 2.206
DSS 2 11.95 0.495 3.493 2.632 31.4 45.3 13.760 2.509
DSS 3 11.02 0.460 4.683 1.935 31.7 42.4 8.768 2.229
DSS 4 10.95 0.454 5.158 1.972 32.1 45.4 9.676 2.290
DSS 5 10.34 0.429 4.954 2.024 31.3 43.4 9.180 2.258
DSS 6 10.29 0.433 7.227 1.842 33.5 53.3 11.241 2.384

Table 1. Neutron matter calculations fit to the energy parameterization of Eq. (13). GCR are models from Gandolfi, Carlson
& Reddy [51]; DSS are models from Drischler, Soma & Schwenk [52].

Sv = B+a+b and L = 3(aα+bβ), whereB ≡ −E(ns, 1/2) '
16 MeV is the bulk binding energy of symmetric matter.
Table 3.1 displays parameter values found by Ref. [51] for
quantum Monte Carlo neutron matter calculations (see
also Ref. [35]). We have also displayed parameter values
that fit the neutron matter results of Ref. [52] up to densi-
ties ' 1.5ns, and we will assume these calculations can be
extrapolated to the slightly higher density n1 = 1.85ns.
For each set, the corresponding values of Sv, L, and the
pressure p1 at n1 have been tabulated. In the quadratic
approximation for the isospin dependence of the nucleon
energies, L = 3p(ns, 0)/ns, so p1 and L are highly cor-
related (Fig. 1). The piecewise polytrope approximation
for the EOS, assuming a value for p1, explicitly predicts a
value for L,

Lpw =
3p0
ns

2.7γ1 =
3p1
ns

1.85−γ1 (14)

with γ1 given by Eq. (10). These values are close to, but
generally larger than, the corresponding neutron matter
predictions for a given value of p1, indicating that the
piecewise polytropic EOS is a reasonable approximate in
this density range.

Since the parameter set GCR 0 corresponds to an EOS
with no three-body interactions, the range

pn,min = 8.125 MeV fm−3 < p1

p1 < 20.933 MeV fm−3 = pn,max (15)

is predicted from realistic neutron matter studies. Assum-
ing no strong phase transitions at lower densities, we ex-
pect the minimum radius limit, to neutron stars, which
primarily depends on p1, from neutron matter constraints
to be significantly larger than the absolute minimum limit,
8.1 km [9] established from the “maximally compact” EOS
of Ref. [53] and an observed 2 M� neutron star. p1 will
also play an indirect role in determining Mmax, the max-
imum neutron star mass, in that stars with larger radii
at intermediate densities typically support larger masses.

Fig. 1. Values of p1 = p(1.85ns, 0) and L for the neutron
matter EOSs in Table 3.1: solid and open circles represent the
results from Refs. [51] and [52], respectively. The dashed line
shows the collective correlation between the two quantities for
the neutron matter EOSs. The red solid curve indicate the
values of Lpw resulting from the piecewise polytrope, Eq. (14).

On the other hand, we expect that p2 and p3 will play
little role in determining neutron star radii but will play
significant roles in determining Mmax.

Hydrodynamic stability, causality, and observed neu-
tron star masses impose important constraints on the choi-
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Fig. 2. Permitted ranges of p1 and p2. Values ruled out by
causality (hydrodynamic instability) are indicated by the light-
(dark-)green shading. Contours of log10 p3 that violate acausal-
ity are indicated. The realistic minimum and maximum val-
ues of p1 are shown as horizontal dashed lines, and the value
p1,min = 7.56 MeV fm−3 is the horizontal solid line. Solid dots
show parameter values permitting maximum masses, respec-
tively, of 1.97 M� (black), 2.10 M� (orange), 2.30 M� (blue)
and 2.50 M� (red). Green crosses show parameter values that
lead to acausal configurations or those with Mmax < 1.97 M�.

ces of parameters. In this scheme the sound speed in-
creases monotonically with density within each polytrope,
so that causality within regions 1 to 3 requires

c2s,i
c2

=

(
∂p

∂ε

)
i

=
γi,maxpi,max

εi,max + pi,max
≤ 1, (16)

which gives implicit equations for pi,max since

ε =
p

γi − 1
+

(
εi−1 −

pi−1

γi − 1

)(
p

pi−1

)1/γi

. (17)

