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Abstract

We present a new tabulation strategy for the numerical natémn of chemical reacting flow processes on the basis
of a non-stiff system of equations. Both the tabulation didentification of the non-stiff system are adaptive and
are based on the Computational Singular Perturbation (@&®hod. The new tabulation strategy is implemented
in order to store and reuse the CSP quantities required frctnstruction of the non-stiff model. In this paper
we describe a particular feature of this algorithm, the “log@neous correction”, that allows for an accurate and
efficient identification of the manifold on which the solutimoves with respect to the slow time scales. The improved
efficiency in constructing the slow model and simulating siygstem dynamics along the manifold during run-time
calculations is demonstrated.

1 Background

The dynamics of chemical kinetic systems exhibit a wide eaofgtime scales. Computational Singular Perturbation
(CSP) [1, 2] is a method which seeks to simplify the compatatif large and complicated reacting flow systems by
decomposing the system dynamics into fast and slow dynafieskey advantage of CSP-based reduction strategies
is the ability to carry out the fast/slow decomposition aniédically allowing for the replacement of a stiff system of
large dimension with one which is non-stiff with a a reducednier of state variables. The numerical integration of
the reduced, non-stiff model can be carried out by resottingn explicit time-scale split integration algorithm [3].
However, a straightforward implementation of CSP is nobv@féble when dealing with systems of large dimension
because of the high computational cost associated with 8fedhalysis. One way to reduce this cost is to implement
a tabulation strategy to store and reuse the manifold inébion generated by CSP.

Our tabulation approach borrows from the "Piecewise Relaskibplementation of Solution Mapping” (PRISM)
[4,5] the concepts of hypercube in the CCS and the polynoregression of response surfaces, and adapt them in
order to address the specific challenges of CSP in view ofoéiud the reduction of dimensionality offered by CSP.
In contrast to conventional PRISM implementations, whaeedolution is mapped against the full state vector, we
seek to store and reuse information of a lower, if existifig;— M)-dimensional surface within thid-dimensional
hypercube. Herd\ is the number of unknowns in the state vegt@andM is the number of fast time scales that, at
some point in the CCS, are found “exhausted”, and therefoteontributing to the (slow) dynamics of the system.
Specifically, we tabulate the CSP basis vectors/coveatarglb. This choice is based on the fact that the eigenvalue
analysis of the Jacobian of the source term and the refinemeeted for their computation are expensive. Moreover,
the CSP vectors/covectors are at the core of the computattiomportant CSP quantities such as the projection matrix
Qs=1|—3,_1mab" or the radical correction in the Valorani-Goussis [3] int#gr. The implementation of the
tabulation consists of building local —low-order— polyniaimesponse surfaces of the elements of the frstolumns
of aand rows of as a function of thé&l — M active species.

The effectiveness and feasibility of the approach reli¢isnately on the ability to identify the valu®l and the
N — M variables in order to characterize accurately the SIM winentable is being constructed. and to allow for an
accurate simulation of the system dynamics during intégmat

In this paper we show how the concept of the CSP homogeneamlisdt) correction [6, 7] can be used to project any
state vector picked at random in &ldimensional hypercube onto a neighborhood ofldr- M)-dimensional SIM.
The action of the homogeneous correction is to reduce, dt application, the amplitudes of thé fastest modes,
thus monitoring the approach of the state vector to the SIM.WM adopt the definition of homogeneous (radical)
correction used in [3], that is:



M
dy=— 5 amiyf" (1)
mn=1
wheredy is the displacement of the state vector in the fast subspackiped by non-vanished fast mode amplitudes
{f"=Db"-g}M ,, with g denoting the RHS of the kinetic model.

During the tabulation stage, this property is used to complinside the hypercube when this is sufficiently small
such that any pointis "close” to the manifold, and is atedd it along the fast directions. The selection of the prope
size of the hypercube is carried out adaptively during théetaonstruction, although this issue is not discussedin th
paper. By projecting the state vector onto the SIM duringitiiegration stage, important computational savings can
be achieved since the exhausted fast scales are skippeldeamdrhber of time steps needed to accurately integrate the
slow dynamics of the original system of differential eqoas is significantly smaller.

2 CSP “homogeneous correction”

Typically, a state vectoy landing onto a hypercube where a SIM of unknown dimenghr- M) exists, is found
sufficiently off the SIM, this causing th®l fastest time scales to be active and forcing the state véctarove
towards the SIM. One way to identify the SIM dimension withihypercube is to compute trajectories starting from
different points in the hypercube and monitoring how marst Eamplitudes are vanished when the trajectories leave
the hypercube. However, computing the trajectories soonrnes prohibitively expensive.

Alternatively, one could imagine to project the state veottto a SIM of presumed dimensidh by resorting to the
homogeneous correction, Eq.(1), which allows to skip tHeutation of the fast dynamics. As SIM dimension within
a hypercube, we can take the largest valu®dbr which the projected state vector lands inside the sarmpetcybe.

A repeated application of the homogeneous correction, floassumed value d¥l, can bring the state vector
arbitrarily close to the nearefti(- M)-D SIM. The homogeneous correction affects the most thiebbas identified as
CSP radicals, whereas the non-CSP radical (major specesglatively unaffected. The ratidsly; /v iN:1 monitors
the relative changes of each solution component after eachation, which can be used as a stopping criterion for
the homogeneous correction iterates.

