


# Engineering Sciences Research Foundation (ESRF) Overview



## ESRF External Panel Review January 15, 2007



Wahid Hermina  
Senior Manager  
Thermal, Fluids and Aerosciences  
Sandia National Laboratories  
[wlhermi@sandia.gov](mailto:wlhermi@sandia.gov)

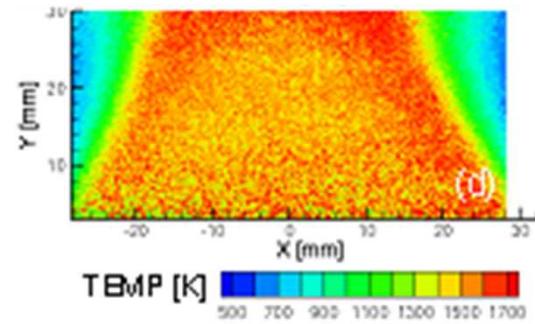
*Sandia is a Multiprogram Laboratory Operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy Under Contract DE-AC04-94AL85000.*



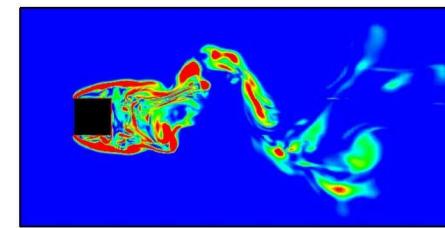
# ESRF Objectives



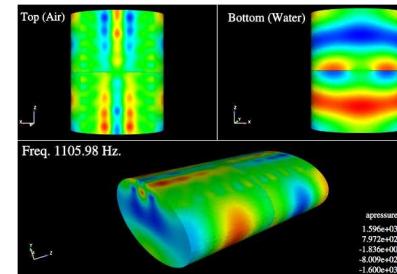
The Engineering Sciences Research Foundation (ESRF) provides **capabilities and understanding** required to **enable predictive simulation** in support of the Engineering Sciences needs of Sandia's Strategic Management Units.


Discipline areas include thermal sciences, fluid sciences, aerosciences, solid mechanics, structural dynamics, material mechanics and electrical sciences.



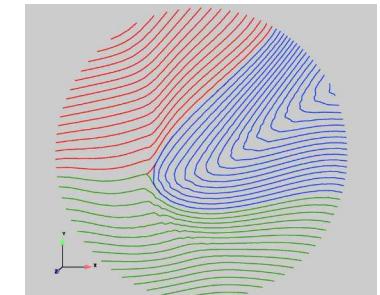

# Research Themes for ESRF




- High fidelity diagnostics and novel experimental approaches:
  - Spatial and temporal resolution
  - Complex/multiple phenomena
  - Range of conditions: continuum to non-continuum
- Constitutive phenomena critical to closure for predictive simulation, e.g.:
  - turbulence, phase change, friction, joints, accommodation coefficients.
- Advanced computational capabilities:
  - Single and multiphysics, e.g. acoustics, noncontinuum, multiphase.



2-D Temperature Imaging w/ FRS



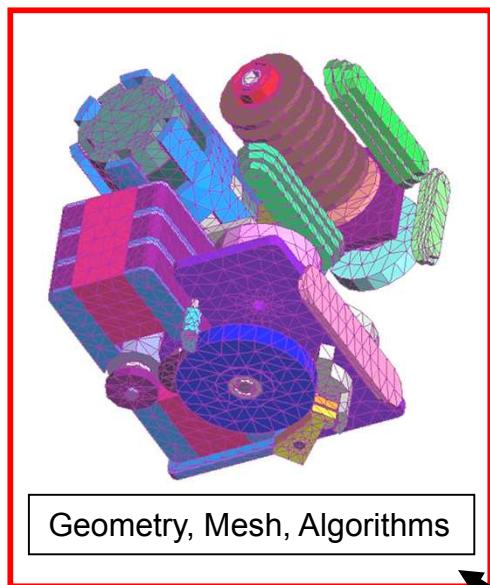

Detached Eddy Simulation



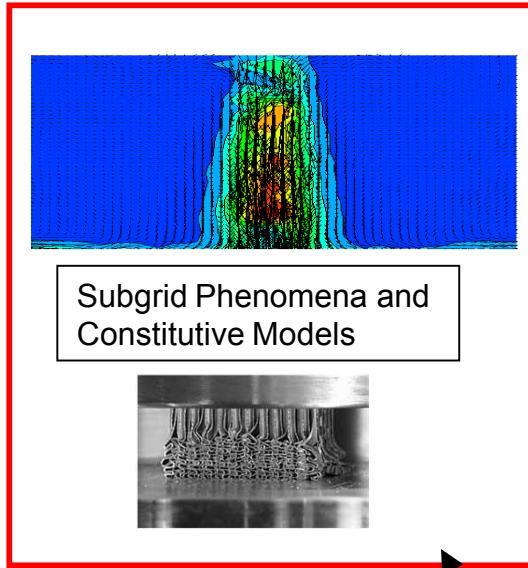
Multiphase tracking

Acoustic simulation capabilities

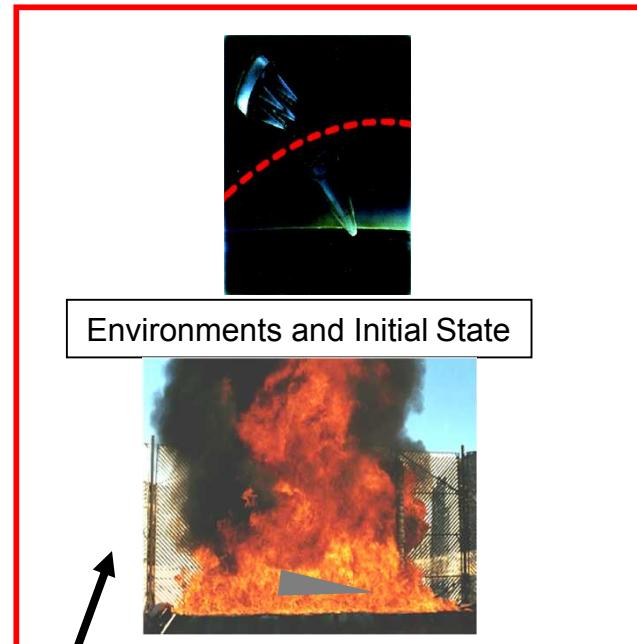





# Engineering Sciences Research Foundation (ESRF) has two primary components:


- **Laboratory Directed Research and Development (LDRD)**
  - LDRD is Sandia's **sole source of funding for laboratory-directed technical work** as authorized by Congress and the Department of Energy (DOE) and represents up to 6% of laboratory revenue
  - Focused on **fundamental research and innovative approaches to complex problems of relevance to Sandia's SMUs**
  - **Time horizon is greater than 5 years**
  - Enable Predictive Simulation (EPS) portfolio is approximately \$15.4M
- **Tech Base Program (NW)**
  - Research and Development that **builds upon prior fundamental research to build capabilities/understanding to support the needs of the NW program**
  - Combined experimental and computational program
  - **Time horizon is less than 5 years**
  - Engineering science portfolio about \$9M (including funding of joint Sandia/NSF program)

