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Abstract

We present a new tabulation strategy for the numerical integration of chemical reacting flow processes on the basis
of a non-stiff system of equations. Both the tabulation and the identification of the non-stiff system are adaptive and
are based on the Computational Singular Perturbation (CSP)method. The new tabulation strategy is implemented
in order to store and reuse the CSP quantities required for the construction of the non-stiff model. In this paper
we describe a particular feature of this algorithm, the “homogeneous correction”, that allows for an accurate and
efficient identification of the manifold on which the solution moves with respect to the slow time scales. The improved
efficiency in constructing the slow model and simulating thesystem dynamics along the manifold during run-time
calculations is demonstrated.

1 Background

The dynamics of chemical kinetic systems exhibit a wide range of time scales. Computational Singular Perturbation
(CSP) [1, 2] is a method which seeks to simplify the computation of large and complicated reacting flow systems by
decomposing the system dynamics into fast and slow dynamics. The key advantage of CSP-based reduction strategies
is the ability to carry out the fast/slow decomposition automatically allowing for the replacement of a stiff system of
large dimension with one which is non-stiff with a a reduced number of state variables. The numerical integration of
the reduced, non-stiff model can be carried out by resortingto an explicit time-scale split integration algorithm [3].
However, a straightforward implementation of CSP is not affordable when dealing with systems of large dimension
because of the high computational cost associated with the CSP analysis. One way to reduce this cost is to implement
a tabulation strategy to store and reuse the manifold information generated by CSP.

Our tabulation approach borrows from the ”Piecewise Reusable Implementation of Solution Mapping” (PRISM)
[4, 5] the concepts of hypercube in the CCS and the polynomialregression of response surfaces, and adapt them in
order to address the specific challenges of CSP in view of exploiting the reduction of dimensionality offered by CSP.
In contrast to conventional PRISM implementations, where the solution is mapped against the full state vector, we
seek to store and reuse information of a lower, if existing,(N −M)-dimensional surface within theN-dimensional
hypercube. Here,N is the number of unknowns in the state vectory andM is the number of fast time scales that, at
some point in the CCS, are found “exhausted”, and therefore not contributing to the (slow) dynamics of the system.
Specifically, we tabulate the CSP basis vectors/covectorsa andb. This choice is based on the fact that the eigenvalue
analysis of the Jacobian of the source term and the refinements needed for their computation are expensive. Moreover,
the CSP vectors/covectors are at the core of the computationof important CSP quantities such as the projection matrix
Qs = I − ∑r=1,M arbr or the radical correction in the Valorani-Goussis [3] integrator. The implementation of the
tabulation consists of building local –low-order– polynomial response surfaces of the elements of the firstM columns
of a and rows ofb as a function of theN −M active species.

The effectiveness and feasibility of the approach relies ultimately on the ability to identify the valueM and the
N −M variables in order to characterize accurately the SIM when the table is being constructed. and to allow for an
accurate simulation of the system dynamics during integration

In this paper we show how the concept of the CSP homogeneous (radical) correction [6,7] can be used to project any
state vector picked at random in anN-dimensional hypercube onto a neighborhood of an(N −M)-dimensional SIM.
The action of the homogeneous correction is to reduce, at each application, the amplitudes of theM fastest modes,
thus monitoring the approach of the state vector to the SIM. We will adopt the definition of homogeneous (radical)
correction used in [3], that is:
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δy = −
M

∑
m,n=1

amτm
n f n (1)

whereδy is the displacement of the state vector in the fast subspace produced by non-vanished fast mode amplitudes
{ f n = bn ·g}M

n=1, with g denoting the RHS of the kinetic model.
During the tabulation stage, this property is used to computeM inside the hypercube when this is sufficiently small

such that any point is ”close” to the manifold, and is attracted to it along the fast directions. The selection of the proper
size of the hypercube is carried out adaptively during the table construction, although this issue is not discussed in this
paper. By projecting the state vector onto the SIM during theintegration stage, important computational savings can
be achieved since the exhausted fast scales are skipped and the number of time steps needed to accurately integrate the
slow dynamics of the original system of differential equations is significantly smaller.

2 CSP “homogeneous correction”

Typically, a state vectory landing onto a hypercube where a SIM of unknown dimension(N −M) exists, is found
sufficiently off the SIM, this causing theM fastest time scales to be active and forcing the state vectorto move
towards the SIM. One way to identify the SIM dimension withina hypercube is to compute trajectories starting from
different points in the hypercube and monitoring how many fast amplitudes are vanished when the trajectories leave
the hypercube. However, computing the trajectories soon becomes prohibitively expensive.

Alternatively, one could imagine to project the state vector onto a SIM of presumed dimensionM by resorting to the
homogeneous correction, Eq.(1), which allows to skip the calculation of the fast dynamics. As SIM dimension within
a hypercube, we can take the largest value ofM for which the projected state vector lands inside the same hypercube.

A repeated application of the homogeneous correction, for an assumed value ofM, can bring the state vector
arbitrarily close to the nearest (N−M)-D SIM. The homogeneous correction affects the most the variables identified as
CSP radicals, whereas the non-CSP radical (major species) are relatively unaffected. The ratios{dyi/yi}

N
i=1 monitors

the relative changes of each solution component after each correction, which can be used as a stopping criterion for
the homogeneous correction iterates.