Therefore, p1,max depends upon p0 and ε0, and p2,max de-
pends upon p1 and ε1, but ε1 depends on p0. In general,
p1,max is so much larger than the realistic ranges of p1 es-
tablished from neutron matter studies that the causality
condition is not important to our studies (p1,max ' 113.9
MeV fm−3 from causality considerations (Fig. 2)). p3,max

depends upon p2 and ε2, and therefore also upon p1. How-
ever, the dependence upon p1 is weak, as shown in Fig. 3.
In addition, the central density of the star is, in many
cases, larger than n3, in which case the limiting value
p3,max is smaller than the limit given by Eq. (16). The
actual limit must be found numerically from TOV integra-
tions of the star’s structure requiring that the maximum
sound speed at the center of the maximum mass star be
smaller than c.

Minimum values for p1, p2 and/or p3 also exist in or-
der to satisfy hydrodynamic stability, which requires that
pi > pi−1. This is obviously satisfied by any realistic value
of p1. Parameter ranges allowed by hydrodynamical sta-
bility and causality are portrayed in Figs. 2 and 3 as the

Fig. 3. Permitted ranges of p2 and p3. Those values ruled out
by acausality (hydrodynamic instability) are indicated by the
light-(dark-)green shading. The acausal region depends slightly
on the assumed value of p1: the dashed line is for p1,max; the
edge of the shaded region is for p1,min = 7.56 MeV fm−3. Sym-
bols are described in the caption for Fig. 2.

white regions. For p2 and p3, more restrictive minima can
result from the constraint that the maximum mass ex-
ceeds the largest well-measured neutron star mass, which
we take to be 1.97 M�, the 1σ lower limit to the mea-
sured mass of PSR J0548+0432 [8]. (Note that there is no
minimum value for p1 based on this condition, due to the
presence of the polytropic regions 2 and 3.) These lower
limits also must be found numerically from TOV integra-
tions, which indicates that the effective lower limit to p2
is approximately 100 MeV fm−3 for virtually all realistic
choices of p1 (Fig. 2).

The result of each TOV integration with a different
EOS (i.e., different combinations of p1, p2 and p3) is indi-
cated by a symbol in Figs. 2 and 3 (many parameter com-
binations yield nearly identical configurations and can-
not be distinguished). Solid circles show parameters that
support causal configurations with, respectively, Mmax =
1.97 M� (black), 2.10 M� (orange), 2.30 M� (blue) and
2.5 M� (red). Parameters that yield acausal configura-
tions, those in which the sound speed at the center ex-
ceeds c, or configurations incapable of supporting at least
1.97 M�, are shown as teal crosses. It is clear that causal
configurations capable of supporting Mmax = 1.97 M�
must have p2 >∼ 100 MeV fm−3, and if Mmax = 2.1 M�,
p2 >∼ 125 MeV fm−3. On the other hand, the specific value
of p3 plays relatively little role as long as p2 < p3 < p3,max

lead to causal configurations of the required mass.
We note that the parameter boundaries due to causal-

ity we find are in disagreement with the results of Ref. [41]
in spite of the fact that the parameterized EOSs in the two
studies are identical. For example, when it is assumed that
log10 p1 = 1, Ref. [41] indicate that log10 p2,max ' 2.6,
while we find log10 p2,max ' 2.3; when it is assumed that
log10 p2 = 1.6, Ref. [41] indicates that log10 p3,max ' 3.0,
while we find log10 p3,max ' 2.7. We also note that the
solution preferred by the Bayesian analysis of Ref. [41]
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has optimum parameters p2 and p3 that lie very near the
acausal boundary, and that their parameter region with
finite likelihoods extends beyond this boundary.

3.3 Alternative Models for High-Density Matter

Choosing different models can be thought of as choos-
ing different prior distributions, as discussed in Ref. [38].
Thus, in order to understand how our results vary with dif-
ferent prior distributions, we also employ two models from
Ref. [43]. The crust EOS is described in the same way us-
ing the results of Ref. [50] but is supplemented with the
results of Ref. [54] at the highest densities in the crust.
From n0 to ns, the GCR EOS is used (see above). At
higher densities, either Model A or Model C from Ref. [36]
is used. Model A is built on piecewise polytropes and gives
very similar results to our first model described above.
Model C is constructed using line segments in the P -ε
plane and prefers stronger phase transitions (this model is
called “qmc fixp” in Ref. [55]). In particular, Model C al-
lows strong phase transitions just above ns. This can make
a significant difference in the results, as shown below. It
is clear that exotic matter cannot appear at ns since lab-
oratory nuclei are known to consist only of neutrons and
protons. The minimum possible density at which a phase
transition may appear, however, is not well-determined
from either theory or experiment.