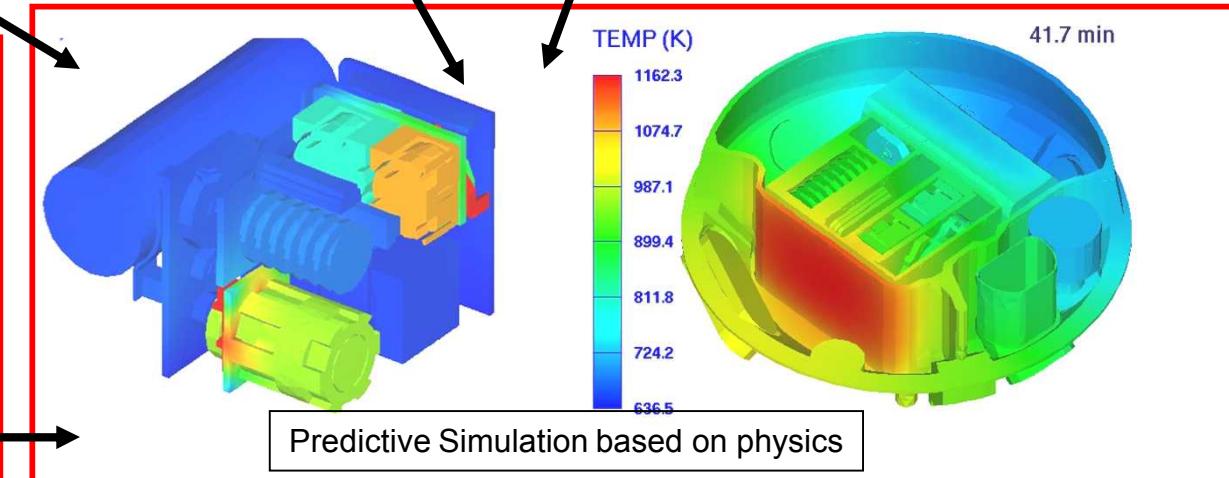



# Engineering Sciences Research Foundation (ESRF) provides critical understanding and capabilities for predictive simulation



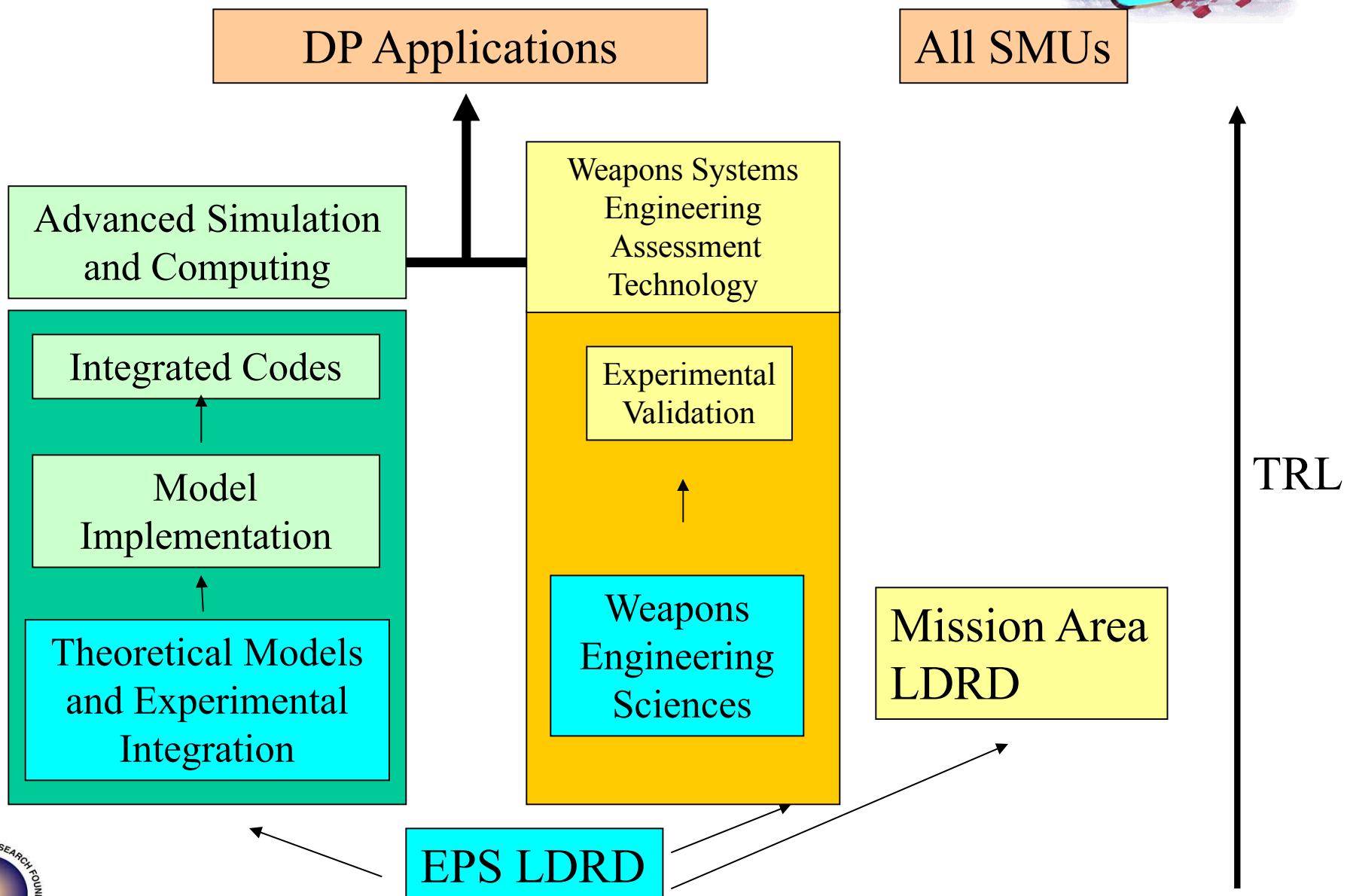
Geometry, Mesh, Algorithms




Subgrid Phenomena and Constitutive Models



Environments and Initial State




Validation, UQ



Predictive Simulation based on physics

# Programmatic Alignments



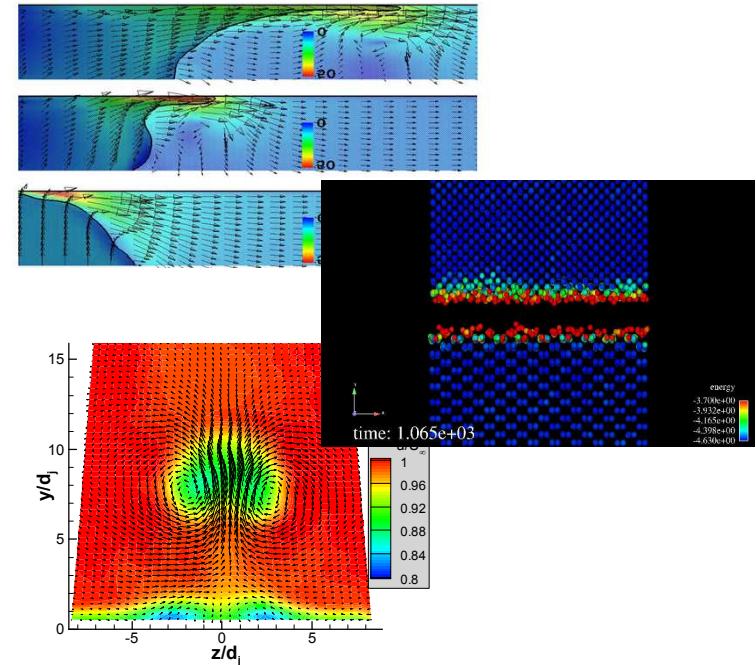
# Enable Predictive Simulation (EPS) Investment Area



- Sandia LDRD program restructured by CTO, Rick Stulen
  - Created 8 investment areas including EPS
- Investment area lead by Engineering Sciences Director, with a cross-center Director Team
- \$15.4M Portfolio
- EPS Strategic Objective:
  - The Enable Predictive Simulation LDRD Investment area sponsors innovative research and development that **builds the knowledge base and capabilities necessary for predictive simulation of complex problems**. Scientifically grounded simulation leveraging advanced computational capabilities will revolutionize our ability to understand complex behavior of human and natural systems, and engineer innovative products. **This investment area enhances the ability of Sandia's Strategic Management Units to provide solutions to their customers that are grounded in fundamental understanding of underlying principles**, and that exceed customer expectations of performance, cost and schedule.