Clearly, the projected state vector on the SIM is not the sameas the point that the integration trajectory would reach,
starting from the same initial conditions. This only occursif the ratioτ f ast/τslow = 0, otherwise the two points differ
by an amount which is a function of the time,∆t, elapsed to reach the SIM from the starting point. In the nextsection,
we show with an example that this difference can be made arbitrarily small without affecting significantly the accuracy
of the integration of the slow dynamics, while the computation of the large number of very small integration time steps
required to describe the fast approach to the SIM is avoided.

3 Example: a 3 species kinetics problem

To illustrate the application of the homogeneous correction, we consider the 3-species kinetics problem analyzed in [2].
The right hand side of this model problem reads:
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The solution trajectories are asymptotically attracted towards a 1-D SIM, a line in a 3-D phase space.
Consider the hypercube defined by the vertex[y1,y2,y3] = [0.875,0.875,0.875] and edge lengths[δy1,δy2,δy3] =

[0.125,0.125,0.125], plotted in Fig. 1. Small black dots represent values of the state vector selected randomly within
the limits of the hypercube. For all these “experimental design” points we computed two successive homogeneous
corrections for bothM = 1 andM = 2. The homogeneous correction in Eq.(1) is calculated usingthe eigenvectors of
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Figure 1: Black points are random design points in a hypercube defined by the vertex[y1,y2,y3] = [0.875,0.875,0.875]
and edge lengths[δy1,δy2,δy3] = [0.125,0.125,0.125]; red points calculated withM = 1; green points calculated with
M = 2.

the Jacobian of the RHS as CSP vectors. Table 1 shows the statevector after one and two corrections for the same
initial point, the relative change of each component of the state vector, and the magnitude of the fast modal amplitudes.

We can observe that, when the homogeneous correction is calculated withM = 1, the initial points are taken
within the vicinity of a 2D surface (red points in Fig. 1). This surface is a 2-D SIM where the first modal amplitude
f 1 ≈ 0. Similarly, whenM = 2 the corrections take the experimental design points to thevicinity of a 1-D SIM, the
intersection of two surfaces at which( f 1 ≈ 0∩ f 2 ≈ 0) (green points in Fig. 1). The trajectory found by prescribing
constant time intervals for the initial point in Tab. 1 showsthe behavior of the state vector under the influence of fast
scales, described in the previous section and in [2]. The blue circles in Fig. 1 represent the final values of the state
vector after the corrections computed withM = 1 andM = 2.

The relative changes between initial and final points of the second correction are significantly smaller than those
due to the first correction, indicating convergence towardsthe SIM as also confirmed by the vanishing values of the
fast modal amplitudes in Tab. 1. ForM = 1, the homogeneous correction affects the elementsy1 andy2 to a greater

M = 1 y1 y2 y3 dy1/y1 dy2/y2 dy3/y3 f 1

Initial 0.97003 0.92696 0.99514 -128.35270
1 hc 0.94726 0.97593 0.99401 0.02346 -0.05283 0.00113 2.41797
2 hc 0.94768 0.97504 0.99403 -0.00044 0.00091 -0.00002 0.00454

M = 2 y1 y2 y3 dy1/y1 dy2/y2 dy3/y3 f 1 f 2

Initial 0.97003 0.92696 0.99514 -128.35269 -11.47343
1 hc 0.97782 0.99093 0.96854 -0.00804 -0.06901 0.02673 4.59536-0.06144
2 hc 0.97876 0.98934 0.96844 -0.00096 0.00160 0.00010 0.00275 -0.00033

Table 1: computed values of the state vector with relative changes, and modal amplitudes before and after applying
the homogeneous correction.
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extent thany3. Thereforey3 can be labeled as a major species and bothy1 andy2 as CSP radicals. The pointers for
y1 andy2 areO(0.2) andO(0.8) respectively, whereas the CSP pointer fory3 is three orders of magnitude smaller.
For M = 2 the homogeneous correction affects the 3 species to the same degree. TheN diagonal elements of the fast
subspace projection matrixQm are of the same order of magnitude,O(0.35), O(0.45) andO(0.20) for y1, y2 andy3

respectively.
Figure 2 shows the evolution vs time of the 3 species using theCSP integrator [3] and fourth order Runge-Kutta

(black line). We compare these results with those obtained after 1 (red) and 2 (green) homogeneous corrections
calculated withM = 2 (shown in Tab. 1) followed by the same CSP integration. We can observe the high accuracy of
the integration after the short initial periods. The numberof integration steps with CSP starting from the initial point
until log10(time) = −0.75 is 170. After one homogeneous correction, most of the short integration steps of the rapid
transit period are skipped and the number of steps drops to 65. Finally, with 2 consecutive homogeneous corrections,
the modal amplitudes become negligible indicating close proximity to the 1D manifold. Under these conditions CSP
is especially effective filtering out the fast scales and only 1 time step is needed to integrate the system of ODE’s with
comparable accuracy.
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Figure 2: time integration with CSP (black line) for an initial pointy = [0.97003,0.92696,0.99514]. The red points
correspond to the results of the integration after 1 homogeneous correction withM = 2 followed by CSP integration
of the full system. The green points are the results after 2 homogeneous corrections.

4 Conclusions

The CSP homogeneous correction provides an efficient way to identify an accurate projection on a SIM of any state
vector close but off the SIM. This property can be used to identify and characterize the SIM dimension without
resorting to expensive trajectory calculations. An effective dimensionality reduction is obtained as the CSP information
can be computed as a function of just theN −M major species. Significant CPU savings can be achieved by skipping
the detailed calculation of the fast approach to the SIM at the cost of a minimal loss of accuracy.
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