We can also investigate the observed differences be-
tween Models A and C within the piecewise polytropic
method described in Section 3.2 by explicitly creating a
first-order phase transition between the fiducial densities
n1 and n2 and allowing those densities to vary. One re-
quires that p1 = p2 and µ1 = µ2, where µ = (ε+p)/n is the
chemical potential. The maximum effect of the phase tran-
sition results if the EOS above n2 is given by the causal
limit, p = ε−ε2+p2. In this causality-limited case, one can
show that the phase transition strengths ε2/ε1 and n2/n1
are related by:

ε2
ε1

=
p1
ε1

(
n2
n1
− 1

)
+
n2
n1
. (18)

4 Results

4.1 Masses, Radii, and the EOS

For the polytropic EOS from section 3.2, TOV integra-
tions were computed with a grid of values for p1, p2 and
p3. Generally, we assume p1 to be limited by the range
described above for realistic neutron matter studies. How-
ever, we slightly extended both the lower and upper limits
of p1 to be conservative. Following Ref. [41], we choose
the value p1,min = 7.56 MeV fm−3, which proves cru-
cial to the computation of the minimum realistic neutron
star radius. We increased the upper limit to be about 1.6
times larger than pn,max, which proves crucial in establish-
ing a maximum realistic neutron star radius. Values of p2
were chosen to be smoothly distributed in log10 p2 between

Fig. 4. The correlation between radii of 1.4 M� stars, R1.4,
and p1. Parameters producing causal configurations capable
of supporting 1.97 M� are indicated as black circles; all others
are indicated by green circles. The solid (dashed) lines indicate
quadratic (linear) fits to the black circles.
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Fig. 5. Correlation between R1.4 and the pressure, p1 for
Model A (dashed and dashed-dotted contours give 68% and
95% confidence regions, respectively) and Model C (solid and
dotted contours and shaded histogram). Acausal EOSs and
those which have maximum masses less than 1.97 M� have
been removed. The correlation from Eq. 19 is also plotted.

log10 p2,min = 1.6 MeV fm−3 (to avoid unnecessary com-
putations of configurations with Mmax

<∼ 1.90 M�) and
p2,max (determined from causality considerations). Values
for p3 were taken to be smoothly distributed in log10 p3
between p2 (hydrodynamic stability) and p3,max (causality
up to n3).
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We also use Model C EOS as described in section 3.3.
The calculation proceeds as for the polytropic EOS de-
scribed above, except that the results for > 105 Monte
Carlo realizations are histogrammed and binned (using
Ref. [56]). In effect, because Model C prefers stronger
phase transitions, comparing with the polytropic EOS com-
pares two different prior assumptions. The correlation be-
tween the radius of 1.4 M� and the pressure, p1 is plotted
for the polytropic EOS in Fig. 4, and for Model A and
Model C in Fig. 5. As expected, a large degree of corre-
lation exists between the radii of 1.4 M� configurations,
R1.4, and p1 in either case. Eliminating acausal configura-
tions, or configurations incapable of supporting 1.97 M�,
which are shown in Fig. 4 as green circles, the correlation
becomes more robust. The correlation between p1 and R1.4

is best described with a quadratic contribution, as can be
seen in Figs. 4 and 5. The correlation between p1 and R1.4

is

R1.4 = 9.68 + 0.168p1 − 0.00120p21 km, (19)

where p1 is in units of MeV fm−3.
Ref. [10] had shown the existence of a phenomenolog-

ical relation between R1.4 and p(ns, xβ), which was later
modified [57] to consider only EOSs capable of supporting
2 M�:

R1.4 = (9.52± 0.49)[p(ns, xβ)/(MeV fm−3)]1/4 km. (20)

The polytrope results are consistent with this relation
(Fig. 6), where we approximated p(ns, xβ) ' p(ns, 0) =
3L/n0 from the piecewise polytropic EOSs, as can readily
be expected given the high degree of correlation between
p1 and p(ns, 0) or L (Fig. 1). The tendency for our pre-
dicted radii to be slightly smaller than those predicted by
Eq. (20) is due to the fact that both the lower and up-
per limits to p1 are smaller than for the range of the EOS
samples considered by Refs. [58] and [57]. However, this
correlation is strongly sensitive to the prior assumptions,
i.e. the possible presence of a phase transition just above
the saturation density. This is demonstrated by the stark
difference between the polytrope-based models and Model
C (compare Figs. 6 and 7.)