# EPS Thrust Areas




- **Physical and Engineering Sciences (P&ES):**

- Thermal/Fluids/Aero-sciences
- Solid Mechanics/Material Mechanics/Structural Dynamics
- Electrical Sciences & Electromagnetics
- Chemical and Combustion Sciences
- Material and Geo-sciences

- **Computational & Information Sciences (C&IS):**

- Algorithm Research & Development
- Advanced Architectures & Frameworks
- Future Platforms
- Optimization/UQ
- Visualization
- Informatics



# Enable Predictive Simulation

## (EPS) R&D Goals



- Advanced experimental diagnostics that permit spatial and temporal resolution of key behavior.
- Experimental discovery focused on enhancing our understanding with the intent of building models that codify that understanding.
- Theoretical discovery of new methodologies and models that permit us to describe and predict key behavior.
- Development of computational approaches that codify new methodology.
- Development of computational and statistical approaches for optimization, verification, validation and uncertainty quantification.
- Computer Science that enables all aspects of problem definition, analysis, and prediction. Technologies may include informatics and visualization.
- Discovery and development of computer platforms, architectures and frameworks that enable predictive simulation.

**Build knowledge base and capabilities necessary  
for predictive simulation of complex problems.**



# EPS IAT Director Team



- **Director team consists of 6 Directors across core disciplines:**
  - Art Ratzel, *Engineering Sciences*, Chair
  - David Womble, *Computations, Computers, Information and Mathematics*, Co-Chair
  - Bob Carling, *Physical and Engineering Sciences*
  - Duane Dimos, *Materials and Process Sciences*
  - Peter Davies, *Nuclear Energy and Global Security Technologies*
  - Len Napolitano, *Computer Science and Information Technologies*



# Physical & Engineering Sciences (P&ES) Thrust Area



## •S&T Activities in Traditional Engineering Disciplines

- Thermal/Fluids/Aero-sciences
- Solid Mechanics/Material Mechanics/Structural Dynamics
- Electrical Engineering & Electromagnetics
- Chemical and Combustion Sciences
- Material and Geo-sciences

## •Focus Areas

- Phenomenology Understanding & Quantification (Experiment & Theory)
  - Continuum & Non-continuum processes
  - Multi-scale physics (Bridging micro-to-continuum)
- Advancing the tools
  - New Diagnostics
  - V&V/QMU methodology

## Investment Area Team (IAT) for P&ES

- Wahid Hermina, ES – Area Lead
- Mel Baer, ES, reactive processes, chem
- Davina Kwon, ES,
- Jim Redmond, ES, micro, solid, structural
- Tim Trucano, C&IS, validation and UQ sciences
- Sudip Dosanjh, C&IS, thermal-fluids computational
- Justine Johannes, MS&T, materials, processes, chemistry
- Mark Kiefer, Electromagnetics & electrical effects
- Scott Hutchinson, Electrical devices and systems
- John Merson, C&ES, geosciences
- Tim Sheppard, MS&T
- Carl Peterson, Thermal, fluids,aero

# Computational & Information Sciences (C&IS) Thrust Area



## • Focus Areas

- Algorithm Research & Development
- Advanced Architectures & Frameworks
- Future Platforms
- Optimization/UQ
- Visualization
- Informatics
- Computational Methods R&D

## Investment Area Team (IAT) for C&IS

- Sudip Dosanjh, C&IS – Area Lead
- Bob Benner, C&IS
- David White, C&IS, informatics
- Scott Collis, C&IS, algorithms
- Heidi Ammerlahn, informatics/algorithms
- Eliot Fang, MS&T, computational mechanics
- Wahid Hermina, ES
- Jim Stewart, computational mechanics and frameworks
- Chris Moen, computational mechanics
- Tom Pfeifle, Geomechanics
- Mitch Sukalaski, architectures
- Mike Hardwick, architectures



# EPS LDRD Review Criteria



- Innovation/Creativity
  - **Technical viability**
  - **Boldness – “game-changing”**
- Impact
  - Technical
  - Strategic
    - Has mission thrust insertion potential
    - New business through technology
    - Supports 10 year corporate objective
- Capabilities of Team (factors to be considered)
  - Nurture young staff.
  - Staff track record.
  - Team makeup (someone > 0.5 FTE).
  - University/industry connectivity, if needed.



# Process for EPS Full-Proposal Written Reviews/Feedback to PIs



## Technical Reviews/Feedback:

- Identify 1-2 technical reviewers for each proposal- selected principally from DMTS and Senior Scientist community
  - Complete detailed review with submission of review into LDRD Web Page. Submitted to PIs prior to oral review.
  - **Provide list of questions for proposal clarification and issues to PIs to support follow-on review sessions with IAT**

## IAT Reviewer Responsibilities:

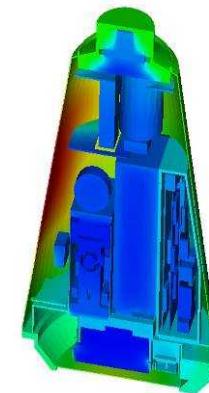
- Provide written clarification questions to PIs to be addressed during oral review.
- Each IAT reviewer reviews and scores each proposal (H/M/L/NA).

## Programmatic Review/Feedback:

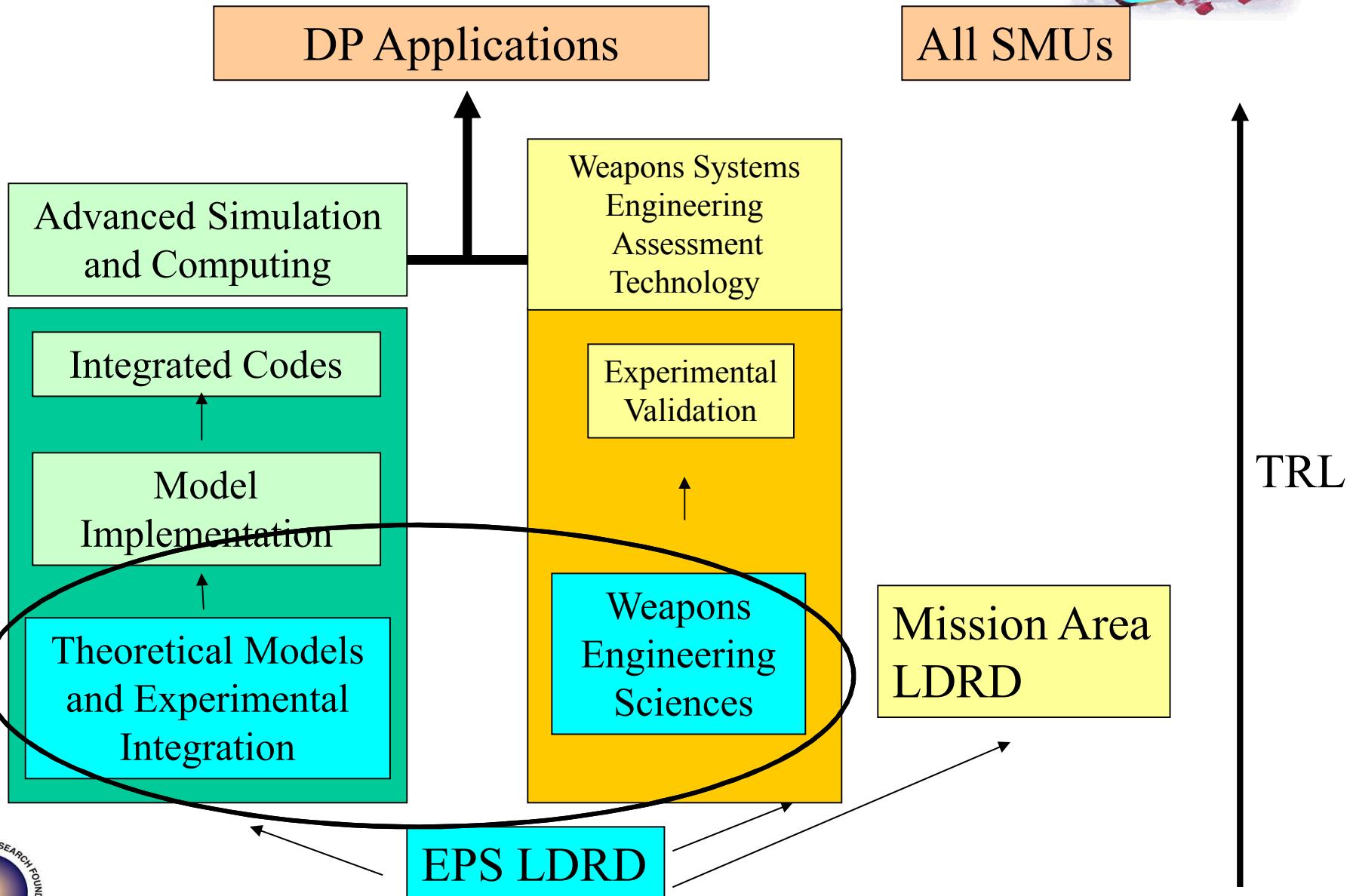
- IAT POC for each proposal inputs Thrust Area consensus view on programmatic value



