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INTRODUCTION

A previously described algorithm[1, 2] for doing domain
decomposed particle Monte Carlo calculations in the context
of thermal radiation transport[3] has been improved. The old
algorithm did not support cases where the number of particles
at the beginning of the time step is unknown, for example when
particle splitting is used for variance reduction. Additionally,
several race conditions existed in the old algorithm that caused
periodic code hangs. This new algorithm is believed to be ro-
bust against all race conditions. Even with these two changes,
scalability remains excellent.

OUTLINE OF THE ALGORITHM

In any domain decomposed particle Monte Carlo code,
two types of information need to be exchanged between the
processors. Most obviously, the particles that cross domain
boundaries need to be sent to the new processor. Additionally,
all processors must coordinate exiting the particle processing
loop at the end of the time step when all the particles have
finished.

Asynchronous communication is used for all point-to-
point communications. This allows maximal overlap between
computational work and interprocessor communication, and
increases parallel efficiency. Nonblocking receives are posted
for all possible incoming messages. When an incoming mes-
sage is detected, the data is appropriately handled and another
nonblocking receive is immediately posted. All outgoing mes-
sages are also sent with the nonblocking sends — this is crit-
ical to avoid race conditions. The outgoing buffers are freed
once it has been confirmed the message has been received. All
outstanding messages are checked for completion after a cer-
tain number, Nperiod, of local particles have completed, or con-
tinually if there are no particles left to simulate on the local
processor. At the end of the time step, all nonblocking receive
requests are canceled.

Particle Transfers

When a particle hits a domain boundary, it must be sent
to the processor that owns the new part of the domain. These
particles are sent to a buffer that has a maximum size of Nbuffer.
There is one buffer for each neighbor processor. When the
maximum number of particles has been added to the buffer, it
is sent to the neighboring processor. The buffer is also flushed
when all local particles have been processed and there is no
other work to do, even if it is partially full. The actual number

of particles sent is encoded into the message along with the
particle data so that the receiving processor knows how many
particles were actually sent.

Each processor also posts a nonblocking receive for each
neighbor processor, with enough storage for the maximum
number of particles. When an incoming message is detected,
the buffer is processed and the particles put on the simulation
particle list.

Coordinating the end of the time step

In order to determine that all that particles have finished,
the number of particles created and completed during a time
step on each processor are tallied. When the instantaneous
global sum of these two tallies match, the time step is over.
This is only possible to do with a blocking global sum, but
these can be expensive since they require synchronization be-
tween all processors.

Instead we first estimate the global sum with a nonblock-
ing sum that asynchronously collects the tallies from all pro-
cessors to the root processor, which also does particle com-
putations. This asynchronous global sum will eventually be
exact, but situations may arise where the global sums as seen
by the root match, but there are unprocessed messages that
would make the sums not match. A binary tree communica-
tion pattern is set up where each processor, except the root,
has one parent and at most two children. Each processor posts
nonblocking receives from its children to collect the parti-
cle counts. When an incoming message is received, the off-
processor counts are added to the local processor’s counts.
When there is no more local work to do, each processor sends
the counts to its parent in the binary tree, and the local counts
are reset.

When the estimated global sums of the two tallies match
on the root processor, a message is sent up the binary tree from
parents to children signaling each processor that the time step
might be over and to initiate a blocking global sum, even if a
local processor is still working on particles. If the counts in
the blocking global sums match, the time step is over. The es-
timate nonblocking global sums continue until its sums match
the blocking sums — all messages from the nonblocking send
need to be collected or else they will be erroneously received
in the next time step. When all the counts match, another
message is sent through the nonblocking communication tree
telling each processor that the time step is really finished now,
and all processors exit the processing loop. Until this mes-
sage is received, processors keep checking for “maybe done”
message, incoming particles from neighboring processors, or
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processing the asynchronous sum messages. If the blocking
global sum counts don’t match, the processing continues as
before, waiting until the next time the estimated nonblocking
global sums match.

Note two sets of tallies for the number of created and com-
pleted particles are needed on each processor. The first is for
the estimated nonblocking sum, and the counts are reset to zero
when their values are sent to the parent and may contain the
counts of all children processors. The second set is for the
blocking global sum and is not reset until the next time step
and is a purely local count.

RESULTS

The performance of the algorithm is studied using an equi-
librium, uniform box of material[1]. This is designed to be
perfectly load balanced, and to nearly keep a constant amount
of work per processor in a weak scaling study. Each proces-
sor simulates a one centimeter cube with 30 zones per side,
for a total of 27,000 zones per processor. There are on av-
erage 10 particles per zone. All external boundaries are re-
flecting. The box is filled with a uniform, hot material at
T = 1keV, a density of ρ = 1000kg/m3, and a heat capacity
of Cv = 5×109 J/Kkg. The absorption and scattering cross
sections are σa = 50cm−1 and σs = 10cm−1. Ten time con-
stant sized steps were computed with ∆t = 3×10−9s. All test
problems were run on Red Storm[4], a 12,960 node Cray XT3,
at Sandia National Laboratories.

The problem was first run on 64 processors with different
maximum sized buffers, Nbuffer, and different periods, Nperiod,
to minimize the run time for this uniform problem. Each pa-
rameter ranged from 1 to 16384. The results in Figure 1 indi-
cate that a longer check period is better, and a maximum buffer
size of about 512 particles resulted in the lowest run time for
this problem. Run time appears to be a very shallow function
of both parameters; we have seen in practice that any set of
reasonably chosen values to preform well for a wide range of
problems. The long check period indicates as long as there is
local work, a processor should spend as little time as possible
checking for incoming messages. The old algorithm[1] would
lock if the message check period was larger than the maximum
buffer size.

Using the parameters that resulted in the minimum run
time in the last test, a scaling study was performed for three
different cases. In order to simulate the effects of variance
reduction techniques on the algorithm, the photons were arbi-
trarily split with three different probabilities of 0.0, 0.1, and
0.5. Figure 2 shows the efficiency is nearly constant at about
85% after about 27 processors. The efficiency drops off un-
til 27 processors where one processor has six neighbors for
the first time, and after this point the work to communication
remains remains constant. The algorithms is slightly less effi-
cient for the higher split fractions because there are about 50%
more messages sent between processors, but this this reduction
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Fig. 1. Run time as a function of both message check period
and maximum buffer size. The minimum is indicated by the
yellow box at Nperiod = 16386 and Nbuffer = 512.
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Fig. 2. Parallel efficiency for a scaling study where the work
per processor was kept nearly constant using three different
particle split fractions.



in efficiency is minor.

CONCLUSIONS

This new algorithm is much more robust and is capable of
handling cases where the number of particles is unknown at the
beginning of the time time step. It scales well, but this is just
part of the full algorithm. The test problem was specifically
designed to be perfectly load balanced. This algorithm will
not scale well on problems that are not load balanced. Other
techniques, such as a combination of domain replication and
domain decomposition or dynamic load balancing, will need to
be employed to boost the parallel efficiency on real problems.
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