The stark difference in permitted values of R1.4 is read-
ily understood if one permits strong phase transitions and
a high-density causality-limited EOS in the piecewise poly-
trope model by permitting n1 and n2 to vary, as described
in Sec. 3.3. There it was shown, Eq. (18), that the strength
of the phase transition is described by n2/n1, or, equiva-
lently, by ε2/ε1. The range of permitted values of R1.4 is
extremized when n1 = ns. The largest value, R1.4 ' 14.3
km, results when n2 = n1 = ns. The smallest value,
R1.4 ' 8.4 km, results when n2/n1 ' 4.2, and is nearly as
small as allowed by general relativity and causality, 8.15
km [9], in the case when Mmax = 1.97M�. The lower limit
to R1.4 increases for larger values of Mmax (accompanied
by a decrease in n2/n1). Furthermore, a phase transition
is only allowed, assuming Mmax

<∼ 1.97M�, if n2/n1 <∼ 2;
further decreases in permitted values of n2/n1 result for
larger values of Mmax. These conclusions are similar to
those of Ref. [59].

Fig. 6. The same as Fig. 4 except showing the correlation be-
tween R1.4 and p(ns, 0). The dotted curves show the correlation
determined by Ref. [57] with 1σ errors.
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Fig. 7. The correlation between R1.4 and the pressure, p(ns),
formatted as in Fig. 5. Model A, which is based on polytropes,
does show a slight correlation.

There is a lack of correlation between p2 and R1.4. In-
stead, a high degree of correlation exists between p2 and
Mmax (Figs. 8 and 9). The presence of this correlation ap-
pears to be relatively prior-independent. Model C, which
allows for stronger phase transitions, also tends to allow
EOSs which have higher pressures at high densities, and
thus gives relatively larger maximum masses. That is, the
posterior distribution of Mmax is strongly prior dependent.

Ref. [9] determined the minimum radii of 1.4 M� stars
as a function of the minimum value of Mmax using the
maximally compact EOS (s = 1) from Ref. [53]. The rela-
tion between Mmax and R1.4 for the piecewise polytropic
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Fig. 8. The same as Fig. 4, except showing the correlation
between Mmax and p2.
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Fig. 9. Correlation between Mmax and the pressure, p2, for-
matted as in Fig. 5.

EOS is shown in Fig 10. Configurations that are causal and
capable of supporting at least 1.97 M� have R1.4 > 10.6
km (10.85 km for the minimum value of p1 from neu-
tron matter calculations). As the maximum mass limit is
raised, the lower limit for R1.4 in causal configurations
slowly increases. For Mmax > 2.4 M�, it is necessary that
R1.4 > 12 km and p1 > 14 MeV fm−3. The relation be-
tween Mmax and R1.4 for Models A and C are plotted in
Fig. 11, demonstrating the dependence on the prior dis-
tribution.

Note that causality and the constraint that Mmax >
1.97 M� strongly limits configurations with radii less then
10 km, as shown in Figs. 10 and 11. In the polytrope
model, it is important to emphasize the parameters lead-
ing to these acausal configurations satisfy causality at the

Fig. 10. The maximum masses and radii of 1.4 M� stars pre-
dicted by piecewise polytropic EOSs. Shown for comparisons
are limiting radii predicted by the maximally compact EOS
with either s = 1 or s = 1/3. Black circles are causal configu-
rations; green circles indicate acausal configurations.

boundary points n1, n2 and n3. Acausality occurs at den-
sities larger than n3 but below the central density of max-
imum mass configurations. Thus, the acausality boundary
shown for p3 as a function of p2 indicated in Fig. 3 is effec-
tively extended to lower values of p3 at lower values of p2,
and also implies a lower limit to p2 when combined with
the constraint Mmax > 1.97M�.