# EPS Selection Matrix




| Technology Groups<br>(PM areas; PMs<br>TBD) | Discover                              | Create                                | Prove   |
|---------------------------------------------|---------------------------------------|---------------------------------------|---------|
| Computational Science                       | 07-1246                               | 07-0010, 07-0873, 07-1286,<br>07-1328 |         |
| Algorithms                                  | 07-0872, 07-0013, 07-1249,            |                                       |         |
| Computer Systems                            | 07-1247, 07-1316, 07-1180             | 07-0309, 07-1317                      |         |
| Informatics                                 | 07-1314, 07-1315                      | 07-0612, 07-1248, 07-1251             |         |
| Materials                                   | 07-0206, 07-1257, 07-1329             |                                       | 07-0535 |
| Failure                                     | 07-0462, 07-0704                      | 07-0720                               |         |
| Geophysics and porous<br>media              | 07-1308                               | 07-1244                               |         |
| Solids and Structures                       |                                       | 07-0166                               |         |
| Fluid-Structures                            | 07-1259                               | 07-0247                               |         |
| Thermal-fluids                              | 07-0590, 07-1256                      | 07-1330                               |         |
| Microsciences &<br>microenergetics          | 07-1069, 07-0377, 07-0746,<br>07-1258 |                                       |         |
| Electrical Sciences                         |                                       | 07-0540, 07-1250                      |         |


# Metrics for Success



- Maturation of research to higher TRL development and application work.
  - Application driven migration of work to NW research foundation and impact to NW campaigns and DSW.
  - Spawn/enable SMU LDRDs and enhance Sandia ability to attract new customers and revenue.
  - Attract CRADA work supporting our core mission areas.
- Publications and citations.
- “Build knowledge base and capabilities necessary for predictive simulation of complex problems.”
  - Performance, cost and schedule improvements for Sandia customers traceable to LDRD work.



# Programmatic Alignments



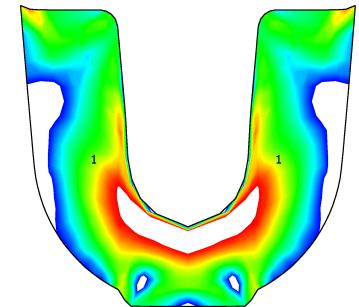
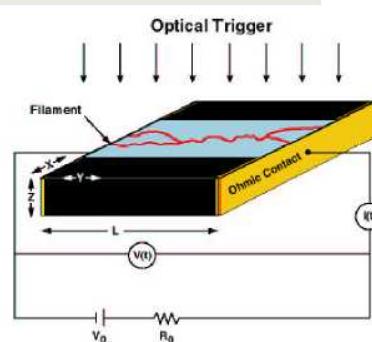
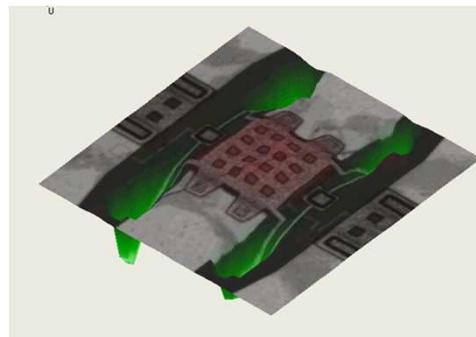
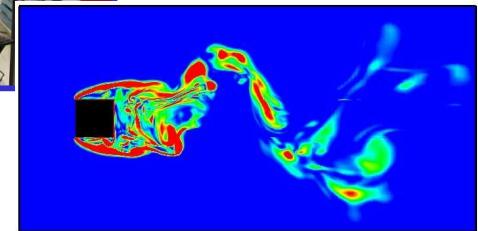
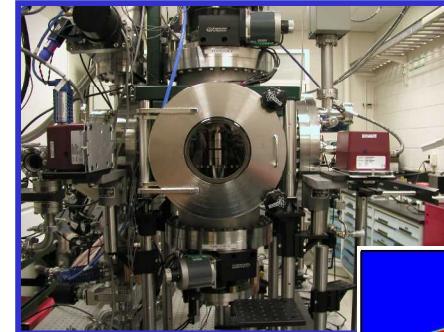
# Engineering Sciences Tech Base Program – NW Funded



- Computational and Experimental Tech Base Program supporting the Engineering Sciences Needs of NW
  - R&D portfolio driven by discipline strategic plans
  - ~ \$4M experimental program (C6)
  - ~\$4.8M computational program (ASC/PEM)
- Joint funding, with NSF, of university research supporting needs of NW
  - \$1M provided by Sandia from ESRF Tech Base Program
  - \$1M provided by NSF from Engineering Directorate