Clearly, the projected state vector on the SIM is not the sasrtbe point that the integration trajectory would reach,
starting from the same initial conditions. This only occifithe ratio Tfag /Teow = O, Otherwise the two points differ
by an amount which is a function of the tinf&, elapsed to reach the SIM from the starting point. In the segtion,
we show with an example that this difference can be maderaribytsmall without affecting significantly the accuracy
of the integration of the slow dynamics, while the compuatatf the large number of very small integration time steps
required to describe the fast approach to the SIM is avoided.

3 Example: a 3 species kinetics problem

To illustrate the application of the homogeneous corregtice consider the 3-species kinetics problem analyzed.in [2
The right hand side of this model problem reads:
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The solution trajectories are asymptotically attractedaals a 1-D SIM, a line in a 3-D phase space.

Consider the hypercube defined by the veftaxy»,ys] = [0.8750.8750.875 and edge length®y, dy2, dys] =
[0.1250.125,0.125, plotted in Fig. 1. Small black dots represent values of tagessector selected randomly within
the limits of the hypercube. For all these “experimentaligi@spoints we computed two successive homogeneous
corrections for bottM = 1 andM = 2. The homogeneous correction in Eq.(1) is calculated usiegigenvectors of



Figure 1: Black points are random design points in a hypezddiined by the verteys, ., ys] = [0.875,0.875 0.875
and edge length®y;, 8y», dys] = [0.1250.1250.125; red points calculated withl = 1; green points calculated with
M =2.

the Jacobian of the RHS as CSP vectors. Table 1 shows thevetdte after one and two corrections for the same
initial point, the relative change of each component of tagesvector, and the magnitude of the fast modal amplitudes.

We can observe that, when the homogeneous correction islatdd withM = 1, the initial points are taken
within the vicinity of a 2D surface (red points in Fig. 1). Brsurface is a 2-D SIM where the first modal amplitude
f1 ~ 0. Similarly, whenM = 2 the corrections take the experimental design points twittigity of a 1-D SIM, the
intersection of two surfaces at whi¢li' ~ 0N f2 ~ 0) (green points in Fig. 1). The trajectory found by prescripin
constant time intervals for the initial point in Tab. 1 shaiwe behavior of the state vector under the influence of fast
scales, described in the previous section and in [2]. The bikcles in Fig. 1 represent the final values of the state
vector after the corrections computed with= 1 andM = 2.

The relative changes between initial and final points of #mad correction are significantly smaller than those
due to the first correction, indicating convergence towahd@sSIM as also confirmed by the vanishing values of the
fast modal amplitudes in Tab. 1. Fbt = 1, the homogeneous correction affects the elemgnéndy, to a greater

M=1 Y1 Y2 Y3 dyi/yr  dyz/y2  dys/ys f

Initial | 0.97003 0.92696 0.99514 -128.35270
lhc | 0.94726 0.97593 0.99401 0.02346 -0.05283 0.00113 2.41797
2hc | 0.94768 0.97504 0.99403 -0.00044 0.00091 -0.00002 0.00454

M=2 V1 Y2 Y3 dy1/y1 dy2/y2  dysz/ys fl f2
Initial | 0.97003 0.92696 0.99514 -128.35269 -11.47343
lhc | 0.97782 0.99093 0.96854 -0.00804 -0.06901 0.02673 4.595360.06144
2hc | 0.97876 0.98934 0.96844 -0.00096 0.00160 0.00010 0.002750.00633

Table 1: computed values of the state vector with relativenges, and modal amplitudes before and after applying
the homogeneous correction.



extent thanys. Thereforeys can be labeled as a major species and lypthndy, as CSP radicals. The pointers for
y1 andy, are0(0.2) andO(0.8) respectively, whereas the CSP pointer ygiis three orders of magnitude smaller.
ForM = 2 the homogeneous correction affects the 3 species to the dagree. Thé&l diagonal elements of the fast
subspace projection matr@m are of the same order of magnitud2(0.35), O(0.45) andO(0.20) for y1, y2 andys
respectively.

Figure 2 shows the evolution vs time of the 3 species usin@CBe integrator [3] and fourth order Runge-Kutta
(black line). We compare these results with those obtairiest & (red) and 2 (green) homogeneous corrections
calculated withM = 2 (shown in Tab. 1) followed by the same CSP integration. Weatsserve the high accuracy of
the integration after the short initial periods. The numifeintegration steps with CSP starting from the initial goin
until log;o(time) = —0.75is 170. After one homogeneous correction, most of thetshimgration steps of the rapid
transit period are skipped and the number of steps drops.t&iéally, with 2 consecutive homogeneous corrections,
the modal amplitudes become negligible indicating clogipnity to the 1D manifold. Under these conditions CSP
is especially effective filtering out the fast scales ang/dnilime step is needed to integrate the system of ODE’s with
comparable accuracy.
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Figure 2: time integration with CSP (black line) for an ialtpointy = [0.970030.926960.99514. The red points
correspond to the results of the integration after 1 homegeas correction wittM = 2 followed by CSP integration
of the full system. The green points are the results afterrf@dgeneous corrections.

4 Conclusions

The CSP homogeneous correction provides an efficient wagetatify an accurate projection on a SIM of any state
vector close but off the SIM. This property can be used to tifiemnd characterize the SIM dimension without
resorting to expensive trajectory calculations. An effectiimensionality reduction is obtained as the CSP infdioma
can be computed as a function of just thie- M major species. Significant CPU savings can be achieved ppiskj
the detailed calculation of the fast approach to the SIMattist of a minimal loss of accuracy.
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