The minimal radius limit from the maximally compact
EOS (s = 1) is shown as the solid curve in Fig. 10 which
excludes the green shaded region. This boundary approx-
imately represents an extreme limit because most EOSs
have larger radii. It was recently demonstrated that exis-
tence of 2 M� neutron stars implies that the sound speed
must be larger than c2s = c2/3 [25,60] (the dotted line in
Fig. 10), and most of our parameterized EOSs also exceed
this limit.

In the polytrope model, the realistic upper limit to
p1 from neutron matter theory sets an interesting upper
limit to R1.4 of about 13 km. With the present value of
Mmax

>∼ 1.97 M�, neutron matter constraints on p1 re-
strict neutron star radii for 1.4 M� stars to lie in the
narrow range 11 km <∼ R1.4

<∼ 13 km. It is interest-
ing to examine the frequency distribution of R1.4 among
the models that satisfy Mmax > 1.97 M� (Fig. 12). Al-
though the minimum radius is about 10.6 km, assuming
that the parameters p1, p2 and p3 have equal likelihoods
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Fig. 11. Correlation between Mmax and the radii of 1.4 M�
stars, formatted as in Fig. 5.

Fig. 12. The cumulative probability of R1.4 assuming equal
likelihoods for parameters p1, p2 and p3 within their permitted
ranges, in the baryon density polytropic scheme.
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Fig. 13. The cumulative probability of R1.4 for Model C, a
prior assumption which allows for stronger phase transitions.
The (solid, dashed, dotted, and dashed-dotted) lines corre-
spond to minimum maximum masses of 1.97, 2.1, 2.3 and
2.5 M�, respectively. Smaller radii are allowed in comparison
to Fig. 12.

within their ranges implies that it is highly unlikely that
R1.4 < 11 km. On the other hand, Model C which al-
lows strong phase transitions also allows the pressure to
increase quickly above the saturation density. In turn, this
allows radii as large as 14.5 km. The corresponding cumu-
lative probability distribution is given in Fig. 13. It should
be noted however, it is unclear what physical mechanism
would give rise to a strong increase in the pressure just
above the nuclear saturation density. A strongly repulsive
four-neutron force, for example, seems unlikely.

The restrictions of causality and large maximum masses
severely restrict the allowed EOSs. Fig. 14 shows bound-
aries in the pressure-energy density plane with different
assumptions for Mmax permitted by causality and the as-
sumed low-density EOS for the crust and for neutron mat-
ter. For Mmax = 1.97 M�, the maximum uncertainty in
pressure for a given energy density is no larger than a
factor of 3 (which occurs near n1), and is slightly larger
than a factor of 2 near the central densities of maximum
mass stars. The corresponding regions in the mass-radius
plane that can be populated by EOSs satisfying the Mmax,
causality and the low-density EOS constraints are shown
in Fig. 15. These figures show the importance of neutron
star mass measurements: the larger the minimum value of
Mmax, the more restricted are the ranges of p(ε) and R(M)
and the more accurately the EOS can be predicted. The
corresponding regions in the mass-radius phase for Model
C are plotted in Fig. 16, where larger radii are allowed as
discussed above.
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Fig. 14. Allowed pressures as a function of energy density
permitted by the assumed constraints on the low-density EOS,
causality, and selected values for Mmax. Red crosses indicate
the central conditions for surviving EOSs. The black, yellow,
blue and red lines are for Mmax = 1.97 M�, 2.1 M�, 2.3 M�,
and 2.5 M�, respectively.

Fig. 15. Allowed regions in the MR plane for selected values
of Mmax, causality and the assumed constraints for the low-
density EOS for the polytropic EOS.

It is interesting to compare our results with those of
a recent study in Ref. [61]. In that study, various M -R
curves were assumed. Beginning with a relativistic mean
field EOS (FSU-Garnet) that predicts R1.4 = 13 km and
Mmax = 2.07 M�, new M − R curves were generated by
arbitrarily translating the original M −R curve for M >
Mi = 0.4 M� (corresponding to ni ' 1.5ns) to smaller
radii by discrete amounts. The EOS corresponding to each
newly-generated MR curve was deduced by the inversion
technique from Ref. [23]. It was shown that Mmax ' 2 M�
was possible only if R1.4