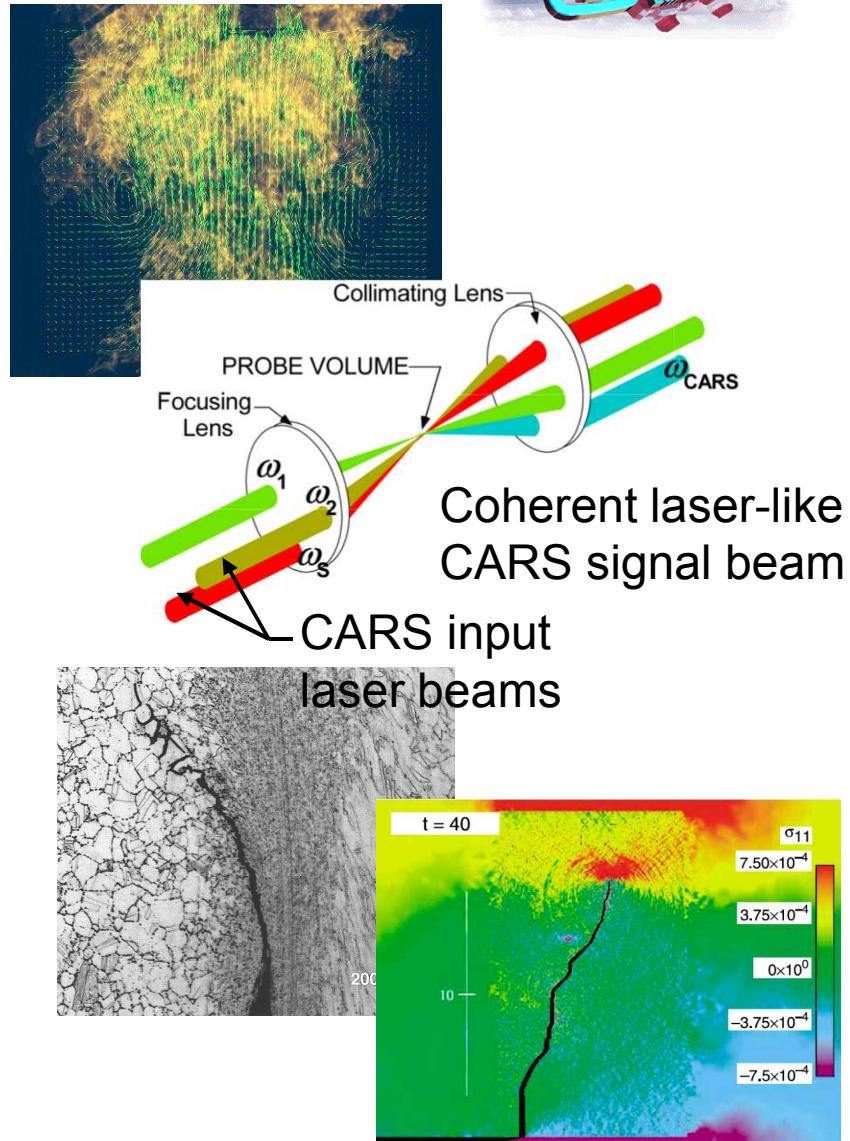
# Tech Base Program Management


- Research Plans and projects created by Sub-discipline leads (technical managers)
  - **Address needs of NW program**
  - Research plans identify needs/drivers, current state, gaps and subsequent priorities
  - Review existing projects: Objectives, team, budget, applications and accomplishments
  - Propose new projects to address gaps: Objectives, team, budget, applications and deliverables.
- Research plans and projects reviewed by discipline leads (senior managers). Project modifications implemented, as required.
- Research program reviewed and approved by Engineering Sciences Council.
  - ES Council members are Directors or their delegates
  - Representatives from the NW program areas: Accelerated Strategic Computing (ASC), Engineering Campaigns (EC) and Science and Technology (S&T)
  - Representatives from each SMU: NW, DS&A, ER&N, HS&D
  - Representatives from key partner research foundations: computational sciences, microsystems, material sciences, manufacturing sciences.



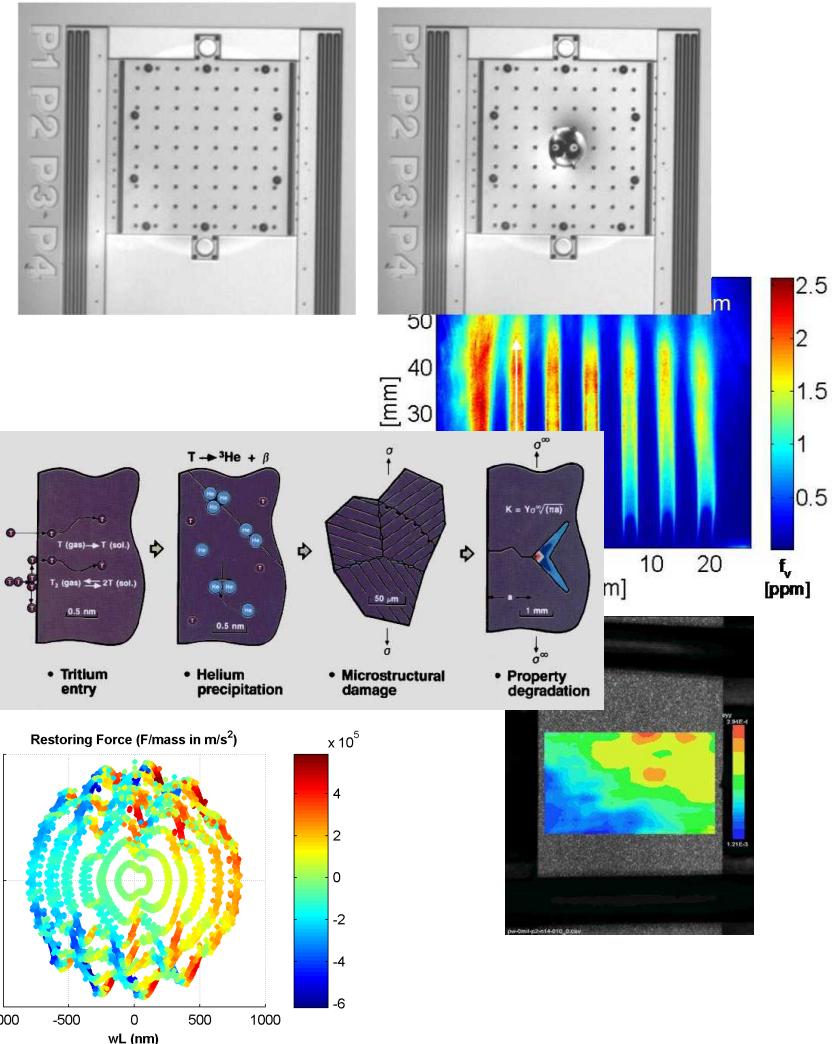
# Research Plans are basis for ESRF Tech Base Management


- Research plans address mission drivers/needs, current state of disciplines, and gaps/priorities.
  - Integrated computational and experimental plans
- Thermal, Fluid and Aero Sciences
  - Microsciences
  - Fluid Sciences
  - Thermal and Reactive Processes
  - Aerosciences
- Solid, Structural and Material Mechanics
  - Structural Dynamics
  - Solid Mechanics
  - Material Mechanics
- Electrical Sciences



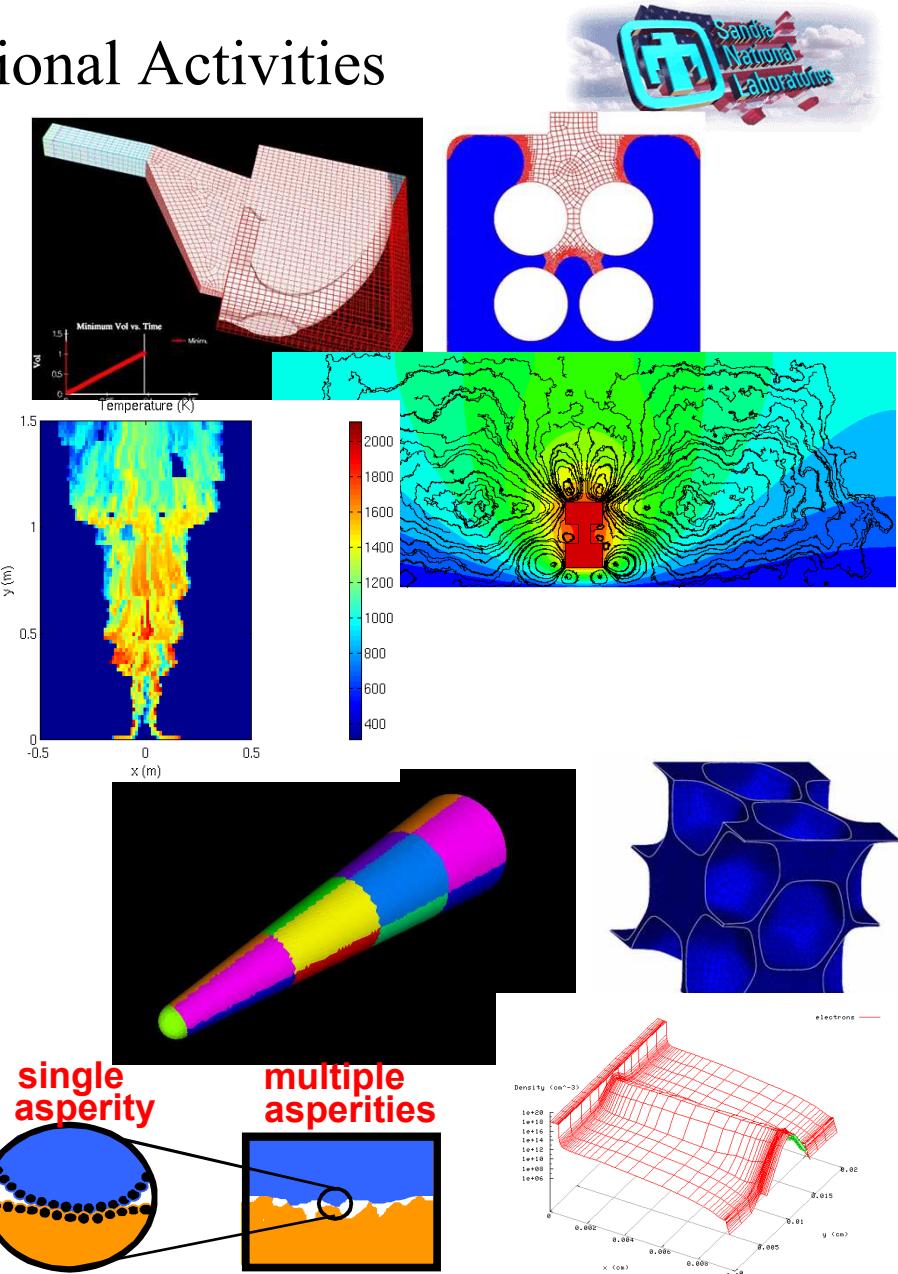
# Supporting DP Activity




- Electrical sciences:
  - Electrical breakdown for lightning/safety
- Thermal, Fluids and Aerosciences:
  - Characterizing fire environments for safety. (W76, RRW)
  - Microsystems thermal response and gas-dynamics (Future systems)
  - Bomb/RB flowfields, aero thermal response and surface properties (B61, W76, RRW)
  - Multiphase flows for manufacture. (Neutron Generator, foam potting, NA123 defect free manufacturing)
- Solid, Structures, Material Mechanics
  - Failure models for performance and safety (B61, W76, RRW).
  - Material (foams, metal for gas storage... ) response (B61, W76, RRW)
  - Macroscale and microscale structural response (B61 W76, RRW)



# Representative FY06 Experimental Activities




- Optical interactions with microsystems
  - Advanced surety applications
- CARS (Coherent Anti-Stokes Raman Spectroscopy) and Raman-Variant Diagnostics for High-Resolution Thermometry
  - Impact on weapon safety
- Hydrogen-Deformation Interactions
  - Support gas transfer
- Optical Measurement Techniques (e.g. Digital Image Correlation)
  - Support safety and performance
- Nonlinear Dynamics of Micro-Scale Structures
  - Advanced surety applications



# Representative FY06 Computational Activities

- Stable, efficient formulations of the level set, continuity, and momentum equations for 3-D, low capillary number problems – 100X speedup for 3D mold fill.
- Hosted International DSMC meeting:
- Turbulence model development for fire based on ODT.
- Acoustic analysis of mockup re-entry vehicle with prescribed external pressures due to re-entry. Investigated acoustic pressure buildup inside cavity.
- Developed Viscoplastic Foam Models for PMDI20 Foam and FR3712 foams
- Asperity-level modeling of polysilicon MEMS.
- Computational capabilities for electrical breakdown in solids
- Meshless method development for large deformation failure modeling



# Sandia-NSF Joint Program



- Sandia Engineering Sciences and NSF Engineering Directorate jointly fund \$2M/year of university research **responsive to programmatic needs of both organizations.**
  - Sandia portion funded out of Tech Base and PEM (NW) funding
- Program Title: **Engineering Sciences for Modeling and Simulation-Based Life-Cycle Engineering and Manufacturing**
- Projects are chosen through the formal NSF review process.
- We hold yearly workshops to exchange information between participants.
  - Last workshop held in Livermore, CA, on March 1 – 2, 2006 (18 projects)
  - Prior workshop held in Albuquerque, NM, on Feb 10 - 11, 2005. (19 projects)
- 13 new three year projects initiated in FY07



# FY2006 NSF-Sandia Workshop

## Agenda



### **Solid and Structural Mechanics**

8:45 AM Computational and Modeling Strategies for Damping and Multi-Physics Coupling on Interfaces  
9:15 AM Development and Analysis of Reduced-Order Models for Mechanical Joints and Interfaces  
9:45 AM Modeling, Simulation and Experimental Study of Thermo-mechanical Degradation in Elastomeric Components  
10:15 AM Break

### **Presenter/Principal Investigator**

Tod Laursen, Duke University (Sandia Funded)  
Edward Berger, University of Virginia, and D. Dane Quinn, University of Akron (SNL Funded)  
Alan S. Wineman, University of Michigan (SNL Funded)

### **Thermal, Fluid and Aerosciences**

10:30 AM Hot-Wire Measurements of Instability Waves on Sharp and Blunt Cones at Mach-6  
11:00 AM Hypersonic Boundary Layer Stability and Transition Analysis Using STABL  
11:30 AM Design and Construction of the 3D Digital Particle Image Velocimetry & Thermometry System  
12:00 PM Lunch  
1:00 PM Stochastic Heat Transfer: Algorithms and Applications  
1:30 PM A Posteriori Error Estimators in a Space-Time Framework  
2:00 PM Experiments on Uncertainty Propagation in Forced Convective Heat Transfer

### **Presenter/Principal Investigator**

Shann J. Rufer, Purdue University (SNL Funded)  
Graham V. Candler, University of Minnesota (SNL Funded)  
Dana Dabiri, University of Washington (NSF Funded)  
George Karniadakis, Brown University (NSF Funded)  
Marc Garbey, University of Houston (SNL Funded)

### **Electrical Engineering**

2:30 PM RF MEMS Multiphysics Model, Experimental, Theoretical and Mitigation Studies  
3:00 PM Break  
3:15 PM Enabling Methods for Fast Co-Simulation of Electric Circuits Under Uncertainty

### **Presenter/Principal Investigator**

Katsuo Kurabayashi, University of Michigan and John L. Volakis, Ohio State University (NSF Funded)  
Kai Strunz, University of Washington (SNL Funded)

### **Emerging Technologies - Micro- Nano- Mechanics**

3:45 PM Multiresolution Analysis Mechanics  
4:15 PM Integrated Atomistic and Continuum Simulation Studies of Stress-Defect Interactions in Semiconducors

### **Presenter/Principal Investigator**

Wing Kam Liu, Northwestern University (NSF Funded)  
Krishna Garikipati, University of Michigan (NSF Funded)

# FY2006 NSF-Sandia Workshop

## Agenda



### **Emerging Technologies - Micro- Nano- Mechanics**

8:00 AM Electric Field-Driven Transport Phenomena at the Micrometer and Nanometer Scales

8:30 AM Efficient Numerical Solutions of the Boltzmann Equation for Low-Speed Gas Flows

9:00 AM Measurements and Modeling of Molecular Motion near Solid Interfaces

9:30 AM Break

### **Uncertainty and Engineering Design**

9:45 AM Extrema of Discrepancy Sensitivity Measures

### **New Projects**

10:15 AM Finite Temperature Continuum Mechanics Based on Interatomic Potentials

### **Presenter/Principal Investigator**

Boris Khusid, New Jersey Institute of Technology (SNL Funded)

Nicolas G. Hadjiconstantinou, Massachusetts Institute of Technology (SNL Funded)