>∼ 10.7 km, a result very similar
to that of the present study if phase transitions are not
allowed. However, it can be argued that the prescription of
Ref. [61] is model-dependent, being sensitive to the choices
of Mi and the fiducial EOS (FSU-Garnet). In addition, the
prescription seems not consistently applied, as an abrupt
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Fig. 16. Allowed regions in the MR plane for selected val-
ues of Mmax, causality and the assumed constraints for the
low-density EOS in Model C. The (solid, dashed, dotted, and
dashed-dotted) lines correspond to minimum maximum masses
of 1.97, 2.1, 2.3 and 2.5 M�, respectively.

reduction of R at Mi implies a discontinuity in the M -R
curve and a first-order phase transition in p(ε). Rather,
Ref. [61] alters the low-density EOS for n < ni so that the
values of Ri can be reduced from the original value (' 13
km) to values as small as 9 km, which seemingly results
in higher pressures for n <∼ 0.3ns than the original EOS.
For n ' 0.1ns, the pressure can be 20–30% larger than the
original EOS, and the amplification grows with decreasing
density. This is incompatible with our knowledge of the
crust’s EOS which allows no such deviations.

4.2 Universal Relations

There have been shown to exist several relatively EOS-in-
dependent relations among neutron star observables. These
may be very useful to reduce degeneracies in interpreta-
tions of observations, including those from gravitational
radiation [49]. Ref. [62] found a relation between the bind-
ing energy BE = (Nmn−M), where we set G = c = 1, N
is the number of nucleons in the star, and the compactness
parameter β = M/R; this was later improved by Ref. [10],
who found

BE/M ' (0.60± 0.05)β(1− β/2)−1 (21)

for a wide variety of EOSs which could support at least
1.65 M�. Later, Ref. [63] found another EOS-independent
relation concerning the moment of inertia for EOSs which
could support approximately the same Mmax:

I ' (0.237± 0.008)MR2(1 + 2.84β + 18.9β4). (22)
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Fig. 17. The binding energy as a function of compactness.
Solid lines show the bounds determined from TOV integrations
using the full grid of piecewise polytropic EOSs and assuming
various values for Mmax. Dashed lines indicate Eq. (21). The
range of compactness for 1.4 M� stars permitted by causality
and Mmax > 1.97 M� is shown.

These relations are compared to results from piecewise
polytropic EOSs that satisfy causality and various values
of Mmax in Figs. 17 and 19. The results are reasonably well
approximated by Eqs. (21) and (22) except for β >∼ 0.22,
i.e., close to the maximum masses. We find an improved
approximation for the moment of inertia, showing less un-
certainty, especially for compactnesses typical of 1.4 M�
stars, is given by

I

MR2
' 0.01 +

(
1.200+0.006

−0.006

)
β1/2 − 0.1839β (23)

−
(
3.735+0.095

−0.095

)
β3/2 + 5.278β2. (24)

The smaller uncertainties result from assuming thatMmax >
1.97 M�. It is apparent, however, from both Figs. 17 and
19 that should further observations increase the value of
Mmax uncertainties in analytic approximations for BE and
I can be substantially reduced.

Ref. [49] found an even more remarkable EOS-indepen-
dent relation relating the moment of inertia, the tidal Love
number and the quadrupole polarizability, which is now
known as the I-Love-Q relation. The correlation between
the dimensionless moment of inertia, Ī = I/M3, and the
dimensionless tidal Love number, λ̄ = λ/M5, is shown in
Fig. 21 for the piecewise polytropic EOSs. The relation for
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Fig. 18. The binding energy as a function of compactness for
models A and C. The 68% and 95% contour lines are indi-
cated with the same notation as Fig. 5 above. Note that the
correlation is independent of the prior distribution.

Fig. 19. Similar to Fig. 17 but for the moment of inertia as a
function of compactness. Dashed lines indicate Eq. (22).
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Fig. 20. The quantity Iβ2/M3 as a function of compactness
for models A and C. The 68% and 95% contour lines are in-
dicated with the same notation as Fig. 5 above. Note that the
correlation is independent of the prior distribution. The jump
in the contours for Model C at β = 0.1 is a result of selecting
a new peak in a slightly bimodal distribution.

Fig. 21. The I-Love relation between Ī = I/M3 and λ̄ =
λ/M5. Black circles show results for the piecewise polytropic
EOSs, the red line is Eq. (28).