Kenneth Breuer, Brown University (SNL Funded)

### **Presenter/Principal Investigator**

Erik A. Johnson, University of Southern California (NSF Funded)

### **Presenter/Principal Investigator**

Yonggang Huang, University of Illinois (NSF Funded)

# FY07 New Starts in Sandia/NSF Program



| <b>Solid Mechanics</b>                        |            |         |     |                                                |
|-----------------------------------------------|------------|---------|-----|------------------------------------------------|
| 625241                                        | Wierzbicki | MIT     | 399 | Ductile Fracture                               |
| 625293                                        | Liu        | NWU     | 396 | Multi-Res Analysis                             |
| 625299                                        | Ghoniem    | UCLA    | 400 | Multi-scale analysis                           |
| 626486                                        | Qi         | U of Co | 293 | Shape Memory polymers                          |
| <b>Micro/Nano Technologies</b>                |            |         |     |                                                |
| 625550                                        | Xu         | Purdue  | 271 | Molecular Dynamics of Laser Ablation           |
| <b>Nano/micro processes and manufacturing</b> |            |         |     |                                                |
| 623973                                        | Qiao       | Akron   | 299 | Porous Material                                |
| 626460                                        | Lagoudas   | TAMU    | 347 | Thermal-mechanical interfaces                  |
| 625844                                        | Breuer     | Brown   | 300 | Energy and momentum transfer in microfluids    |
| 626124                                        | Raman      | Purdue  | 374 | Fluid-structure interactions (AFM cantilevers) |
| <b>Thermal Fluids</b>                         |            |         |     |                                                |
| 625765                                        | Tryggvason | WPI     | 320 | Computational Boiling                          |
| 625344                                        | Candler    | Uminn   | 420 | Re-entry vehicles                              |
| 625335                                        | Hu         | Upenn   | 399 | microfluids                                    |
| 625865                                        | Yoda       | GA Tech | 399 | microthermometry                               |

# FY2005 NSF-Sandia Workshop Agenda



## Solid and Structural Mechanics

|          |                                                                                             |
|----------|---------------------------------------------------------------------------------------------|
| 8:45 AM  | Computational and Modeling Strategies for Damping and Multi- Physics Coupling on Interfaces |
| 9:15 AM  | Development and Analysis of Reduced-Order Models for Mechanical Joints and Interfaces       |
| 9:45 AM  | Chemorheological response of natural rubber at high temperatures                            |
| 10:15 AM | Break                                                                                       |
| 10:30 AM | Material Deterioration in High Temperature Gradients and Transients : Cyclic Loading        |

## Presenter/Principal Investigator

John Dolbow, Duke University (Sandia Funded)

## Additional Investigators

Tod Laursen

Edward Berger, University of Cincinnati, and D. Dane Quinn, Dan Segalman (Sandia)  
University of Akron (SNL Funded)

John A. Shaw, University of Michigan (SNL Funded)

Alan S. Wineman

## Thermal, Fluid and Aerosciences

|          |                                                                                                                                                                     |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11:00 AM | Mechanisms of Hypersonic Boundary-Layer Transition on Reentry Vehicles: Introduction and Experiments                                                                |
| 11:30 AM | Mechanisms of Hypersonic Boundary Layer Transition on Re-Entry Vehicles                                                                                             |
| 12:00 PM | Lunch                                                                                                                                                               |
|          | 3D Modeling of Flow Behind a Heated Backward-Facing Step Using 3D Digital Particle Image Velocimetry & Thermometry                                                  |
| 1:00 PM  | Effects of boundary condition fluctuations on convective heat transfer: measurements and modeling                                                                   |
| 1:30 PM  | Uncertainty Modeling in Convective Heat Transfer<br>The Least Square Extrapolation method for CFD and Heat transfer problems and its application to error estimates |
| 2:00 PM  | Effects of boundary condition fluctuations on convective heat transfer: measurements and modeling                                                                   |
| 2:30 PM  |                                                                                                                                                                     |

Shann J. Rufer, Steven Schneider, Purdue University (SNL Funded)

Graham V. Candler, University of Minnesota(SNL Funded)

Heath B. Johnson

Dana Dabiri, University of Washington (NSF Funded)

Jim Riley

George Karniadakis, Brown University(NSF Funded)

Marc Garbey, University of Houston (SNL Funded)

Christophe Picard, Wei Shyy

Tait Pottebaum and Mori Gharib, California Institute of Technology (NSF Funded)

# FY2005 NSF-Sandia Workshop Agenda (Cont)



## Electrical Engineering

|         |                                                                                      |
|---------|--------------------------------------------------------------------------------------|
| 3:00 PM | Break                                                                                |
| 3:15 PM | Design and Integrated Multi-Scale, Multi-Physics                                     |
| 3:15 PM | Modeling of RF MEMS for Improved Reliability                                         |
| 3:45 PM | Enabling Methods for Fast Co-Simulation of Diverse<br>Electric Circuits and Networks |

## Presenter/Principal Investigator

Katsuo Kurabayashi, University of Michigan and John L.Volakis, Ohio State University (NSF Funded)  
Kai Strunz, University of Washington (SNL Funded)

## Additional Investigators

Kazuhiro Saitou  
Eric Carlson, Gao Feng

## Emerging Technologies - Micro- Nano- Mechanics

|         |                                                                   |
|---------|-------------------------------------------------------------------|
| 4:15 PM | Multiscale Methods for Materials Design and Bio-Nano<br>Interface |
|---------|-------------------------------------------------------------------|

## Presenter/Principal Investigator

Wing Kam Liu, Northwestern University (NSF Funded)

## Additional Investigators

|         |                                                                                |                                                                                     |                    |
|---------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------|
| 8:00 AM | Stress Diffusion Coupling at the Defect Scale                                  | Michael Falk, University of Michigan (NSF Funded)                                   | Krishna Garikipati |
| 8:30 AM | The AC electric field contribution to the fluid energy and<br>stress           | Boris Khusid, New Jersey Institute of Technology (SNL<br>Funded)                    |                    |
| 9:00 AM | Efficient numerical solutions of the Boltzmann equation<br>for low speed flows | Nicolas G. Hadjiconstantinou, Massachusetts Institute of<br>Technology (SNL Funded) | Lowell L. Baker    |
| 9:30 AM | Break                                                                          |                                                                                     |                    |
| 9:45 AM | Appropriate Fluid-Solid Boundary Conditions at the<br>Nanoscale                | Kenneth Breuer, Brown University (SNL Funded)                                       |                    |