Fig. 22. Similar to Fig. 17 but for the dimensionless tidal Love
number as a function of compactness. The dashed lines show
the combined approximations from Eqs. (28) and (22) .
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Fig. 23. The quantity 20λβ6/M5 as a function of compactness
for models A and C. The 68% and 95% contour lines are in-
dicated with the same notation as Fig. 5 above. Note that the
correlation is only weakly dependent on the prior distribution.
The jump in the contours for Model C at β = 0.1 is a result of
selecting a new peak in a slightly bimodal distribution.
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Ī(λ̄) [49] and its inverse, λ̄(Ī), are

ln Ī ' 1.417 + 0.0817 ln λ̄+ 0.0149(ln λ̄)2 (25)

+ 0.000287(ln λ̄)3 − 0.0000364(ln λ̄)4, (26)

ln λ̄ ' −30.5395 + 38.3931 ln Ī − 16.3071(ln Ī)2 (27)

+ 3.36972(ln Ī)3 − 0.26105(ln Ī)4. (28)

The deviation of piecewise polytropic EOSs from these
analytic approximations is negligible, as seen in Fig. 21.
Combining Eq. (28) with the approximation Eq. (22) yields
an explicit approximation for λ̄(β), as shown in Fig. 22.
The dashed lines show the combined approximations from
Eqs. (28) and (22). It is apparent that uncertainties in a
revised correlation would be substantially reduced if ob-
servational constraints for Mmax were taken into account.

It is interesting to examine the EOS dependence of
the moment of inertia relative to the binding energy (Fig.
24). The two quantities are not as highly correlated as
are Ī and λ̄, but the correlation is still significant. The
approximation shown in Fig. 24, using Mmax > 1.97 M�,
is

BE/M = 0.0075 +
(
1.96+0.05

−0.05

)
Ī−1 − 12.80Ī−2 (29)

+ 72.00Ī−3 −
(
160+20

−20

)
Ī−4 (30)

The improvement resulting from inclusion of maximum
mass constraints, compared to the correlation BE(β)/M
inferred from Eqs. (22) and (21), is seen to be substan-
tial, especially for compactnesses characteristic of 1.4 M�
stars.

5 Discussion

In the future, astronomical observations of neutron stars
may be sufficiently plentiful and precise that one will be
able to map out the mass-radius curve and the EOS using
simpler methods like a χ2 analysis. The currently available
observational data does not permit this. The problem of
determining the mass-radius curve is underconstrained, in
part because the data is not yet precise, and in part be-
cause there are several remaining systematic uncertainties
(or several model assumptions).

A similar difficulty exists on the side of experimen-
tal nuclear physics. Even though isospin-asymmetric mat-
ter near the saturation density is well-known, the nature
of neutron-rich matter near the nuclear saturation den-
sity is still subject to uncertainties such as the nature of
the three-neutron force and the highest density to which
we can trust chiral effective theories (see recent progress
on this front in Ref. [64]. Experimental observables which
probe high-density matter, such as intermediate-energy
heavy-ion collisions (e.g. Ref. [65]), are also subject to
strong systematics. As we have noted above, the lowest
density at which a phase transition to exotic matter is
possible is a critical quantity necessary for understanding
neutron stars. This lowest density limit for exotic matter
is not well-known.

Fig. 24. Similar to Fig. 17 but for the dimensionless binding
energy BE/M as a function of 1/Ī. The dashed lines represent
the combination of approximations for I(β) and BE(β), Eqs.
(22) and (21).

In the context of Bayesian inference, we approached
these issues by varying our prior assumptions. To the ex-
tent that we are able to express the various systematic
uncertainties in terms of prior probability distributions,
Bayesian inference provides us a way to quantify the un-
certainty in the mass-radius curve and the EOS of dense
matter. This method also allows us to critically examine
the extent to which correlations between observables exist.

We found, in particular, that the possible presence of
phase transitions at low-density has an important impact
on the lower-limit for the radius of low-mass neutron stars.
We showed that some universal relations (or correlations)
are not strongly sensitive to the prior assumptions, such
as the relation between the radius of a 1.4 M� neutron
star, the pressure at ≈ 2ns, and the correlation between
Mmaxand the pressure at ≈ 4ns. We also showed that the
high degree of correlation between the moment of iner-
tia and the tidal Love number (the I-Love correlation) is
robust with respect to prior assumptions concerning the
equation of state. Finally, we presented a new universal
relation connecting the neutron star binding energy to its
moment of inertia.
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