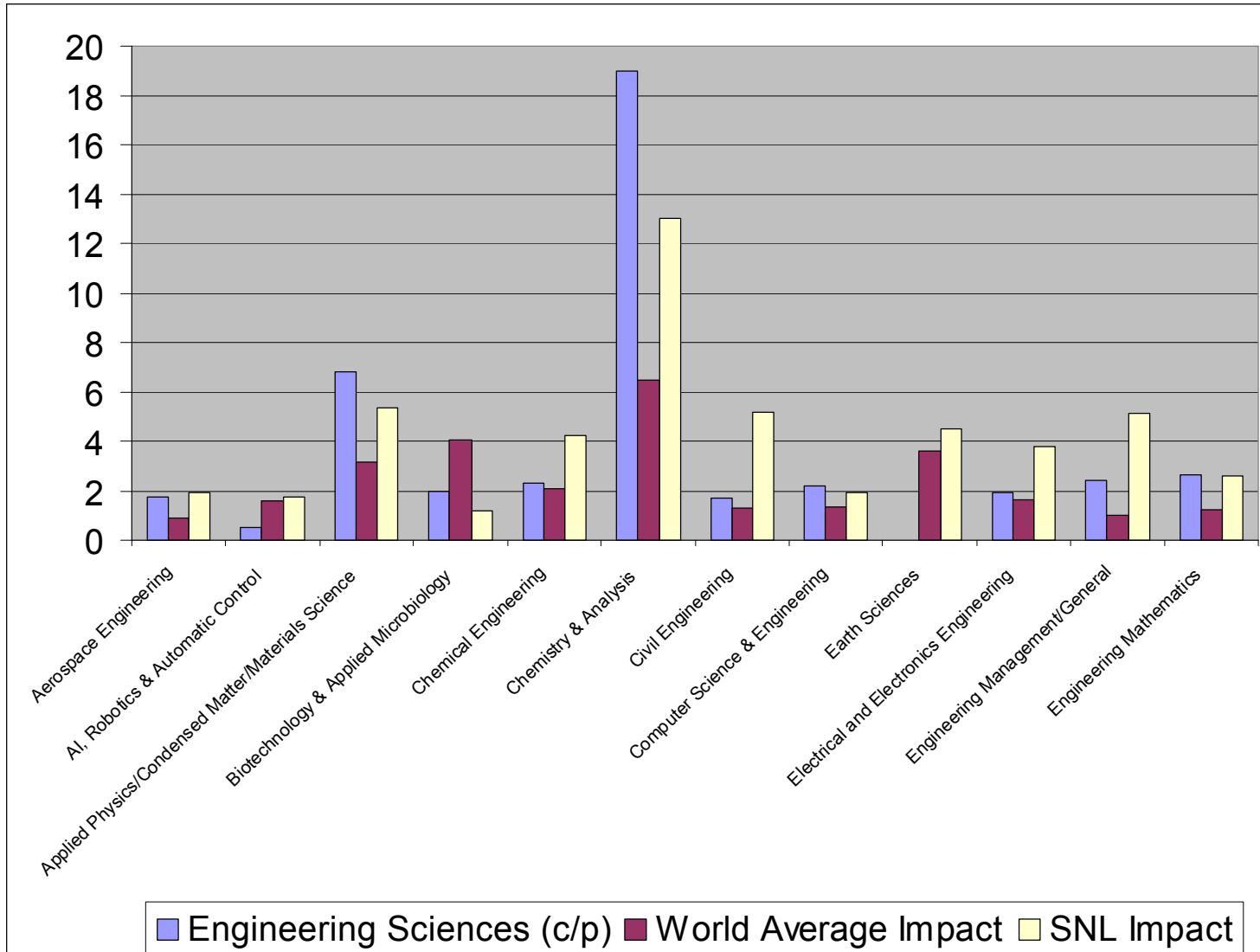
## Uncertainty and Engineering Design

|          |                                                        |
|----------|--------------------------------------------------------|
| 10:15 AM | Optimal Material Design in the Presence of Uncertainty |
| 10:45 AM | DACE Using Discrepancy Sensitivity                     |

## Presenter/Principal Investigator

George C. Johnson, University of California, Berkeley (NSF  
Funded)  
Erik A. Johnson, University of Southern California (NSF  
Funded)

## Additional Investigators


Nicolas Rumigny, Panos  
Papadopoulos, Andrew Packard



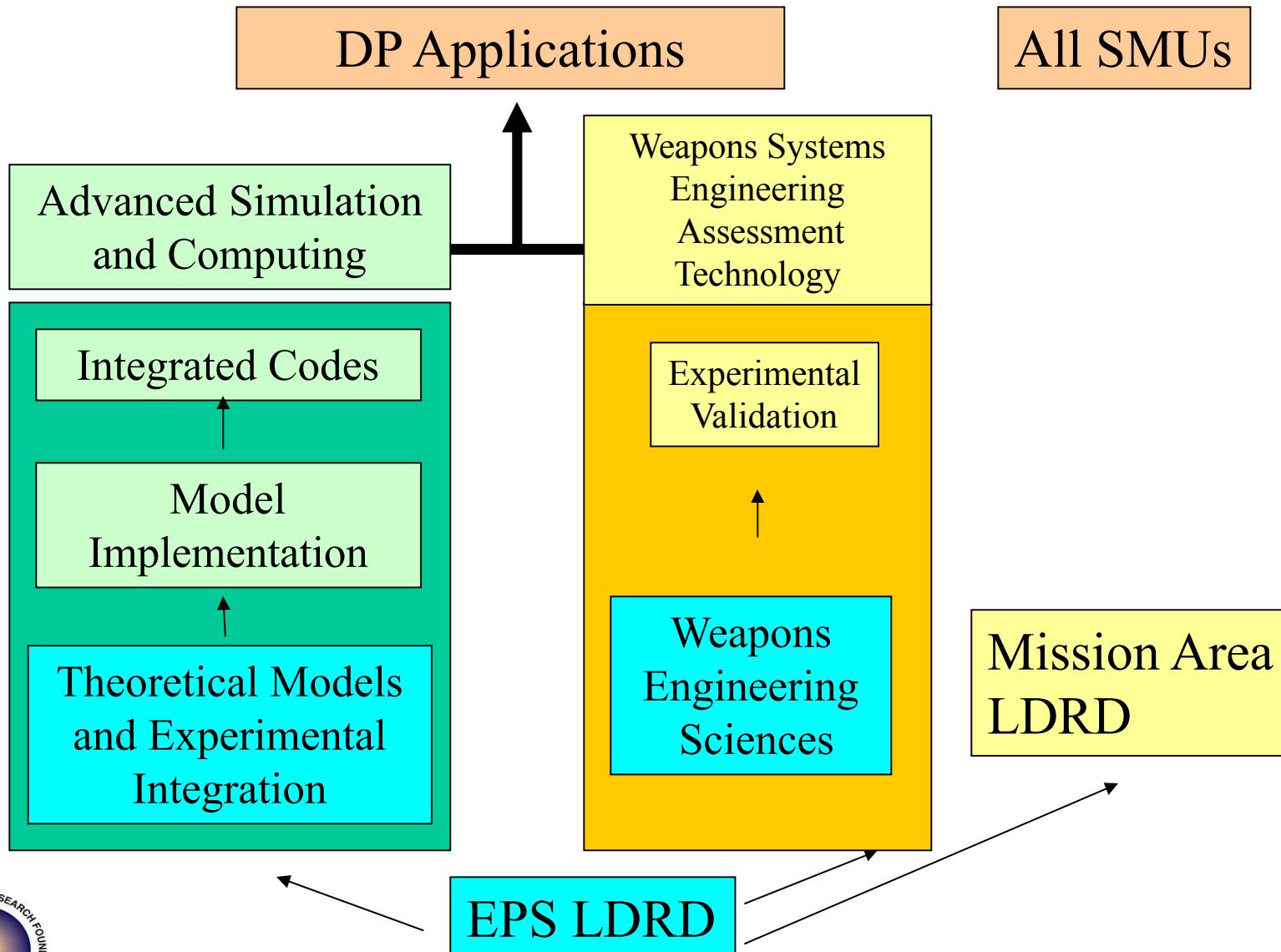
# External Impact



# Engineering Sciences Citation Impact



# Industrial Activities


## (~ \$9M in FY06)



- ARCXIS BIOTECHNOLOGIES
- ATOMIC WEAPONS ESTABLISHMENT (AWE) U.K.
- BAE
- CATERPILLAR
- CORNING
- DOW CHEMICAL COMPANY
- EPRI
- GENERAL MOTORS
- GOODYEAR
- INTEL
- LOCKHEED MARTIN
- MINNESOTA MINING AND MANUFACTURING
- NORTHRUP GRIMMAN SHIP SYSTEMS
- PROCTER & GAMBLE
- TITAN SYSTEMS
- ULTRAMET



The ESRF provides **capabilities and understanding** required to **enable predictive simulation** in support of the Engineering Sciences needs of Sandia's Strategic Management Units.

